

Lecture

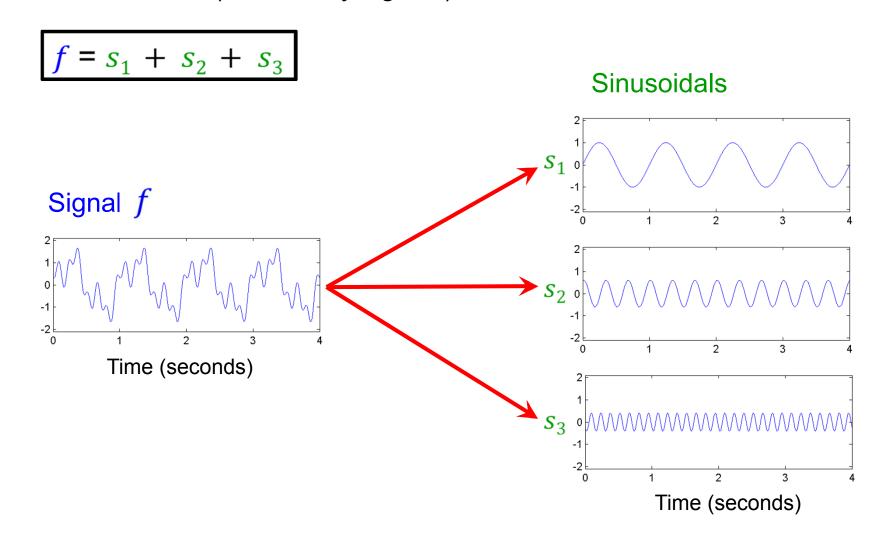
Music Processing

Audio Features

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Idea: Decompose a given signal into a superposition of sinusoidals (elementary signals).



Each sinusoidal has a physical meaning and can be described by three parameters:

$$s_{(A,\omega,\varphi)}(t) = A \cdot \sin(2\pi(\omega t - \varphi))$$

 $\omega = \text{frequency}$

A = amplitue

 $\varphi = \mathsf{phase}$

Interpretation:

The amplitude A reflects the intensity at which the sinusoidal of frequency ω appears in f.

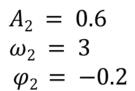
The phase φ reflects how the sinusoidal has to be shifted to best correlate with f.

Sinusoidals

$$A_1 = 1$$

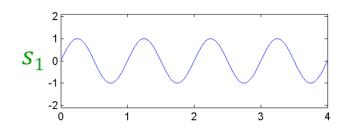
$$\omega_1 = 1$$

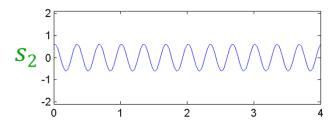
$$\varphi_1 = 0$$

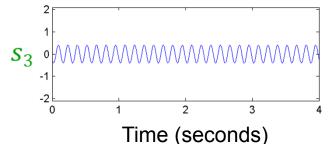


$$A_3 = 0.4$$

 $\omega_3 = 7$
 $\varphi_3 = 0.4$



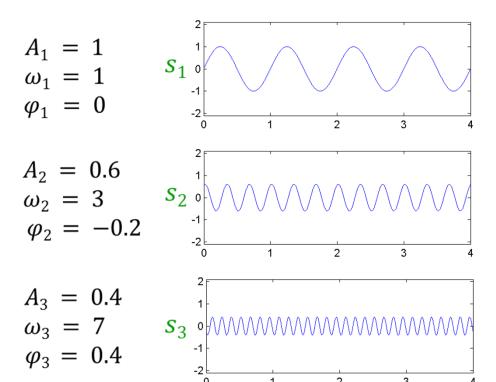




Each sinusoidal has a physical meaning and can be described by three parameters:

$$f = s_1 + s_2 + s_3$$

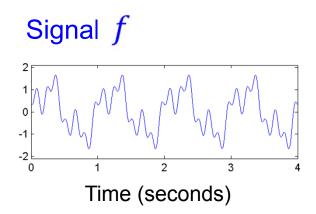
Sinusoidals



Time (seconds)

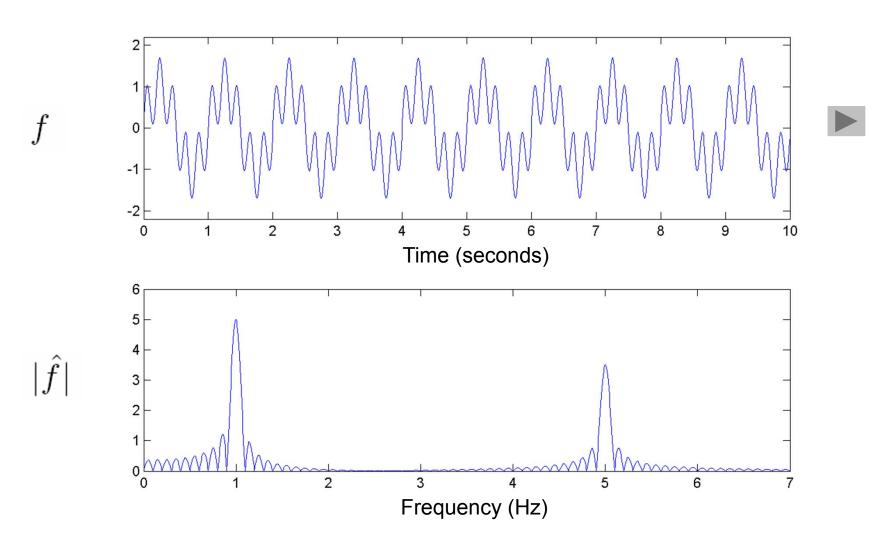
Each sinusoidal has a physical meaning and can be described by three parameters:

$$f = s_1 + s_2 + s_3$$

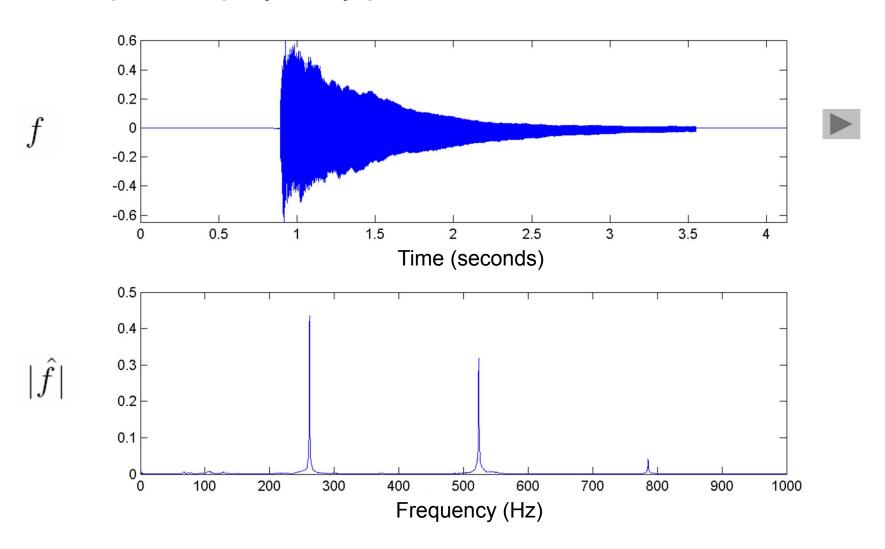


$$A_1 = 1$$
 $\omega_1 = 1$
 $\varphi_1 = 0$
Fourier transform f
 $A_2 = 0.6$
 $\omega_2 = 3$
 $\varphi_2 = -0.2$
 $A_3 = 0.4$
 $A_3 = 0.4$
 $\omega_3 = 7$
 $\varphi_3 = 0.4$

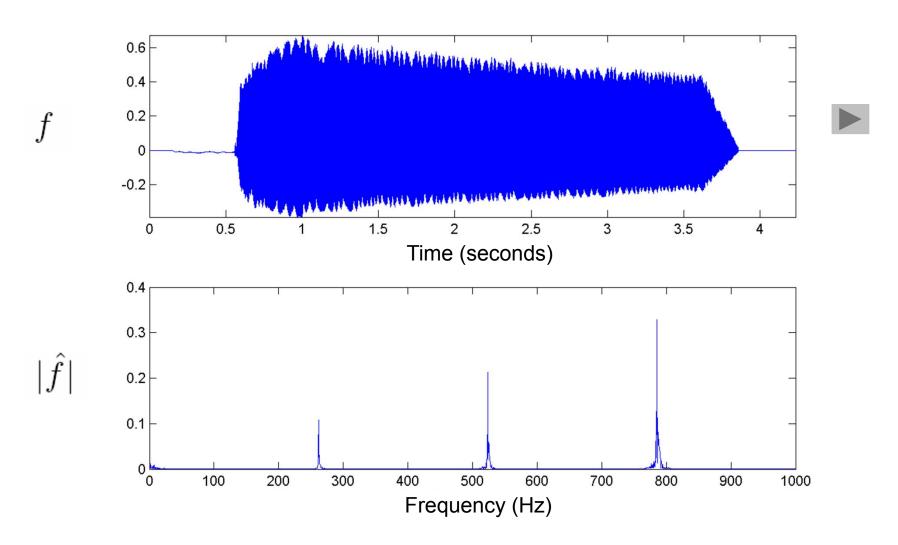
Example: Superposition of two sinusoidals



