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Chapter 2: Fourier Analysis of Signals

21 The Fourier Transform in a Nutshell
2.2 Signals and Signal Spaces

2.3 Fourier Transform

24 Discrete Fourier Transform (DFT)

25 Short-Time Fourier Transform (STFT)
2.6 Further Notes

Important technical terminology is covered in Chapter 2. In particular, we
approach the Fourier transform—which is perhaps the most fundamental tool
in signal processing—from various perspectives. For the reader who is more
interested in the musical aspects of the book, Section 2.1 provides a summary
of the most important facts on the Fourier transform. In particular, the notion of
a spectrogram, which yields a time—frequency representation of an audio
signal, is introduced. The remainder of the chapter treats the Fourier transform
in greater mathematical depth and also includes the fast Fourier transform
(FFT)—an algorithm of great beauty and high practical relevance.

Chapter 3: Music Synchronization

3.1 Audio Features

3.2 Dynamic Time Warping
3.3 Applications

34 Further Notes

As a first music processing task, we study in Chapter 3 the problem of music
synchronization. The objective is to temporally align compatible
representations of the same piece of music. Considering this scenario, we
explain the need for musically informed audio features. In particular, we
introduce the concept of chroma-based music features, which capture
properties that are related to harmony and melody. Furthermore, we study an
alignment technique known as dynamic time warping (DTW), a concept that is
applicable for the analysis of general time series. For its efficient computation,
we discuss an algorithm based on dynamic programming—a widely used
method for solving a complex problem by breaking it down into a collection of
simpler subproblems.




Fourier Transform

Idea: Decompose a given signal into a superposition
of sinusoidals (elementary signals).

f=s+ s + 5]

Sinusoidals

Signal f
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Fourier Transform

Each sinusoidal has a physical meaning
and can be described by three parameters:

I S(A, e, @i(t) = A - sin( 2m{wt — ¢ )) I

w = frequency

A = amplitue A =1

@ = phase w, =1
@ =10

Interpretation: A, = 06

The amplitude A reflects the w; =3

intensity at which the sinusoidal @ = =02

of frequency w appears in f.

The phase ¢ reflects how the A; = 04

sinusoidal has to be shifted to wy =7

best correlate with f. ¥; = 04

Sinusoidals
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Fourier Transform

Each sinusoidal has a physical meaning
and can be described by three parameters:

f=s+ s + 5]

Fourier Transform

Each sinusoidal has a physical meaning
and can be described by three parameters:

f=s+ 5 + s

Sinusoidals
A, =1 v A =1
w-| = 1 ‘I :I w1 = 1 A
Signal f ¢ =0 N . : Signal f ¢ =0 Fouier transform |f|
: A, = 06 : A =06
. w, =3 9 N ay =3 05— l
L =02 , , e =2 N N B
Time (seconds) Time (seconds) 128 4 5 6 7 8
Ay = 0.4 ! Ay = 04 Frequency (Hz)
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Fourier Transform Fourier Transform
Example: Superposition of two sinusoidals Example: C4 played by piano
21 (1
f ot
‘|. 024
! . ol >
0 #
Jr | Jr 02
-1 o
04
2 N L L L L L L L I 1 06} . 1y L L L L
o 1 2 3 4 s 6 T 8 9 10 a 0s 1 15 2 15 3 as 4

Time (seconds)

|f]

2 3 B A T 7
Frequency (Hz)

Time (seconds)

|f]

(] 100 00 W 400 w0 600
Frequency (Hz)




Fourier Transform
Example: C4 played by trumpet

Fourier Transform
Example: C4 played by violine
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Fourier Transform Fourier Transform
Example: C4 played by flute Example: Speech “Bonn”
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Fourier Transform Fourier Transform
Example: Speech “Zirich” Example: C-major scale (piano)
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Fourier Transform
Example: Chirp signal

Fourier Transform

Each sinusoidal has a physical meaning
and can be described by three parameters:

Polar coordinates:
c=|c| - exp(2mip )

