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Introduction

Basic beat tracking task:

Given an audio recording of a piece of music, 
determine the periodic sequence of  beat positions.

“Tapping the foot when listening to music’’

Time (seconds)

Example:      Queen – Another One Bites The Dust
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Example:      Queen – Another One Bites The Dust
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Time (seconds)

Introduction

Example:      Happy Birthday to you

Pulse level:  Measure

Introduction

Example:      Happy Birthday to you

Pulse level:  Tactus (beat)



Introduction

Example:      Happy Birthday to you

Pulse level:  Tatum (temporal atom)

Example:      Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo:          ???
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Example:      Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo:          50-200 BPM
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Introduction Introduction

Example:      Borodin – String Quartet No. 2

Pulse level: Quarter note

Tempo:          120-140 BPM (roughly)

Beat tracker without any prior knowledge

Beat tracker with prior knowledge on 
rough tempo range

Introduction

 Pulse level often unclear

 Local/sudden tempo changes (e.g. rubato)

 Vague information

(e.g., soft onsets, extracted onsets corrupt)

 Sparse information

(often only note onsets are used)

Challenges in beat tracking

 Onset detection
 Beat tracking
 Tempo estimation

Tasks

Introduction



 Onset detection
 Beat tracking
 Tempo estimation

Tasks

Introduction

periodphase

 Onset detection
 Beat tracking
 Tempo estimation

Tasks

Introduction

Tempo := 60 / period

Beats per minute (BPM)

 Onset detection
 Beat tracking
 Tempo estimation

Tasks

period

Introduction Onset Detection

 Finding start times of 
perceptually relevant acoustic 
events in music signal

 Onset is the time position 
where a note is played 

 Onset typically goes along 
with a change of the signal’s 
properties:
– energy or loudness
– pitch or harmony
– timbre

Onset Detection

[Bello et al., IEEE-TASLP 2005]

 Finding start times of 
perceptually relevant acoustic 
events in music signal

 Onset is the time position 
where a note is played 

 Onset typically goes along 
with a change of the signal’s 
properties:
– energy or loudness
– pitch or harmony
– timbre

Steps

Time (seconds)

Onset Detection (Energy-Based)

Waveform



Onset Detection (Energy-Based)

Time (seconds)

Squared waveform

Steps
1. Amplitude squaring

Onset Detection (Energy-Based)

Time (seconds)

Energy envelope

Steps
1. Amplitude squaring
2. Windowing

Onset Detection (Energy-Based)

Capturing energy changes

Time (seconds)

Differentiated energy envelope

Steps
1. Amplitude squaring
2. Windowing
3. Differentiation

Onset Detection (Energy-Based)

Time (seconds)

Novelty curve

Steps
1. Amplitude squaring
2. Windowing
3. Differentiation
4. Half wave rectification

Only energy increases are 
relevant for note onsets

Onset Detection (Energy-Based)

Time (seconds)

Steps
1. Amplitude squaring
2. Windowing
3. Differentiation
4. Half wave rectification
5. Peak picking

Peak positions indicate 
note onset candidates

Energy envelope

Onset Detection (Energy-Based)

Time (seconds)



Onset Detection (Energy-Based)

Time (seconds)

Energy envelope / note onsets positions

Onset Detection

 Energy curves often only work for percussive music

 Many instruments such as strings have weak note onsets

 No energy increase may be observable in complex sound 
mixtures

 More refined methods needed that capture
– changes of spectral content
– changes of pitch
– changes of harmony

1. Spectrogram
Magnitude spectrogram
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Onset Detection (Spectral-Based)

 Aspects concerning pitch, 
harmony, or timbre are 
captured by spectrogram

 Allows for detecting local 
energy changes in certain 
frequency ranges

Compressed spectrogram Y
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Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression

Steps:

 Accounts for the logarithmic 
sensation of sound intensity

 Dynamic range compression
 Enhancement of low-intensity 

values
 Often leading to enhancement 

of high-frequency spectrum
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Spectral difference

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation

Steps:

 First-order temporal 
difference

 Captures changes of the 
spectral content

 Only positive intensity 
changes considered

Time (seconds)

Fr
eq

ue
nc

y 
 (H

z)

Spectral difference

t
Novelty curve

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation

Steps:

 Frame-wise accumulation of 
all positive intensity changes 

 Encodes changes of the 
spectral content
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Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation

Steps:

Novelty curve
Substraction of local average

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization

Steps:

Novelty curve

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization

Steps:

Normalized novelty curve

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization
6. Peak picking

Steps:

Normalized novelty curve

Logarithmic compression is essential

Novelty curve

Onset Detection (Spectral-Based)

Time (seconds)
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Ground-truth onsets

[Klapuri et al., IEEE-TASLP 2006]

C = 1

Onset Detection (Spectral-Based)

|)|1log( XCY 

Logarithmic compression is essential

Novelty curve

Ground-truth onsets

[Klapuri et al., IEEE-TASLP 2006]
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Onset Detection (Spectral-Based)
Logarithmic compression is essential

Novelty curve

Ground-truth onsets

C = 10

|)|1log( XCY 

[Klapuri et al., IEEE-TASLP 2006]

Fr
eq

ue
nc

y 
 (H

z)

Time (seconds)

Onset Detection (Spectral-Based)
Logarithmic compression is essential

Novelty curve

Ground-truth onsets

C = 1000

|)|1log( XCY 

[Klapuri et al., IEEE-TASLP 2006]
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Onset Detection (Spectral-Based)

 Spectrogram 

 Compressed Spectrogram

 Novelty curve 
Time (seconds)

Onset Detection

Peak picking

 Peaks of the novelty curve indicate note onset candidates

Time (seconds)

Onset Detection

Peak picking

 Peaks of the novelty curve indicate note onset candidates
 In general many spurious peaks
 Usage of local thresholding techniques
 Peak-picking very fragile step in particular for soft onsets

Onset Detection

Shostakovich – 2nd Waltz

Time (seconds)

Time (seconds)

Borodin – String Quartet No. 2 



Onset Detection

Drumbeat

Going Home

Lyphard melodie

Por una cabeza 

Donau

Beat and Tempo

 Steady pulse that drives music 
forward and provides the 
temporal framework of a piece 
of music

 Sequence of perceived pulses 
that are equally spaced in time

 The pulse a human taps along 
when listening to the music

[Parncutt 1994]

[Sethares 2007]

[Large/Palmer  2002]

[Lerdahl/ Jackendoff 1983]

[Fitch/ Rosenfeld 2007]

What is a beat?

The term tempo then refers to the speed of the pulse.

Beat and Tempo

 Analyze the novelty curve with 
respect to reoccurring or quasi-
periodic patterns

 Avoid the explicit determination 
of note onsets (no peak picking)

Strategy

Beat and Tempo

[Scheirer, JASA 1998]

[Ellis, JNMR 2007]

[Davies/Plumbley, IEEE-TASLP 2007]

[Peeters, JASP 2007]

Strategy

 Comb-filter methods
 Autocorrelation
 Fourier transfrom

Methods

[Grosche/Müller, ISMIR 2009]

 Analyze the novelty curve with 
respect to reoccurring or quasi-
periodic patterns

 Avoid the explicit determination 
of note onsets (no peak picking)

[Grosche/Müller, IEEE-TASLP 2011]

Definition: A tempogram is a time-tempo representation 
that encodes the local tempo of a music signal
over time. 
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Tempogram

Definition: A tempogram is a time-tempo represenation 
that encodes the local tempo of a music signal
over time. 

 Compute a spectrogram (STFT) of the novelty curve
 Convert frequency axis (given in Hertz) into 

tempo axis (given in BPM)
 Magnitude spectrogram indicates local tempo

Fourier-based method

Tempogram (Fourier)
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Tempogram (Fourier)

Novelty curve
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Tempogram (Fourier)

Novelty curve (local section)
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Windowed sinusoidal 

Tempogram (Fourier)
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Windowed sinusoidal 

Tempogram (Fourier)
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Tempogram (Fourier)

Windowed sinusoidal 

Time (seconds)

Definition: A tempogram is a time-tempo represenation 
that encodes the local tempo of a music signal
over time. 

 Compare novelty curve with time-lagged 
local sections of itself

 Convert lag-axis (given in seconds) into 
tempo axis (given in BPM)

 Autocorrelogram indicates local tempo

Autocorrelation-based method

Tempogram (Autocorrelation)



Tempogram (Autocorrelation)

Novelty curve (local section)
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Tempogram (Autocorrelation)

Windowed autocorrelation
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Tempogram (Autocorrelation)

Lag  =  0 (seconds)
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Tempogram (Autocorrelation)

Lag  =  0.26 (seconds)
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Tempogram (Autocorrelation)

Lag  =  0.52 (seconds)
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Tempogram (Autocorrelation)

Lag  =  0.78 (seconds)
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Tempogram (Autocorrelation)