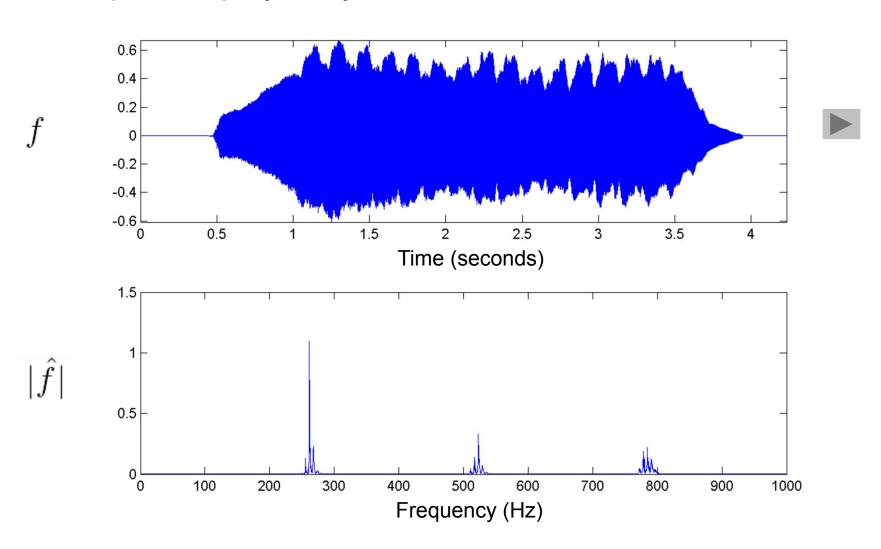
Example: C4 played by piano



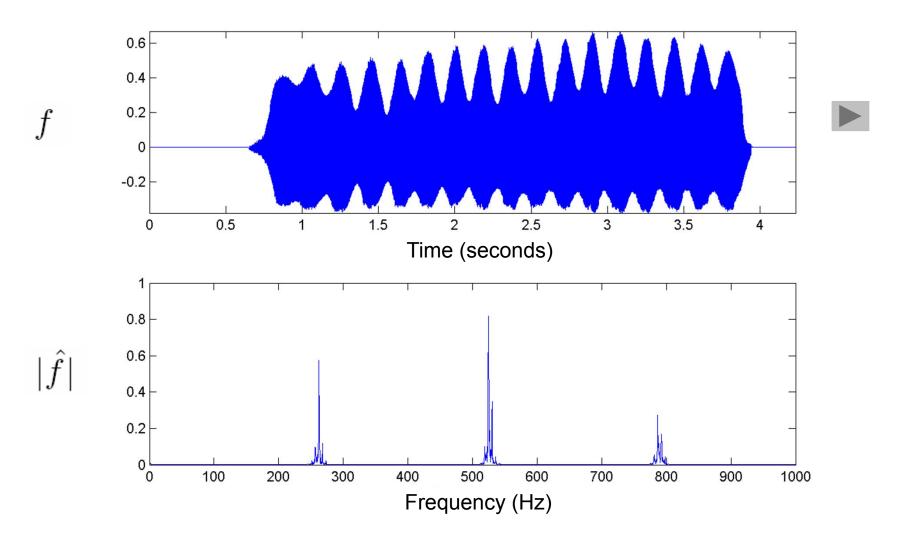
Example: C4 played by trumpet



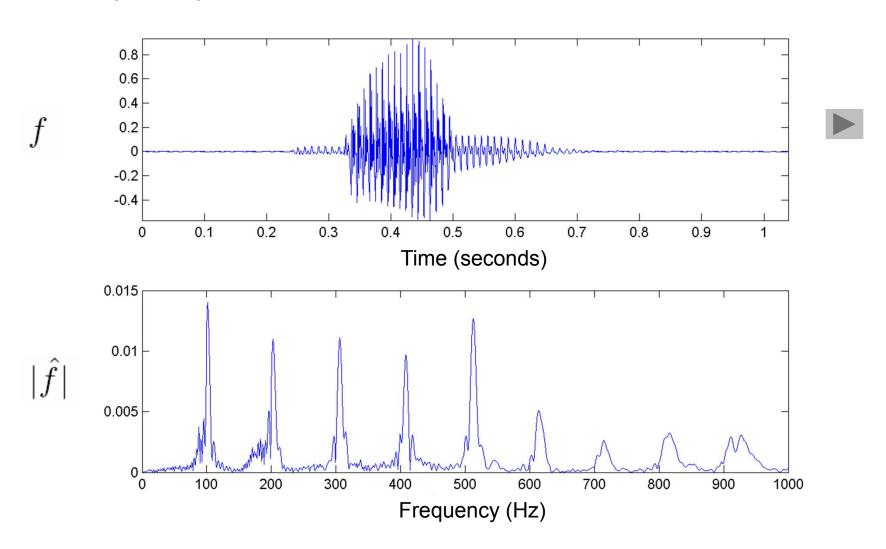
Example: C4 played by violine



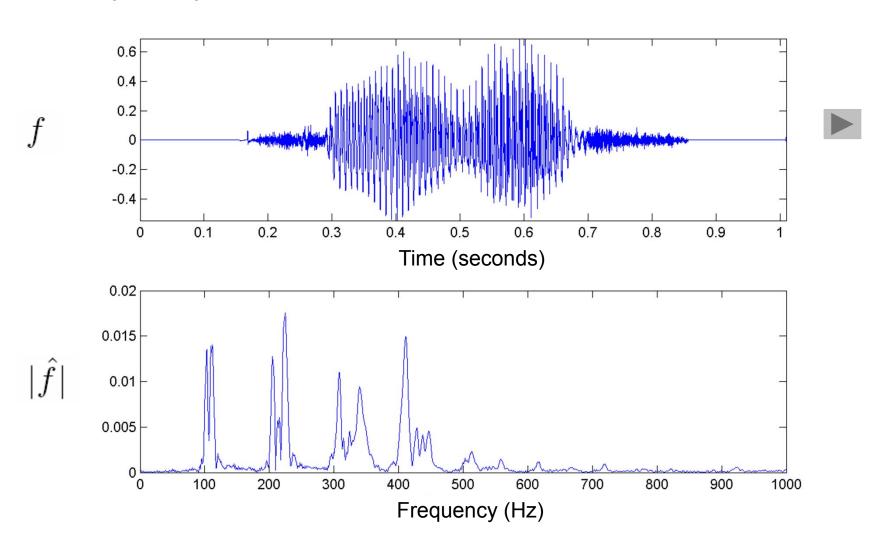
Example: C4 played by flute



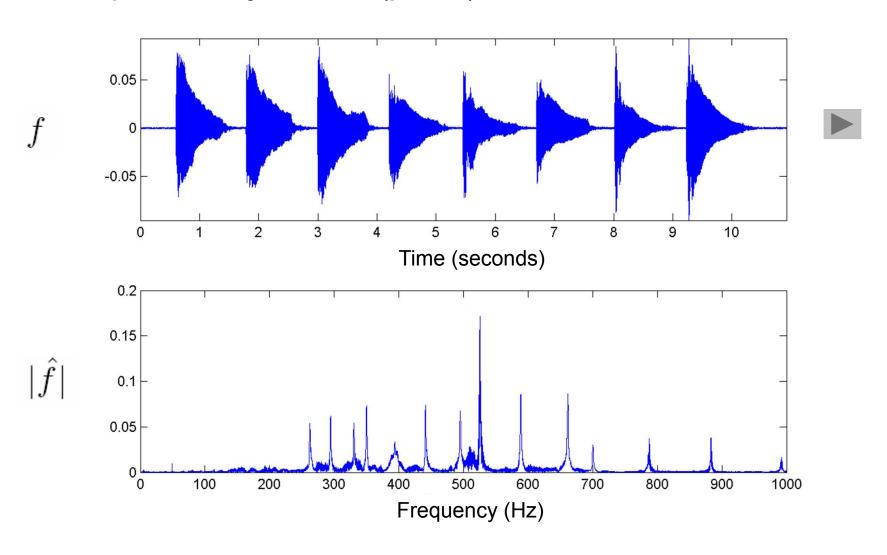
Example: Speech "Bonn"



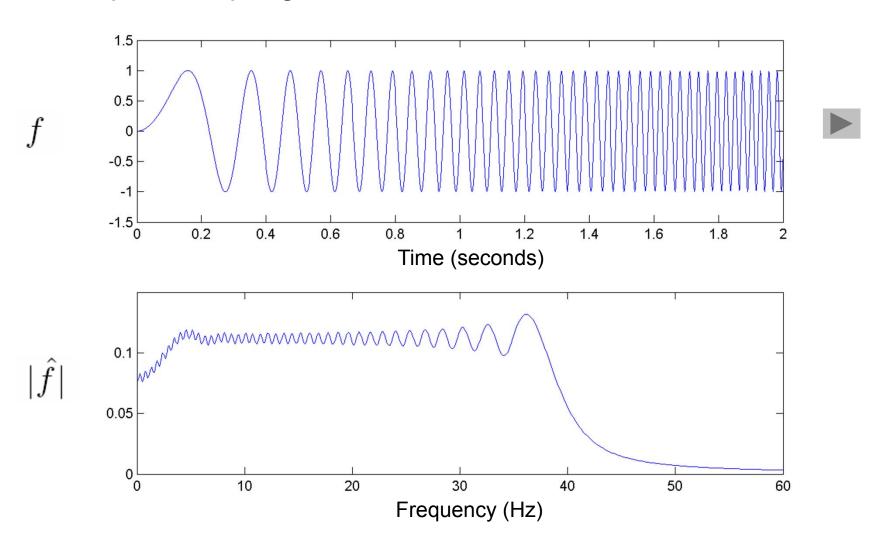
Example: Speech "Zürich"



Example: C-major scale (piano)



Example: Chirp signal



Each sinusoidal has a physical meaning and can be described by three parameters:

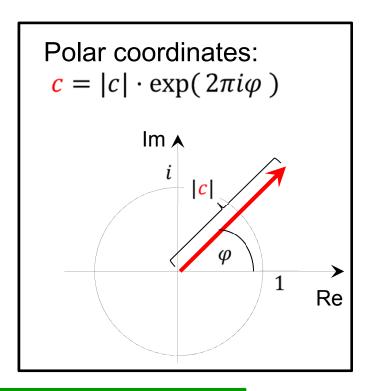
$$s_{(A,\omega,\varphi)}(t) = A \cdot \sin(2\pi(\omega t - \varphi))$$

 $\omega = \text{frequency}$

A = amplitue

 $\varphi = \mathsf{phase}$

Complex formulation of sinusoidals:



$$e_{(C,\omega)}(t) = \mathbf{c} \cdot \exp(2\pi i\omega t) = \mathbf{c} \cdot (\cos(2\pi\omega t) + i \cdot \sin(2\pi\omega t))$$

 $\omega = \text{frequency}$ A = amplitue = |c| $\varphi = \text{phase} = \arg(c)$

Signal

$$f: \mathbb{R} \to \mathbb{R}$$

Fourier representation
$$f(t)=\int\limits_{\omega\in\mathbb{R}}c_{\omega}e^{2\pi i\omega t}d\omega$$
 , $c_{\omega}=\hat{f}(\omega)$