1 TRYTTRITTYIsITRIT |su11m¢.(£)=A-sin(2rr(wc—<p))l Im A
05t .
f of I w = frequency el /
sl N A = amplitue 8
1l v IRARARAL RARRRRR AR qa=phase @\ N
asl L A L L i I 1 L L J 1
a a2 04 1] (1] 1 12 14 16 18 2 Re
Time (seconds)
Complex formulation of sinusoidals:
T | e, an(®) = ¢ - exp(2mit) = c - (cos(2nwt) + i - sin(2mwt)) |
fl
e | w = frequency
ol ; . ; ; ; | A = amplitue = |c|
a 0 E) Frequ:ncy 2 0 = 0 @ =phase = arg(c)
Fourier Transform Fourier Transform
Signal f:R—=R Signal f:R—=R
Fourier representation  f(f) = | o™y, e, = f(w) Fourier representation  f(f) = | coe?™ Ny, e, = f(w)
Fourier transform flw) = [ f(t)e > “dt Fourier transform flw) = [ f(t)e > “dt
teR teR
= Tells which frequencies occur, but does not
tell when the frequencies occur.
= Frequency information is averaged over the entire
time interval.
= Time information is hidden in the phase
Fourier Transform Short Time Fourier Transform
Idea (Dennis Gabor, 1946):
f o | > = Consider only a small section of the signal
for the spectral analysis
U éemndi) oo — recovery of time information
.
| = Short Time Fourier Transform (STFT)
[fl v
n; = Section is determined by pointwise multiplication
FAAAE B LTRSS vl LT E R of the signal with a localizing window function

Frequency (Hz)




Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
Definition
= Signal fR—=R
= Window function g: & — R (g€ L*(R),|g] =1)

= STFT .,fx'(.a.'.lf) = /_ Flu)glu —1)e 2™ dy = (f|Gut)

with  guelu) == g(u—1t), ueR

Short Time Fourier Transform

Intuition:

= gu.t is “musical note” of frequency w, which
oscillates within the translated window u — g{u — t)
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Short Time Fourier Transform

Intuition:

= gu.t is “musical note” of frequency w, which
oscillates within the translated window u — g{u — t)
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* Inner product (f|g, ;) measures the correlation
between the musical note g...: and the signal f.

Window Function

Box window
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Window Function

Triangle window
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Window Function

Hann window
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Trade off between smoothing and ,ringing“

Time-Frequency Representation
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Time-Frequency Representation

Chirp signal and STFT with box window of length 0.05
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Time-Frequency Representation

Chirp signal and STFT with Hann window of length 0.05
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Time-Frequency Localization

= Size of window constitutes a trade-off between time
resolution and frequency resolution:
Large window :  poor time resolution

good frequency resolution
Small window : good time resolution

poor frequency resolution
= Heisenberg Uncertainty Principle: there is no

window function that localizes in time and
frequency with arbitrary position.

Short Time Fourier Transform

Signal and STFT with Hann window of length 0.02

Short Time Fourier Transform

Signal and STFT with Hann window of length 0.1
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MATLAB function SPECTROGRAM

= N = window length (in samples)

= M = overlap (usually N/2)

= Compute DFT), for every windowed section
= Keep lower N/2 Fourier coefficients

— Sequence of spectral vectors
(for each window a vector of dimension N/2)

Example

Let x be a discrete time signal (1) = f(1'n)
Sampling rate: 1/T = 22050 Hz

Window length: N = 4096

Overlap: N/2 = 2048

Hopsize: window length — overlap

Let vy = (ax(0), (1), ... . 2(4095))
v o= (@(2048), ..., 2(6143))

vo i= (@(4096), ..., 2(8191))

vy, corresponds to window [m - 2048 : m - 2048 4 4095)

