

Lecture
Music Processing

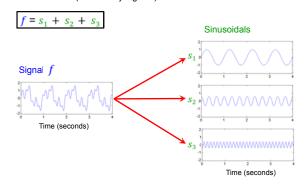
Audio Features

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

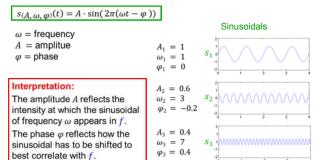
Fourier Transform

Idea: Decompose a given signal into a superposition of sinusoidals (elementary signals).



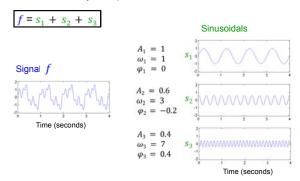
Fourier Transform

Each sinusoidal has a physical meaning and can be described by three parameters:



Fourier Transform

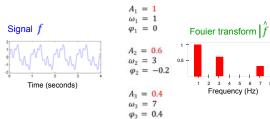
Each sinusoidal has a physical meaning and can be described by three parameters:



Fourier Transform

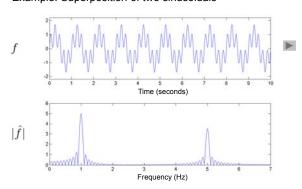
Each sinusoidal has a physical meaning and can be described by three parameters:

$$f = s_1 + s_2 + s_3$$



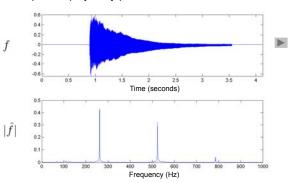
Fourier Transform

Example: Superposition of two sinusoidals



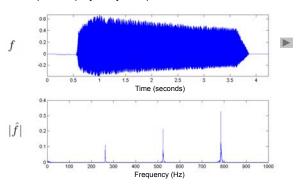
Fourier Transform

Example: C4 played by piano



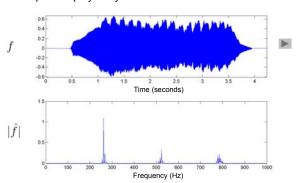
Fourier Transform

Example: C4 played by trumpet



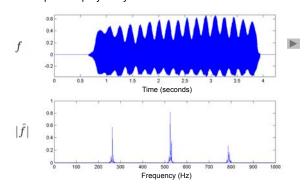
Fourier Transform

Example: C4 played by violine



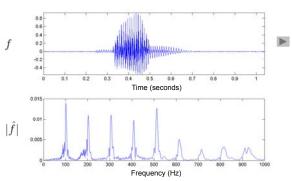
Fourier Transform

Example: C4 played by flute



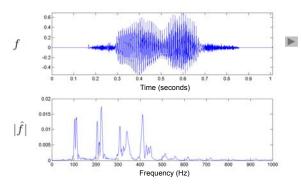
Fourier Transform

Example: Speech "Bonn"



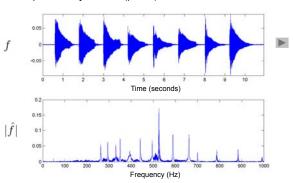
Fourier Transform

Example: Speech "Zürich"



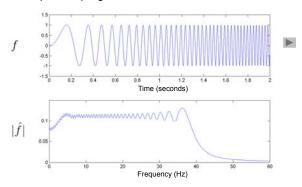
Fourier Transform

Example: C-major scale (piano)



Fourier Transform

Example: Chirp signal



Fourier Transform

Each sinusoidal has a physical meaning and can be described by three parameters:

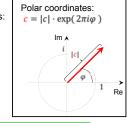
$$s_{(A,\omega,\varphi)}(t) = A \cdot \sin(2\pi(\omega t - \varphi))$$

 $\omega = \text{frequency}$

A = amplitue

 $\varphi = \mathsf{phase}$

Complex formulation of sinusoidals:



$$e_{(C,\omega)}(t) = \mathbf{c} \cdot \exp(2\pi i \omega t) = \mathbf{c} \cdot (\cos(2\pi \omega t) + i \cdot \sin(2\pi \omega t))$$

 $\omega = frequency$

A = amplitue = |c|

 $\varphi = \text{phase}$ = arg(c)