Fourier transform

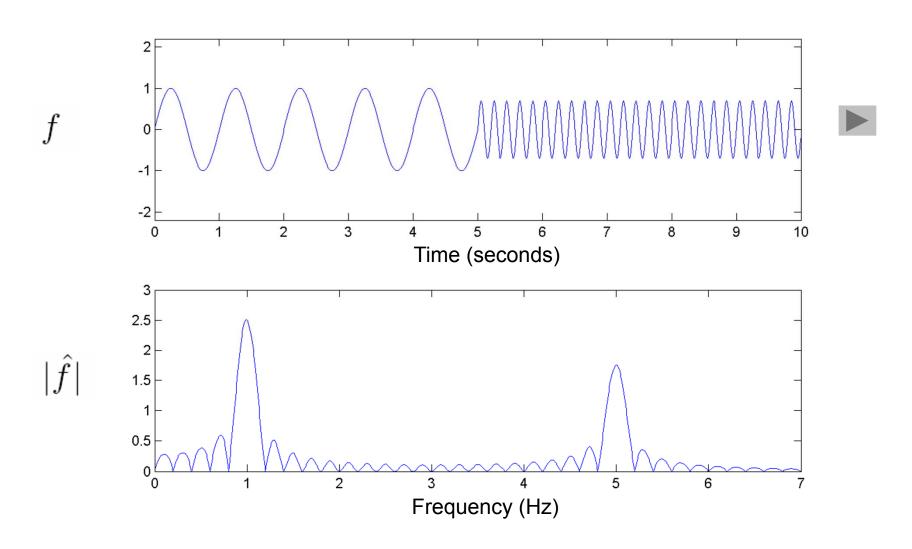
$$\hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t)e^{-2\pi i\omega t} dt$$

Signal $f: \mathbb{R} \to \mathbb{R}$

Fourier representation $f(t)=\int\limits_{\omega\in\mathbb{R}}c_{\omega}e^{2\pi i\omega t}d\omega$, $c_{\omega}=\hat{f}(\omega)$

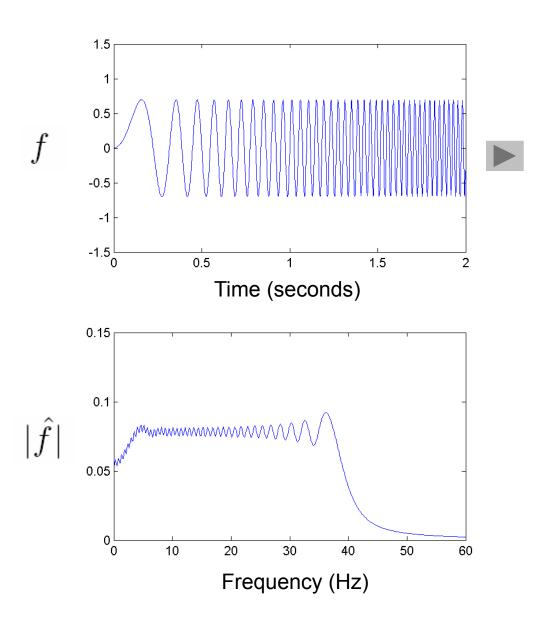
Fourier transform $\hat{f}(\omega) \ = \int\limits_{t \in \mathbb{R}} f(t) e^{-2\pi i \omega t} dt$

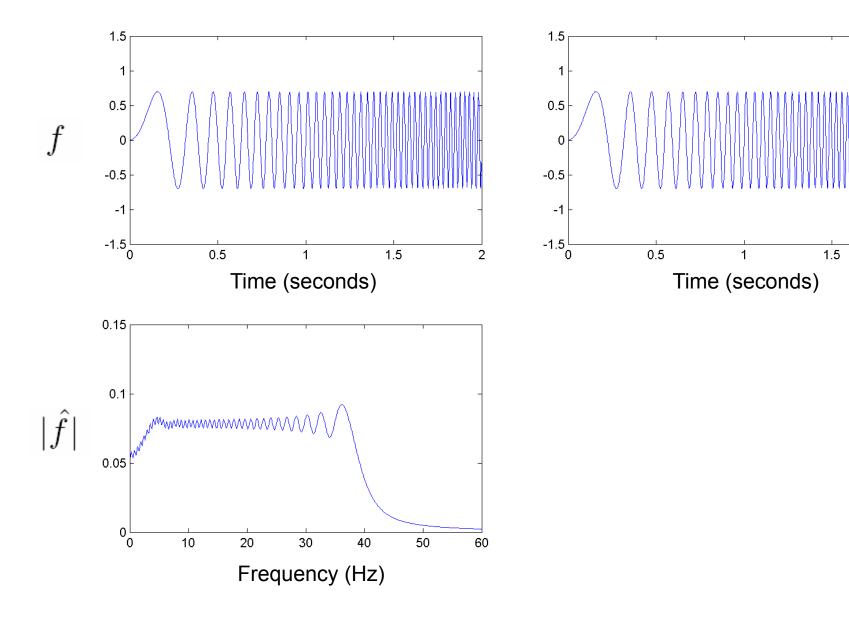
- Tells which frequencies occur, but does not tell when the frequencies occur.
- Frequency information is averaged over the entire time interval.
- Time information is hidden in the phase