Example

Time resolution:

hopsize ~ 4096 — 2048
sampling rate - 22050

=0.093 =93 ms

Frequency resolution:

v=1uwy, ©:=DFTy(v)
) 1 (k1
W=7 (57)
Eo1 92050
w1 k. — k538
N'T 1096 38 Hz




Pitch Features

Model assumption: Equal-tempered scale

= MIDI pitches: pe[1:128]
= Piano notes: p=21(A0) to p=108 (C8)
= Concert pitch: p =069 (Ad)

= Center frequency: fuipi(p) = 2% - 440 Hz

— Logarithmic frequency distribution
Octave: doubling of frequency

Pitch Features
Idea: Binning of Fourier coefficients

Divide up the fequency axis into
logarithmically spaced ,pitch regions®

and combine spectral coefficients

of each region to a single pitch coefficient.

Pitch Features

Time-frequency representation
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Windowing in the time domain

Pitch Features

Details:

= Let © be a spectral vector obtained from a
spectrogram w.r.t. a sampling rate 1/7'and a
window length N. The spectral coefficient v(k)
corresponds to the frequency

. ko1
Jeoett (k) 1= T
= Let
S(p) = {k: hupt(p = 0.5) < feoet (k) < fanpi(p +0.5)}
be the set of coefficients assigned to a pitch p € [1: 12§]
Then the pitch coefficient (p) is defined as

P(p):= Y lo(k)?

keS(p)

Pitch Features

Example: A4, p = 69

= Center frequency: f(p = 69) = 21 - 440 = 440 Hz

= Lowerbound:  f(p=68.5) =277 .440 = 427.5 H:=
= Upperbound:  f(p=69.5) = 27 . 440 = 452.0 H»
= STFT with N = 4096, 1/T = 22050

fik = 79) 1253 H

fik = 80) 130.7 H:
Jik = 81) 1360 H =
flk=82) 1414 H:
Sk = 83) 6.8 H:
Sk = 84) 152.2 Hz
fik = 85) 157.6 H:

Pitch Features

Example: A4, p = 69

= Center frequency: f(p = 69) = 21 - 440 = 440 Hz

= Lowerbound:  f(p=68.5) =277 .440 = 427.5 H=
= Upperbound:  f(p=60.5) = 2% . 440 = 452.0 H»
= STFT with N = 4096, 1/T = 22050

fik = 79) 125.3 H

fik = 80) 130.7 H:
Jik = 81) 1360 H =
fik=82) 1414 H: S(p =69)
Sk = 83) 6.8 H:
s
Flk = 84) 152.2 H . 12
F(k = 85) 157.6 H- Pp=109) = E (k)]

fe=80




Pitch Features

Note | MIDI | Center [HZ] | Left [Hz] Right [Hz] | Width [Hz]
pitch | frequency | boundary boundary
A3 57 220.0 213.7 226.4 12.7
A#3 58 2331 226.4 239.9 135
B3 59 246.9 239.9 254.2 14.3
Cc4 60 261.6 254.2 269.3 151
C#4 |61 277.2 269.3 285.3 16.0
D4 62 293.7 285.3 302.3 17.0
D#4 |63 311.1 302.3 320.2 18.0
E4 64 329.6 320.2 339.3 19.0
F4 65 349.2 339.3 359.5 20.2
F#4 66 370.0 359.5 380.8 21.4
G4 67 392.0 380.8 403.5 22.6
Gi#4 68 415.3 403.5 4275 24.0
A4 69 440.0 427.5 452.9 25.4

Pitch Features

Note:

= PecR!™®

= For some pitches, S(p) may be empty. This
particularly holds for low notes corresponding to
narrow frequency bands.

— Linear frequency sampling is problematic!

