

Lecture Music Processing

Tempo and Beat Tracking

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Introduction

Basic beat tracking task:

Given an audio recording of a piece of music, determine the periodic sequence of beat positions.

"Tapping the foot when listening to music"

Introduction

Example: Queen - Another One Bites The Dust

Time (seconds)

Introduction

Example: Queen - Another One Bites The Dust

.

Introduction

Example: Happy Birthday to you

Pulse level: Measure

Introduction

Example: Happy Birthday to you

Pulse level: Tactus (beat)

Introduction

Example: Happy Birthday to you

Pulse level: Tatum (temporal atom)

Introduction

Example: Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo: ???

Introduction

Example: Chopin – Mazurka Op. 68-3

Pulse level: Quarter note
Tempo: 50-200 BPM

Tempo curve

Introduction

Example: Borodin - String Quartet No. 2

Pulse level: Quarter note

Tempo: 120-140 BPM (roughly)

Beat tracker without any prior knowledge

Beat tracker with prior knowledge on rough tempo range

Introduction

Challenges in beat tracking

- Pulse level often unclear
- Local/sudden tempo changes (e.g. rubato)
- Vague information (e.g., soft onsets, extracted onsets corrupt)
- Sparse information (often only note onsets are used)

Introduction

Tasks

- Onset detection
- Beat tracking
- Tempo estimation

Introduction

Tasks

- Onset detection
- Beat tracking
- Tempo estimation

Introduction

Tasks

- Onset detection
- Beat tracking
- Tempo estimation

Introduction

Tasks

- Onset detection
- Beat tracking
- Tempo estimation

Tempo := 60 / period

Beats per minute (BPM)

Onset Detection

- Finding start times of perceptually relevant acoustic events in music signal
- Onset is the time position where a note is played
- Onset typically goes along with a change of the signal's properties:
 - energy or loudness
 - pitch or harmony
 - timbre

Onset Detection

- Finding start times of perceptually relevant acoustic events in music signal
- Onset is the time position where a note is played
- Onset typically goes along with a change of the signal's properties:
 - energy or loudness
 - pitch or harmony
 - timbre

[Bello et al., IEEE-TASLP 2005]

Onset Detection (Energy-Based)

Steps

Onset Detection (Energy-Based)

Steps

1. Amplitude squaring

Onset Detection (Energy-Based)

Stone

- 1. Amplitude squaring
- 2. Windowing

Onset Detection (Energy-Based)

Steps

- 1. Amplitude squaring
- 2. Windowing
- 3. Differentiation

Capturing energy changes

Onset Detection (Energy-Based)

Steps

- 1. Amplitude squaring
- 2. Windowing
- 3. Differentiation
- 4. Half wave rectification

Only energy increases are relevant for note onsets

Onset Detection (Energy-Based)

Steps

- Amplitude squaring
- 2. Windowing
- 3. Differentiation
- 4. Half wave rectification5. Peak picking

Peak positions indicate note onset candidates

Onset Detection (Energy-Based)

Time (seconds)

Onset Detection (Energy-Based)

Time (seconds)

Onset Detection

- Energy curves often only work for percussive music
- Many instruments such as strings have weak note onsets
- No energy increase may be observable in complex sound mixtures
- More refined methods needed that capture
 - changes of spectral content
 - changes of pitch
 - changes of harmony

Onset Detection (Spectral-Based)

Steps:

1. Spectrogram

Aspects concerning pitch, harmony, or timbre are captured by spectrogram Allows for detecting local energy changes in certain frequency ranges

Onset Detection (Spectral-Based)

Steps:

- 1. Spectrogram
- 2. Logarithmic compression

$$Y = \log(1 + C \cdot |X|)$$

- Accounts for the logarithmic sensation of sound intensity
- Dynamic range compression
- Enhancement of low-intensity
- Often leading to enhancement of high-frequency spectrum

Onset Detection (Spectral-Based)

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
 - First-order temporal difference
 - Captures changes of the spectral content
- Only positive intensity
- changes considered

Onset Detection (Spectral-Based)

Steps:

- Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation
 - Frame-wise accumulation of all positive intensity changes
- Encodes changes of the spectral content

Novelty curve

Onset Detection (Spectral-Based)

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation

Novelty curve

Onset Detection (Spectral-Based)

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation
- 5. Normalization

Novelty curve

Substraction of local average

Onset Detection (Spectral-Based)

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation
- 5. Normalization

Normalized novelty curve

Onset Detection (Spectral-Based)

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation
- 5. Normalization

Normalized novelty curve

6. Peak picking

Onset Detection (Spectral-Based)

Logarithmic compression is essential

Onset Detection (Spectral-Based)

Logarithmic compression is essential

Onset Detection (Spectral-Based)

Logarithmic compression is essential

Onset Detection (Spectral-Based)

Logarithmic compression is essential

Onset Detection (Spectral-Based)

• Spectrogram
$$X = (X(t,k))_{t,k}$$

$$t \in [1:T]$$
$$k \in [1:K]$$

• Compressed Spectrogram $Y := \log(1 + C \cdot |X|)$ C >

• Novelty curve $\Delta: [1:T-1] \rightarrow \mathbb{R}$

$$\Delta(t) := \sum_{k=1}^{K} |Y(t+1,k) - Y(t,k)|_{\geq 0}$$

Onset Detection

Peak picking

Peaks of the novelty curve indicate note onset candidates

Onset Detection

Peak picking

- Peaks of the novelty curve indicate note onset candidates
- In general many spurious peaks
- Usage of local thresholding techniques
- Peak-picking very fragile step in particular for soft onsets

Onset Detection

Borodin - String Quartet No. 2

Onset Detection

Drumbeat

Going Home

Lyphard melodie

Por una cabeza

Beat and Tempo

What is a beat?