Fourier Transform

Signal

$$f:\mathbb{R} \to \mathbb{R}$$

Fourier representation
$$f(t)=\int\limits_{\omega\in\mathbb{R}}c_{\omega}e^{2\pi i\omega t}d\omega$$
, $c_{\omega}=\hat{f}(\omega)$
Fourier transform $\hat{f}(\omega)=\int\limits_{t\in\mathbb{R}}f(t)e^{-2\pi i\omega t}dt$

$$\hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t)e^{-2\pi i\omega t} dt$$

Fourier Transform

Signal

$$f: \mathbb{R} \to \mathbb{R}$$

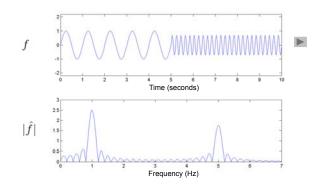
Fourier representation
$$f(t)=\int\limits_{\omega\in\mathbb{R}}c_{\omega}e^{2\pi i\omega t}d\omega$$
 , $c_{\omega}=\hat{f}(\omega)$

Fourier transform

$$\hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t)e^{-2\pi i\omega t} dt$$

- Tells which frequencies occur, but does not tell when the frequencies occur.
- Frequency information is averaged over the entire time interval.
- Time information is hidden in the phase

Fourier Transform

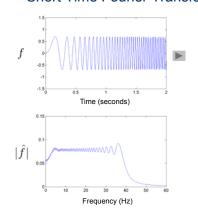


Short Time Fourier Transform

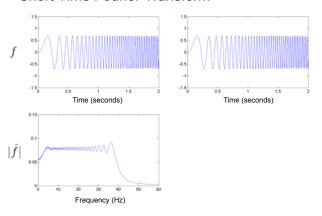
Idea (Dennis Gabor, 1946):

- Consider only a small section of the signal for the spectral analysis
 - → recovery of time information
- Short Time Fourier Transform (STFT)
- Section is determined by pointwise multiplication of the signal with a localizing window function

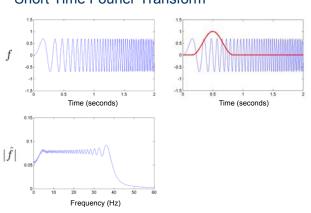
Short Time Fourier Transform



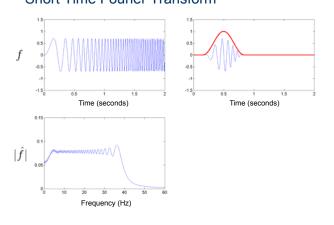
Short Time Fourier Transform



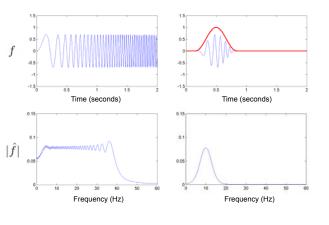
Short Time Fourier Transform



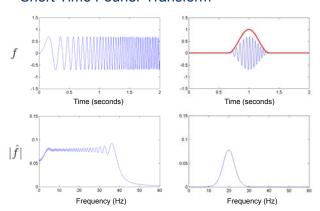
Short Time Fourier Transform



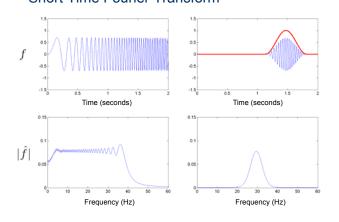
Short Time Fourier Transform



Short Time Fourier Transform



Short Time Fourier Transform



Short Time Fourier Transform

Definition

- Signal $f: \mathbb{R} \to \mathbb{R}$
- Window function $g:\mathbb{R}\to\mathbb{R}$ $(g\in L^2(\mathbb{R}),\|g\|=1)$
- $\qquad \text{STFT} \qquad \tilde{f}(\omega,t) := \int_{\mathbb{R}} f(u) \bar{g}(u-t) e^{-2\pi i \omega u} du = \langle f | g_{\omega,t} \rangle$

 $\text{with} \qquad g_{\omega,t}(u) := e^{2\pi i \omega u} g(u-t), \quad u \in \mathbb{R}$

Short Time Fourier Transform

Intuition:

• $g_{\omega,t}$ is "musical note" of frequency ω , which oscillates within the translated window $u \to g(u-t)$

Short Time Fourier Transform

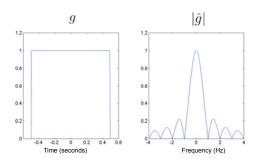
Intuition:

= $g_{\omega,t}$ is "musical note" of frequency ω , which oscillates within the translated window $u \to g(u-t)$

Innere product $\ \langle f|g_{\omega,t} \rangle$ measures the correlation between the musical note $\ g_{\omega,t}$ and the signal $\ f.$

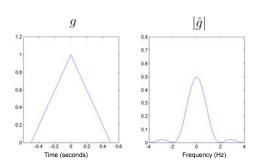
Window Function

Box window



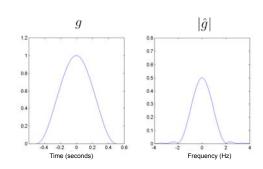
Window Function

Triangle window

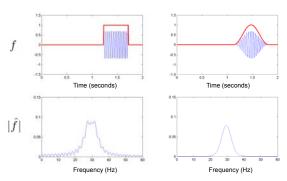


Window Function

Hann window

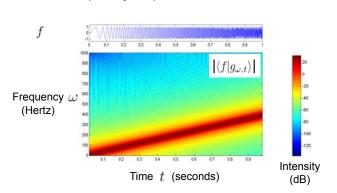


Window Function

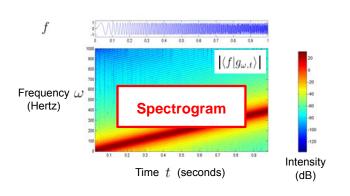


Trade off between smoothing and "ringing"

Time-Frequency Representation

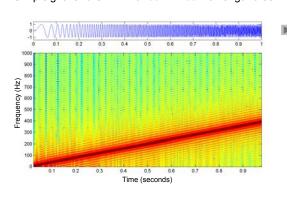


Time-Frequency Representation



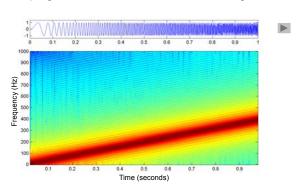
Time-Frequency Representation

Chirp signal and STFT with box window of length 0.05



Time-Frequency Representation

Chirp signal and STFT with Hann window of length 0.05



Time-Frequency Localization

 Size of window constitutes a trade-off between time resolution and frequency resolution:

Large window: poor time resolution

good frequency resolution

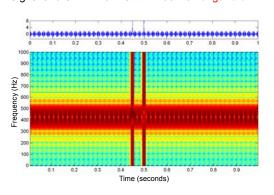
Small window: good time resolution

poor frequency resolution

 Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary position.

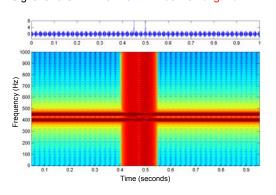
Short Time Fourier Transform

Signal and STFT with Hann window of length 0.02



Short Time Fourier Transform

Signal and STFT with Hann window of length 0.1



MATLAB

- MATLAB function SPECTROGRAM
- N = window length (in samples)
- M = overlap (usually N/2)
- Compute DFT_N for every windowed section
- Keep lower N/2 Fourier coefficients
- \rightarrow Sequence of spectral vectors (for each window a vector of dimension N/2)

Example

Let x be a discrete time signal x(n) = f(Tn)

Sampling rate: $1/T=22050~{\rm Hz}$ Window length: N=4096 Overlap: N/2=2048

 $\label{eq:hopsize:window} \mbox{Hopsize:} \qquad \mbox{window length} - \mbox{overlap}$

Let $v_0 := (x(0), x(1), \dots, x(4095))$ $v_1 := (x(2048), \dots, x(6143))$ $v_2 := (x(4096), \dots, x(8191))$

 v_m corresponds to window $[m \cdot 2048 : m \cdot 2048 + 4095]$

Example

Time resolution:

$$\frac{\text{hopsize}}{\text{sampling rate}} = \frac{4096 - 2048}{22050} = 0.093 = 93 \ ms$$

Frequency resolution:

$$v = v_0$$
, $\hat{v} := DFT_N(v)$

$$\hat{v}(k) \approx \frac{1}{T} \cdot \hat{f}\left(\frac{k}{N} \cdot \frac{1}{T}\right)$$

$$\omega = \frac{k}{N} \cdot \frac{1}{T} = k \cdot \frac{22050}{4096} = k \cdot 5.38 \ \text{Hz}$$

Pitch Features

Model assumption: Equal-tempered scale

• MIDI pitches: $p \in [1:128]$

• Piano notes: p = 21 (A0) to p = 108 (C8)

• Concert pitch: p = 69 (A4)

• Center frequency: $f_{\mathrm{MIDI}}(p) = 2^{\frac{p-69}{12}} \cdot 440 \;\; \mathrm{Hz}$

→ Logarithmic frequency distribution Octave: doubling of frequency

Pitch Features

Idea: Binning of Fourier coefficients

Divide up the fequency axis into logarithmically spaced "pitch regions" and combine spectral coefficients of each region to a single pitch coefficient.