Lag  =  1.56 (seconds)
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Tempogram
Fourier Autocorrelation
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Tempo@Tatum = 210 BPM Tempo@Measure = 70 BPM
Time (seconds) Time (seconds)



Tempogram

Fourier Autocorrelation

Time (seconds) Time (seconds)
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Emphasis of tempo harmonics 
(integer multiples)

Emphasis of tempo subharmonics 
(integer fractions)

[Grosche et al., ICASSP 2010][Peeters, JASP 2007]

Tempogram (Summary)

Fourier Autocorrelation

Novelty curve is compared with
sinusoidal kernels each
representing a specific tempo

Novelty curve is compared with
time-lagged local (windowed) 
sections of itself

Convert frequency (Hertz) into
tempo (BPM)

Convert time-lag (seconds) into
tempo (BPM)

Reveals novelty periodicities Reveals novelty self-similarities

Emphasizes harmonics Emphasizes subharmonics

Suitable to analyze tempo on 
tatum and tactus level

Suitable to analyze tempo on 
tactus and measure level

Beat Tracking

 Given the tempo, find the best sequence of beats

 Complex Fourier tempogram contains magnitude 
and phase information

 The magnitude encodes how well the novelty curve 
resonates with a sinusoidal kernel of a specific tempo

 The phase optimally aligns the sinusoidal kernel with 
the peaks of the novelty curve

[Peeters, JASP 2005]

Beat Tracking
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[Peeters, JASP 2005]

Beat Tracking

Te
m

po
 (B

P
M

)

In
te

ns
ity

[Peeters, JASP 2005]

Beat Tracking
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[Peeters, JASP 2005]



Beat Tracking

Te
m

po
 (B

P
M

)

In
te

ns
ity

Te
m

po
 (B

P
M

)

In
te

ns
ity

Time (seconds)

Beat Tracking

[Grosche/Müller, IEEE-TASLP 2011]

Beat Tracking

Novelty Curve

Predominant Local Pulse (PLP)

[Grosche/Müller, IEEE-TASLP 2011]Time (seconds)

 Periodicity enhancement of novelty curve
 Accumulation introduces error robustness 
 Locality of kernels handles tempo variations

 Indicates note onset candidates
 Extraction errors in particular for soft onsets
 Simple peak-picking problematic

Beat Tracking

Predominant Local Pulse (PLP)

Novelty Curve

[Grosche/Müller, IEEE-TASLP 2011]

Beat Tracking

 Local tempo at time       :                                     [60:240] BPM

 Phase       

 Sinusoidal kernel 

 Periodicity curve

[Grosche/Müller, IEEE-TASLP 2011]

Beat Tracking
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Borodin – String Quartet No. 2

[Grosche/Müller, IEEE-TASLP 2011]



Beat Tracking
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Borodin – String Quartet No. 2

[Grosche/Müller, IEEE-TASLP 2011]

Strategy: Exploit additional knowledge
(e.g. rough tempo range)

Time (seconds)

Beat Tracking

Brahms Hungarian Dance No. 5
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Brahms Hungarian Dance No. 5
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Applications

 Feature design 
(beat-synchronous features, adaptive windowing)

 Digital DJ / audio editing 
(mixing and blending of audio material)

 Music classification

 Music recommendation 

 Performance analysis 
(extraction of tempo curves)

Application: Feature Design

Fixed window size

[Ellis et al., ICASSP 2008] [Bello/Pickens, ISMIR 2005] [Bello/Pickens, ISMIR 2005]

Application: Feature Design

Fixed window size Adaptive window size

[Ellis et al., ICASSP 2008]



Application: Feature Design

Fixed window size (100 ms)

Time 
(seconds)

Application: Feature Design

Adative window size (roughly 1200 ms)
Note onset positions define boundaries

Time 
(seconds)

Application: Feature Design

Time 
(seconds)

Denoising  by excluding boundary neighborhoods

Adative window size (roughly 1200 ms)
Note onset positions define boundaries

Application: Audio Editing (Digital DJ) 

http://www.mixxx.org/

Application: Beat-Synchronous Light Effects Summary

1. Onset Detection
 Novelty curve (something is changing)
 Indicates note onset candidates
 Hard task for non-percussive instruments (strings)

2. Tempo Estimation
 Fourier tempogram
 Autocorrelation tempogram
 Musical knowledge (tempo range, continuity)

3. Beat tracking
 Find most likely beat positions
 Exploiting phase information from Fourier tempogram