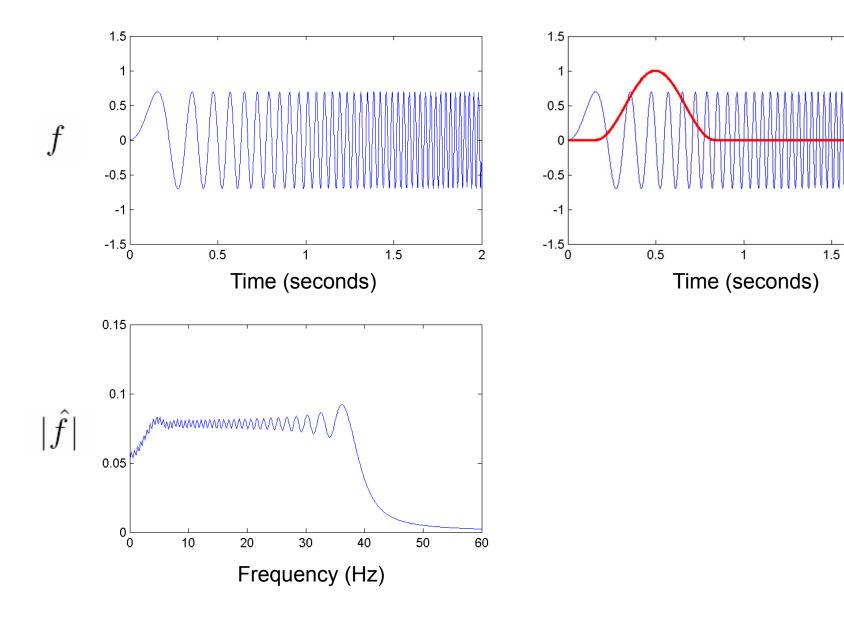


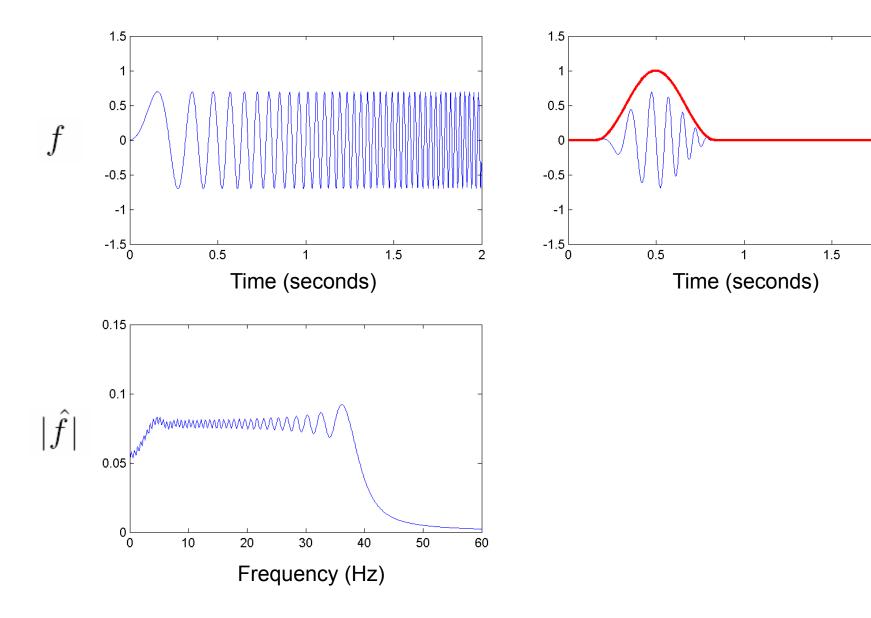
Idea (Dennis Gabor, 1946):

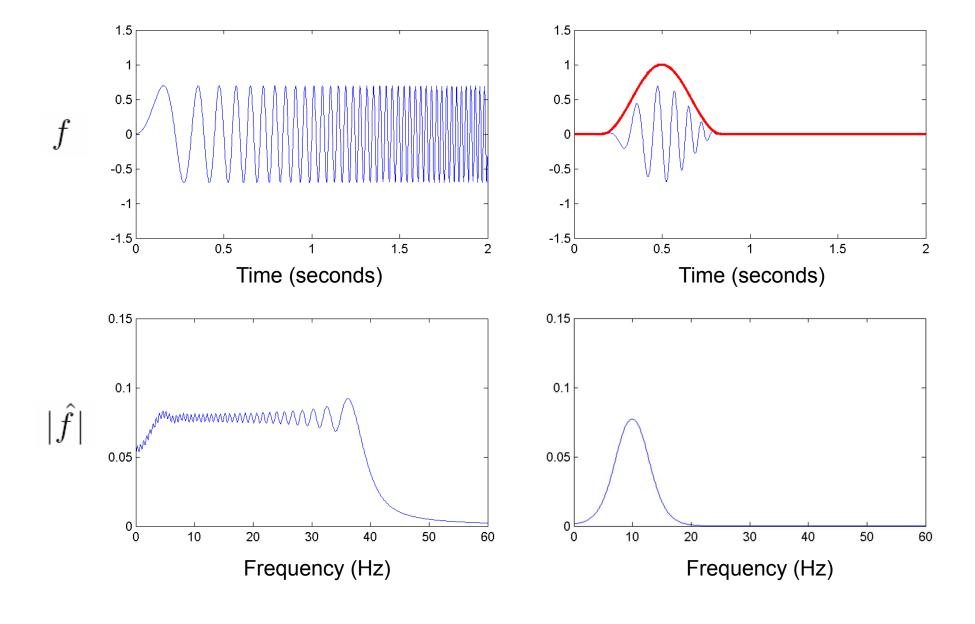
- Consider only a small section of the signal for the spectral analysis
 - → recovery of time information
- Short Time Fourier Transform (STFT)
- Section is determined by pointwise multiplication of the signal with a localizing window function