Pitch Features

Time-frequency representation



Windowing in the frequency domain

Pitch Features

Details

Let \hat{v} be a spectral vector obtained from a spectrogram w.r.t. a sampling rate 1/T and a window length N. The spectral coefficient $\hat{v}(k)$ corresponds to the frequency

$$f_{\text{coeff}}(k) := \frac{k}{N} \cdot \frac{1}{T}$$

Let

$$\begin{split} S(p) := \{k: f_{\mathrm{MIDI}}(p-0.5) \leq f_{\mathrm{coeff}}(k) < f_{\mathrm{MIDI}}(p+0.5)\} \\ \text{be the set of coefficients assigned to a pitch } p \in [1:128] \\ \text{Then the pitch coefficient } P(p) \text{ is defined as} \end{split}$$

$$P(p) := \sum_{k \in S(p)} |\hat{v}(k)|^2$$

Pitch Features

Example: A4, *p* = 69

• Center frequency: $f(p = 69) = 2^{\frac{0}{12}} \cdot 440 = 440 \ Hz$

• Lower bound: $f(p = 68.5) = 2^{\frac{-0.5}{12}} \cdot 440 = 427.5 \; Hz$

• Upper bound: $f(p = 69.5) = 2^{\frac{0.5}{12}} \cdot 440 = 452.9 \ Hz$

• STFT with N = 4096 , 1/T = 22050

$$\begin{array}{lll} f(k=79) & = & 425.3 \; Hz \\ f(k=80) & = & 430.7 \; Hz \\ f(k=81) & = & 436.0 \; Hz \\ f(k=82) & = & 441.4 \; Hz \\ f(k=83) & = & 446.8 \; Hz \\ f(k=84) & = & 452.2 \; Hz \\ f(k=85) & = & 457.6 \; Hz \end{array}$$

Pitch Features

Example: A4, *p* = 69

• Center frequency: $f(p=69)=2^{\frac{0}{12}}\cdot 440=440~Hz$

• Lower bound: $f(p = 68.5) = 2^{\frac{-0.5}{12}} \cdot 440 = 427.5 \ Hz$

• Upper bound: $f(p = 69.5) = 2^{\frac{0.5}{12}} \cdot 440 = 452.9 \; Hz$

 \bullet STFT with N=4096 , 1/T=22050

Pitch Features

Note	MIDI pitch	Center [Hz] frequency	Left [Hz] boundary	Right [Hz] boundary	Width [Hz]
A3	57	220.0	213.7	226.4	12.7
A#3	58	233.1	226.4	239.9	13.5
В3	59	246.9	239.9	254.2	14.3
C4	60	261.6	254.2	269.3	15.1
C#4	61	277.2	269.3	285.3	16.0
D4	62	293.7	285.3	302.3	17.0
D#4	63	311.1	302.3	320.2	18.0
E4	64	329.6	320.2	339.3	19.0
F4	65	349.2	339.3	359.5	20.2
F#4	66	370.0	359.5	380.8	21.4
G4	67	392.0	380.8	403.5	22.6
G#4	68	415.3	403.5	427.5	24.0
A4	69	440.0	427.5	452.9	25.4

Pitch Features

Note:

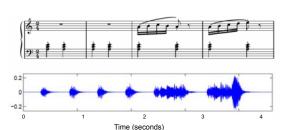
- $P \in \mathbb{R}^{128}$
- For some pitches, S(p) may be empty. This particularly holds for low notes corresponding to narrow frequency bands.
- \rightarrow Linear frequency sampling is problematic!

