INTERNATIONAL AUDIO LABORATORIES ERLANGEN

Lecture

Music Processing

Music Representations

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Chapter		Music Processing Scenario	
1	}.	Music Represenations	
2		Fourier Analysis of Signals	
3		Music Synchronization	
4		Music Structure Analysis	
5		Chord Recognition	
6		Tempo and Beat Tracking	
7		Content-Based Audio Retrieval	
8	÷	Musically Informed Audio Decomposition	

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Chapter 1: Music Representations

- 1.1 Sheet Music Representations
- 1.2 Symbolic Representations
- 1.3 Audio Representation
- 1.4 Further Notes

Musical information can be represented in many different ways. In Chapter 1, we consider three widely used music representations: sheet music, symbolic, and audio representations. This first chapter also introduces basic terminology that is used throughout the book. In particular, we discuss musical and acoustic properties of audio signals including aspects such as frequency, pitch, dynamics, and timbre.

Music Representations

Music Representations

- Score representation: symbolic description
- MIDI representation: hybrid description (models note events explicitly but may also encode performance subtleties)

 Audio representation: physical description (encodes a sound wave)

Symphony No. 5 C minor

Types of score:

- Full score: shows music for all instruments and voices; used by conductors
- Piano (reduction) score: transcription for piano
 Example: Liszt transcription of Beethoven symphonies
- Short score: reduction of a work for many instruments to just a fews staves
- Lead sheet: specifies only melody, lyrics and harmonies (chord symbols); used for popular music to capture essential elements of a song

- Scanned image
- Various symbolic data formats
 - Lilypond
 - MusicXML
- Optical Music Recognition (OMR)
- Music notation software
 - Finale
 - Sibelius

MusicXML

<note>
 <pitch>
 <step>E</step>
 <alter>-1</alter>
 <octave>4</octave>
 </pitch>
 <duration>2</duration>
 <type>half</type>
</note>

Musical score / sheet music:

- Graphical / textual encoding of musical parameters (note onsets, pitches, durations, tempo, measure, dynamics, instrumentation)
- Guide for performing music
- Leaves freedom for various interpretations

Musical Instrument Digital Interface (MIDI)

- Standard protocol for controlling and synchronizing digital instruments
- Standard MIDI File (SMF) is used for collecting and storing MIDI messages
- SMF file is often called MIDI file

MIDI note numbers (MNN) \triangleq piano keys

MIDI parameters:

• MIDI note number (pitch) [0:127]

 $p = 21, ..., 108 \triangleq$ "piano keys"

 $p = 69 \triangleq \text{concert pitch A} (440Hz)$

- Key velocity $[0:127] \triangleq$ intensity
- MIDI channel $[0:15] \triangleq instrument$
- Note-on / note-off events ≙ onset time & duration
- Tempo measured in clock pulses or ticks (each MIDI event has a timestamp)
- Absolute tempo specified by
 - ticks per quarter note (musical time)
 - micro-seconds per tick (physical time)

Time	Message	Channel	Note	Velocity
(Ticks)			Number	
60	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	63	100
0	NOTE ON	2	51	100
0	NOTE ON	2	39	100
240	NOTE OFF	1	63	0
0	NOTE OFF	2	51	0
0	NOTE OFF	2	39	0

Time (ticks)

Piano roll representation:

- Piano roll: music storage medium used to operate a player piano
- Perforated paper rolls
- Holes in the paper encode the note parameters onset, duration, and pitch
- First pianola: 1895

Audio Representation

Various interpretations – Beethoven's Fifth

Bernstein	
Karajan	
Scherbakov (piano)	
MIDI (piano)	

- Audio signal encodes change of air pressure at a certain location generated by a vibrating object (e.g. string, vocal cords, membrane)
- Waveform (pressure-time plot) is graphical representation of audio signal
- Parameters: amplitude, frequency / period

Pure tone (harmonic sound):

- Sinusoidal waveform
- Prototype of an acoustic realization of a musical note

Parameters:

- Period p : time between to successive high pressure points
- Frequency $f = \frac{1}{p}$ (measured in Hz)
- Amplitude *a* : air pressure at high pressure points

Glen Gould (piano) Bernstein (orchestra) 0.5 0.5 0 0 -0.5 -0.5 2 3 5 6 7 2 6 0 1 4 0 4 8 0.5 0.5 0 0 -0.5 -0.5 0 1 2 3 5 6 7 0 2 6 8 4 4 0.04 0.05 0.02 0 -0.02 -0.05 -0.04 3.52 3.54 3.56 3.5 3.58 3.6 4.4 4.42 4.44 4.46 4.48 4.5 Time (seconds) Time (seconds)

Audio Representation **Sound**

- Sound: superposition of sinusoidals
- When realizing musical notes on an instrument one obtains a complex superposition of pure tones (and other noise-like components)
- Harmonics: integer multiples of fundamental frequency
 - 1. Harmonic ≙ fundamental frequency (e.g. 440 Hz)
 - 2. Harmonic \triangleq first overtone

(e.g. 880 Hz)

(e.g. 1320 Hz)

3. Harmonic \triangleq second overtone

Audio Representation **Pitch**

- Property that correlates to the perceived frequency (
 fundamental frequency)
- Example: middle A or concert pitch \triangleq 440 Hz

Audio Representation **Pitch**

Equal-tempered scale: A system of tuning in which every pair of adjacent notes has an identical frequency ratio

Western music: 12-tone equal-tempered scale

- Each octave is devided up into 12 logarithmically equal parts
- Notes correspond to piano keys p = 21 (A0) to p = 108 (C8)
- Referenz: standard pitch $p = 69 \text{ (A4)} \triangleq 440 \text{ Hz}$
- Frequency of a note with MIDI pitch *P*

$$f_{\rm MIDI}(p) = 2^{\frac{p-69}{12}} \cdot 440$$

Audio Representation Harmonics

- Intensity of a sound
- Energy of the sound per time and area
- Loudness: subjective (psychoacoustic) perception of intensity (depends on frequency, timbre, duration)

• intensity
$$= \frac{energy}{time \cdot area} = \frac{power}{area} \qquad \left(\frac{W}{m^2}\right)$$

 Decibel (dB): logarithmic unit to measure intensity relative to a reference level

• Reference level: threshold of hearing (THO) $P_0 = 1 \cdot 10^{-12} \frac{W}{m^2}$

- Intensity P_1 measured in dB: $dB(P_1) = 10 \cdot \log_{10} \left(\frac{P_1}{P_0} \right)$
- Examples:

 $P_1 = 10 \cdot P_0 \rightarrow P_1$ has a sound level of $10 \, dB$ $P_2 = 100 \cdot P_0 \rightarrow P_2$ has a sound level of $20 \, dB$

Source	Intensity	Intensity level	× TOH
Threshold of hearing (TOH)	10-12	0 dB	0
Whisper	10-10	20 dB	10 ²
Pianissimo	10-8	40 dB	104
Normal conversation	10-6	60 dB	106
Fortissimo	10-2	100 dB	1010
Threshold of pain	10	130 dB	1013
Jet take-off	10 ²	140 dB	1014
Instant perforation of eardrum	104	160 dB	1016

Audio Representation Loudness

Equal-loudness contours (phon)

Audio Representation Loudness

Equal-loudness contours (phon)

Audio Representation **Timbre**

 Quality of musical sound that distinguishes different types of sound production such as voices or instruments

Tone quality

- Tone color
- Depends on energy distribution in harmonics

Audio Representation Timbre

All instruments play the same note C4 (261.6 Hz)

modulation

modulation

Audio Representation **Digitization**

Audio Representation **Digitization**

- Convertion of continuous-time (analog) signal into a discrete signal
- Sampling (discretization of time axis)
- Quantization (discretization of amplitudes)

Examples:

- Audio CD: 44100 Hz sampling rate 16 bits (65536 values) used for quantization
- Telephone: 8000 Hz sampling rate

8 bits (256 values) used for quantization

Music Representations