 Steady pulse that drives music forward and provides the temporal framework of a piece of music

[Sethares 2007] [Large/Palmer 2002]

[Fitch/ Rosenfeld 2007]

[Parncutt 1994]

 Sequence of perceived pulses that are equally spaced in time [Lerdahl/ Jackendoff 1983]

 The pulse a human taps along when listening to the music

nusic

The term tempo then refers to the speed of the pulse.

Beat and Tempo

Strategy

Donau

- Analyze the novelty curve with respect to reoccurring or quasiperiodic patterns
- Avoid the explicit determination of note onsets (no peak picking)

Beat and Tempo

Strategy

Methods

- Analyze the novelty curve with respect to reoccurring or quasiperiodic patterns
- Avoid the explicit determination of note onsets (no peak picking)

[Scheirer, JASA 1998]

[Ellis, JNMR 2007]

Comb-filter methods

[Davies/Plumbley, IEEE-TASLP 2007]

Autocorrelation

[Peeters, JASP 2007]

Fourier transfrom

[Grosche/Müller, ISMIR 2009] [Grosche/Müller, IEEE-TASLP 2011]

Tempogram

Definition: A tempogram is a time-tempo representation that encodes the local tempo of a music signal over time.

Tempogram (Fourier)

Definition: A tempogram is a time-tempo representation that encodes the local tempo of a music signal over time.

Fourier-based method

- Compute a spectrogram (STFT) of the novelty curve
- Convert frequency axis (given in Hertz) into tempo axis (given in BPM)
- Magnitude spectrogram indicates local tempo

Tempogram (Autocorrelation)

Definition: A tempogram is a time-tempo representaion that encodes the local tempo of a music signal over time.

Autocorrelation-based method

- Compare novelty curve with time-lagged local sections of itself
- Convert lag-axis (given in seconds) into tempo axis (given in BPM)
- Autocorrelogram indicates local tempo

[Peeters, JASP 2007][Grosche et al., ICASSP 2010]

Tempogram (Summary)

Fourier	Autocorrelation
Novelty curve is compared with sinusoidal kernels each representing a specific tempo	Novelty curve is compared with time-lagged local (windowed) sections of itself
Convert frequency (Hertz) into tempo (BPM)	Convert time-lag (seconds) into tempo (BPM)
Reveals novelty periodicities	Reveals novelty self-similarities
Emphasizes harmonics	Emphasizes subharmonics
Suitable to analyze tempo on tatum and tactus level	Suitable to analyze tempo on tactus and measure level

Beat Tracking

- Given the tempo, find the best sequence of beats
- Complex Fourier tempogram contains magnitude and phase information
- The magnitude encodes how well the novelty curve resonates with a sinusoidal kernel of a specific tempo
- The phase optimally aligns the sinusoidal kernel with the peaks of the novelty curve

[Peeters, JASP 2005]

Beat Tracking

Beat Tracking

Novelty Curve

- Indicates note onset candidates
- Extraction errors in particular for soft onsets
- Simple peak-picking problematic

Predominant Local Pulse (PLP)

- Periodicity enhancement of novelty curve
- Accumulation introduces error robustness
- Locality of kernels handles tempo variations

[Grosche/Müller, IEEE-TASLP 2011]

Beat Tracking

- Local tempo at time t : $\tau_t \in \Theta$ $\Theta = [60:240]$ BPM
- Phase $\varphi_t := \frac{1}{2\pi} \arccos \left(\frac{\operatorname{Re}(\mathcal{T}(t, \tau_t))}{|\mathcal{T}(t, \tau_t)|} \right)$
- Sinusoidal kernel $\kappa_t : \mathbb{Z} \to \mathbb{R}$

$$\kappa_t(n) := W(n-t)\cos(2\pi(\tau_t/60 \cdot n - \varphi_t))$$
 $n \in \mathbb{Z}$

Periodicity curve $\Gamma:[1:T]\to\mathbb{R}_{\geq 0}$ $\Gamma(n)=\left|\sum_{t\in[1:T]}\kappa_t(n)\right|_{\geq 0}$ $n\in[1:T]$

[Grosche/Müller, IEEE-TASLP 2011]

Beat Tracking

Borodin - String Quartet No. 2

Beat Tracking

Beat Tracking

Brahms Hungarian Dance No. 5

Applications

- Feature design (beat-synchronous features, adaptive windowing)
- Digital DJ / audio editing (mixing and blending of audio material)
- Music classification
- Music recommendation
- Performance analysis (extraction of tempo curves)

Application: Feature Design

Fixed window size

[Ellis et al., ICASSP 2008] [Bello/Pickens, ISMIR 2005]

Application: Feature Design

[Ellis et al., ICASSP 2008] [Bello/Pickens, ISMIR 2005]

Application: Feature Design

Fixed window size (100 ms)

Application: Feature Design

Adative window size (roughly 1200 ms) Note onset positions define boundaries

Application: Feature Design

Adative window size (roughly 1200 ms) Note onset positions define boundaries

Denoising by excluding boundary neighborhoods

Application: Audio Editing (Digital DJ)

http://www.mixxx.org/

Application: Beat-Synchronous Light Effects

Summary

- 1. Onset Detection
 - Novelty curve (something is changing)

 - Indicates note onset candidates
 Hard task for non-percussive instruments (strings)
- 2. Tempo Estimation

 - Fourier tempogram
 Autocorrelation tempogram
 Musical knowledge (tempo range, continuity)
- 3. Beat tracking
 - Find most likely beat positions
 - Find most likely beat positions
 Exploiting phase information from Fourier tempogram