Solution:

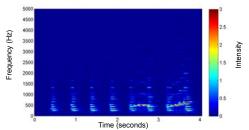
Multi-resolution spectrograms or multirate filterbanks

Pitch Features

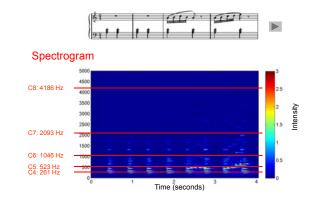
Example: Friedrich Burgmüller, Op. 100, No. 2

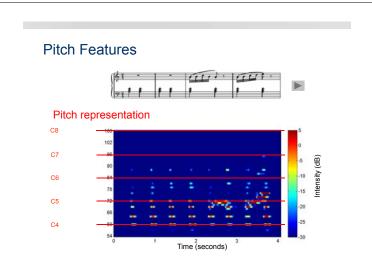


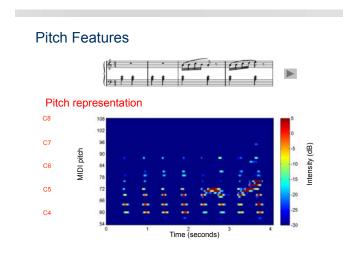
Pitch Features

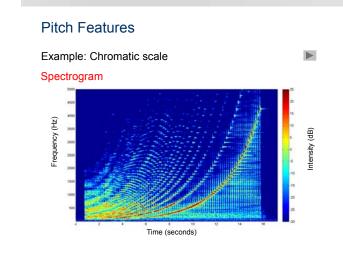


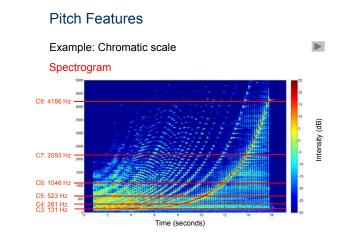
Pitch Features

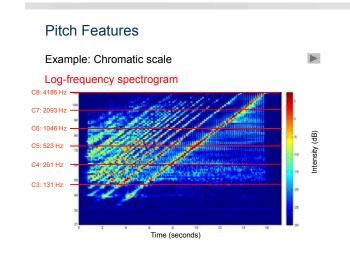


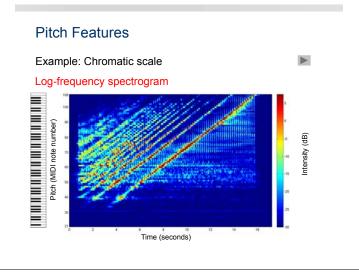


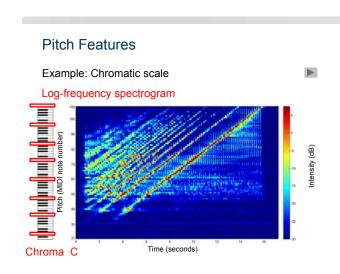


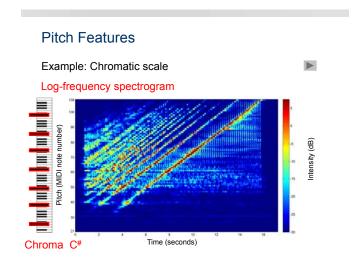


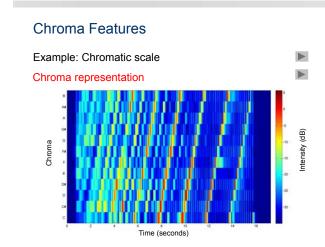


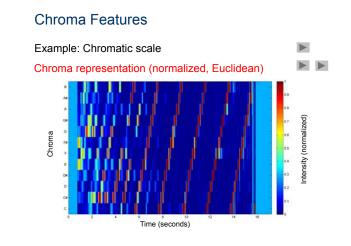








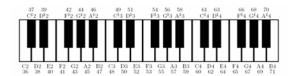




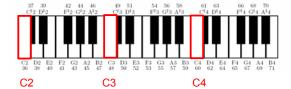
Chroma Features

- Human perception of pitch is periodic in the sense that two pitches are perceived as similar in color if they differ by an octave.
- Seperation of pitch into two components: tone height (octave number) and chroma.
- Chroma: 12 traditional pitch classes of the equaltempered scale. For example:
 - Chroma C $\widehat{=} \{ \dots, C0, C1, C2, C3, \dots \}$
- Computation: pitch features → chroma features
 Add up all pitches belonging to the same class
- Result: 12-dimensional chroma vector.