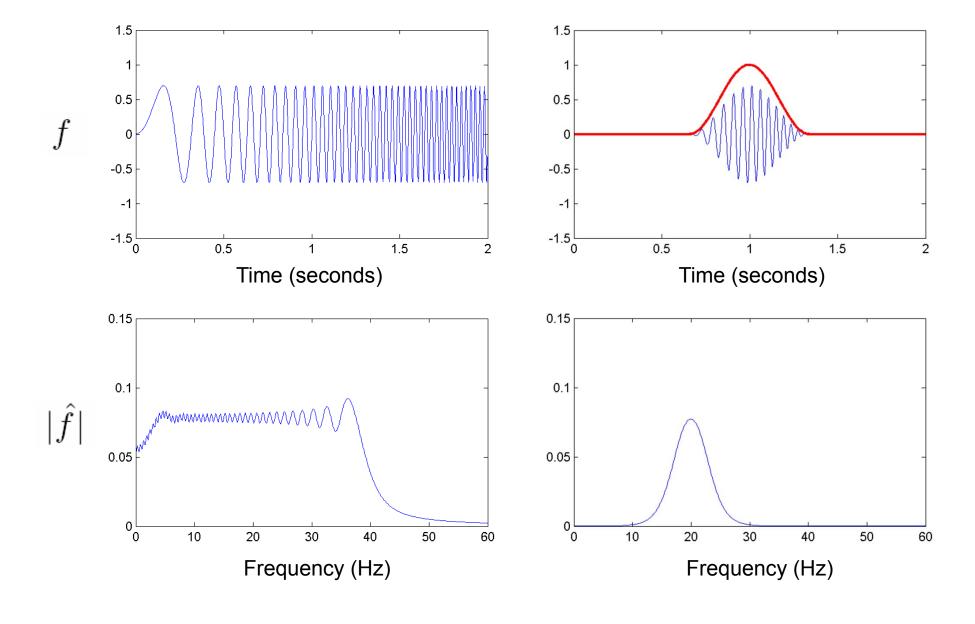


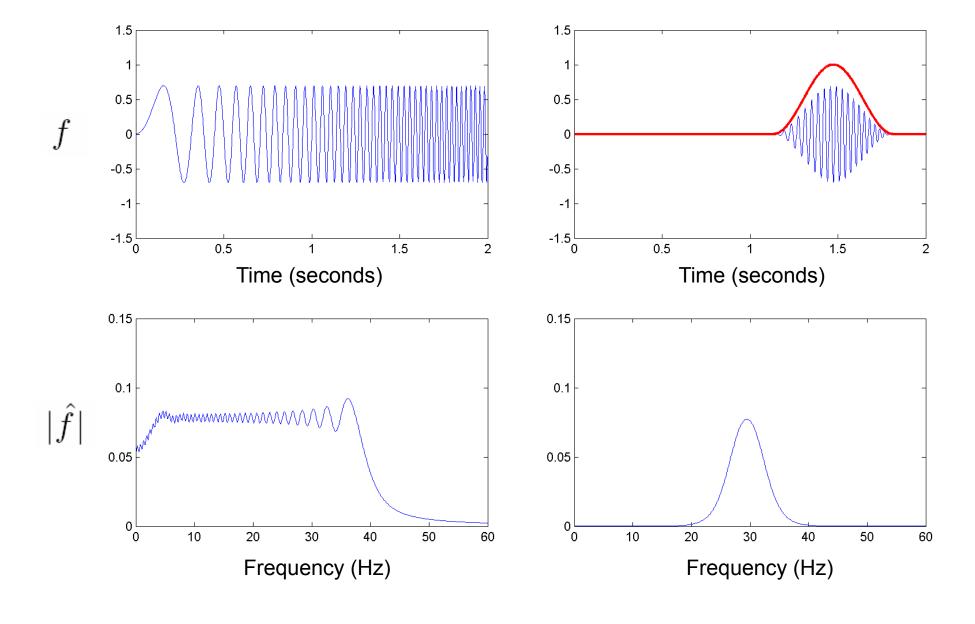












Definition

Signal

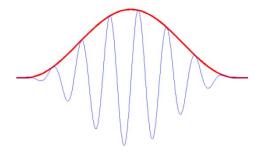
$$f:\mathbb{R} o \mathbb{R}$$

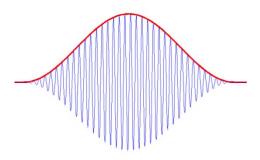
- Window function $g:\mathbb{R} o \mathbb{R}$ $(g \in L^2(\mathbb{R}), \|g\| = 1)$
- STFT $\tilde{f}(\omega,t) := \int_{\mathbb{R}} f(u)\bar{g}(u-t)e^{-2\pi i\omega u}du = \langle f|g_{\omega,t}\rangle$

with
$$g_{\omega,t}(u) := e^{2\pi i \omega u} g(u-t), \quad u \in \mathbb{R}$$

Intuition:

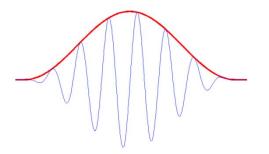
• $g_{\omega,t}$ is "musical note" of frequency ω , which oscillates within the translated window $u \to g(u-t)$