Solution:

Multi-resolution spectrograms or multirate
filterbanks

Pitch Features

Pitch Features

Example: Friedrich Burgmiiller, Op. 100, No. 2 > H[}“ = [ = [.rr—"]:E T — -
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Pitch Features

Pitch Features

Ii’-é' e Example: Chromatic scale >
i >
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Pitch Features Pitch Features
Example: Chromatic scale > Example: Chromatic scale >
Spectrogram Log-frequency spectrogram
0 3 C8:4186 Hz
C8: 4186 Hz C7: 2093 Hz k
. C6: 1046 Hz s
o o
T o
> C5: 523 Hz >
C7: 2093 Hz g’ C4: 261 Hz g
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Pitch Features Pitch Features
Example: Chromatic scale > Example: Chromatic scale >
Log-frequency spectrogram Log-frequency spectrogram
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2 2 = @2 2
T =
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Pitch Features

Chroma Features

Example: Chromatic scale > Example: Chromatic scale >
Log-frequency spectrogram Chroma representation >
— ' .
=t . g g
= C z © z
- s = -
e
— O
— \ "
Chroma C# : ; “Time (;econd;) . Time (s‘econd;)
Chroma Features Chroma Features
Example: Chromatic scale - = Human perception of pitch is periodic in the sense
Chroma representation (normalized, Euclidean) > that two pitches are perceived as similar in color if
} : they differ by an octave.
= NNl | ’ = Seperation of pitch into two components:
B | _ tone height (octave number) and chroma.
2 | ”I fl ;I I J E = Chroma : 12 traditional pitch classes of the equal-
% Al ! [ £ tempered scale. For example:
G :JH" ‘I_ ' < ChromaC ={..., C0. C1,C2,C3, ...}
1 ’ ‘ | 1 ] &z = Computation: pitch features - chroma features

||1|f|| | !I

Time (seconds)

Add up all pitches belonging to the same class
= Result: 12-dimensional chroma vector.

Chroma Features

Chroma Features

Chroma C




Chroma Features

Chroma Features
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Chroma Features Chroma Features
: C-Maj » >
Chromatic circle Example: C-Major Scale

Shepard's helix of pitch perception

Tone height

A2 - 03
D/ C -
FriGH (<2 b*
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Chroma Features
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Chroma Features

e e | — | —

Chroma representation (normalized)
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Chroma Features

Example: Beethoven’s Fifth
Chroma representation (normalized, 10 Hz)

Scherbakov B

Karajan >

lellf 'IW':II

o L] 0 15
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Chroma Features

Example: Beethoven’s Fifth
Chroma representation (normalized, 2 Hz)
Smoothing (2 seconds) + downsampling (factor 5)
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Chroma Features

Example: Beethoven’s Fifth
Chroma representation (normalized, 1 Hz)
Smoothing (4 seconds) + downsampling (factor 10)

Scherbakov B
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Time (seconds)

Chroma Features
Example: Bach Toccata

Koopman » > Ruebsam » >
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Chroma Features
Example: Bach Toccata

Koopman Ruebsam » >
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Feature resolution: 10 Hz




Chroma Features
Example: Bach Toccata

Koopman » | 2 Ruebsam » >

& 8 1

Time (sampels) Time (sampels)

Feature resolution: 1 Hz

Chroma Features
Example: Bach Toccata

Koopman » > Ruebsam » >

08

iar
LY
02
o1
0
)

1 1 2 ) I 5

Time (sampels

Time (sampels)

Feature resolution: 0.33 Hz

Chroma Features

= Sequence of chroma vectors correlates to the
harmonic progression

o v . .
= Normalization v — H makes features invariant to
"

changes in dynamics
= Further quantization and smoothing: CENS features

= Taking logarithm before adding up pitch coefficients
accounts for logarithmic sensation of intensity

Chroma Features
Example: Zager & Evans “In The Year 2525”

> > > > > > > > > >

How to deal with transpositions?

Chroma Features
Example: Zager & Evans “In The Year 2525”

Original: (¢!'.... . ¢

Chroma Features
Example: Zager & Evans “In The Year 2525”

> | 2
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10.6 08
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Original: (¢!,.. .. oY) Shifted: (o(¢).....o(eV))

or




Audio Features

= There are many ways to implement chroma features
= Properties may differ significantly

= Appropriateness depends on respective application

Chroma Tooclbox: Pitch, Chroma, CENS, CRP
in [ ] ] smamast

= http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
= MATLAB implementations for various chroma variants