Chroma Features

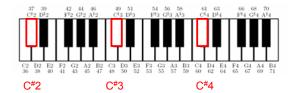


Chroma Features



Chroma C

Chroma Features



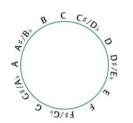
Chroma C#

Chroma Features

Chroma D

Chroma Features

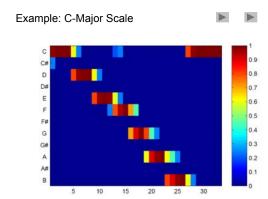
Chromatic circle Shepard's helix of pitch perception



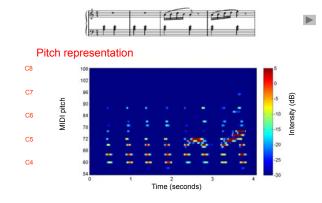
http://en.wikipedia.org/wiki/Pitch_class_space

Bartsch/Wakefield, IEEE Trans. Multimedia, 2005

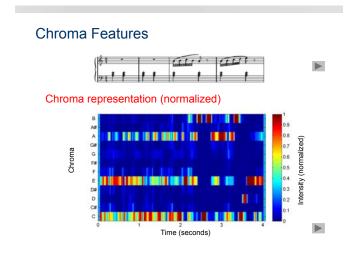
Chroma Features



Chroma Features



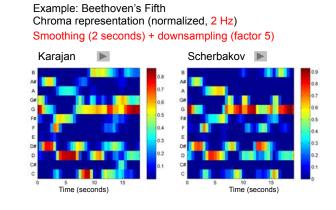
Chroma Features Chroma representation (ap) Ausualu (ap) Ausualu (br) (ap) Ausualu (cr) (ap) Ausualu (dr) (dr)



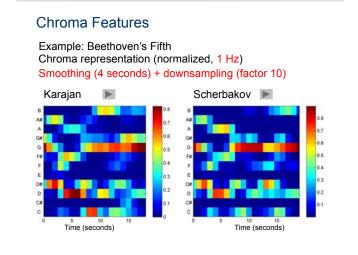
Chroma Features Example: Beethoven's Fifth Chroma representation (normalized, 10 Hz) Karajan Scherbakov Scherbakov Grade Grade

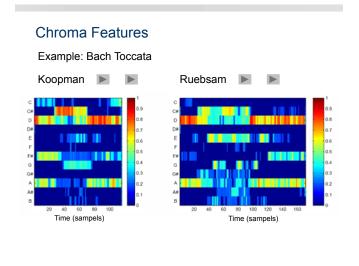
Time (seconds)

Time (seconds)



Chroma Features



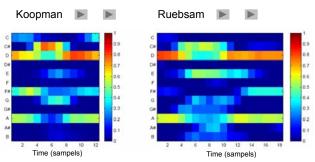


Chroma Features Example: Bach Toccata Koopman Ruebsam Time (sampels) Time (sampels)

Feature resolution: 10 Hz

Chroma Features

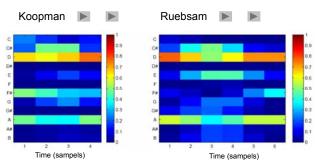
Example: Bach Toccata



Feature resolution: 1 Hz

Chroma Features

Example: Bach Toccata



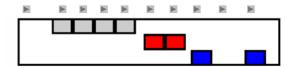
Feature resolution: 0.33 Hz

Chroma Features

- Sequence of chroma vectors correlates to the harmonic progression
- Normalization $v \to \frac{v}{\|v\|}$ makes features invariant to changes in dynamics
- Further quantization and smoothing: CENS features
- Taking logarithm before adding up pitch coefficients accounts for logarithmic sensation of intensity

Chroma Features

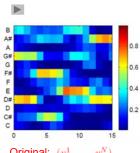
Example: Zager & Evans "In The Year 2525"



How to deal with transpositions?

Chroma Features

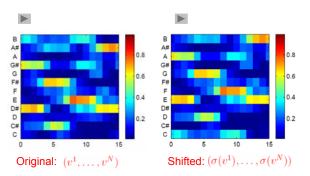
Example: Zager & Evans "In The Year 2525"



Original: (v^1, \dots, v^N)

Chroma Features

Example: Zager & Evans "In The Year 2525"



Audio Features

- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application

- http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
- MATLAB implementations for various chroma variants