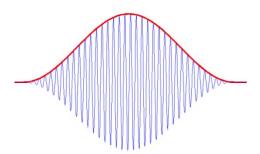




Intuition:

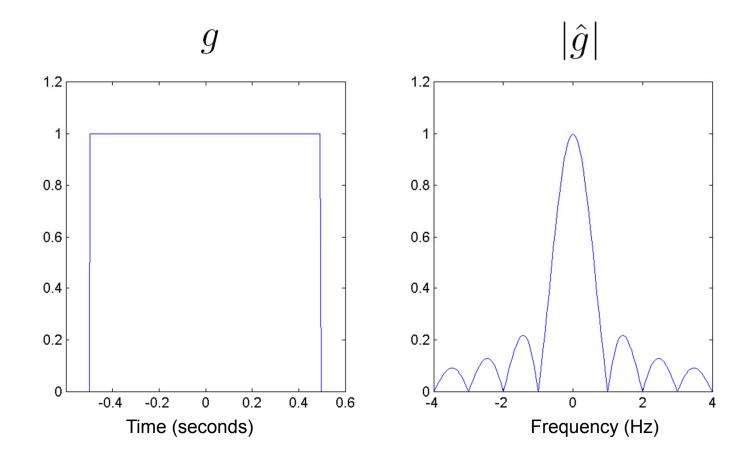
• $g_{\omega,t}$ is "musical note" of frequency ω , which oscillates within the translated window $u \to g(u-t)$



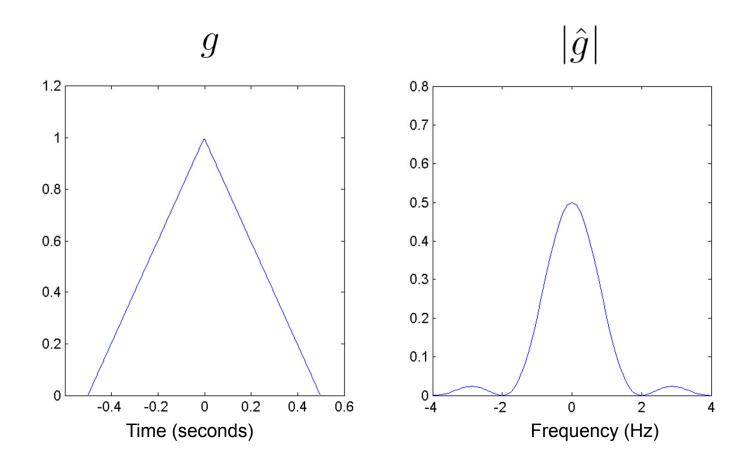


• Innere product $\langle f|g_{\omega,t}\rangle$ measures the correlation between the musical note $g_{\omega,t}$ and the signal f.

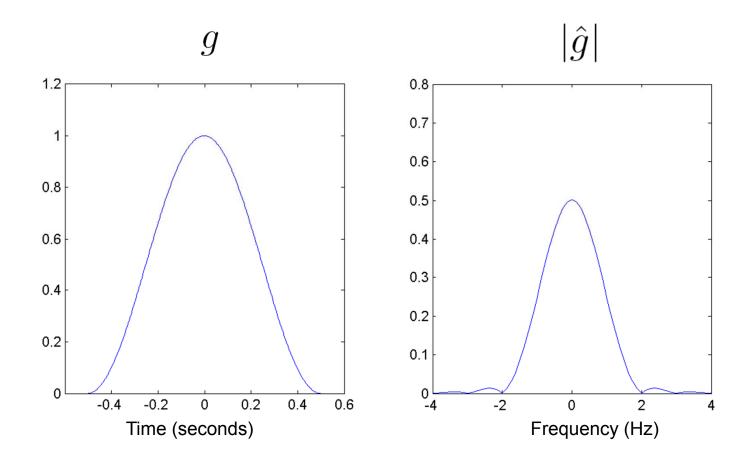
Box window

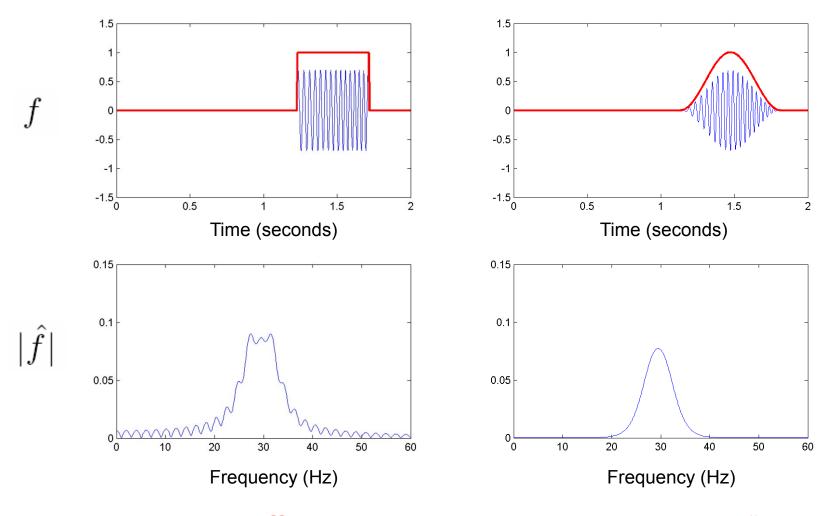


Triangle window



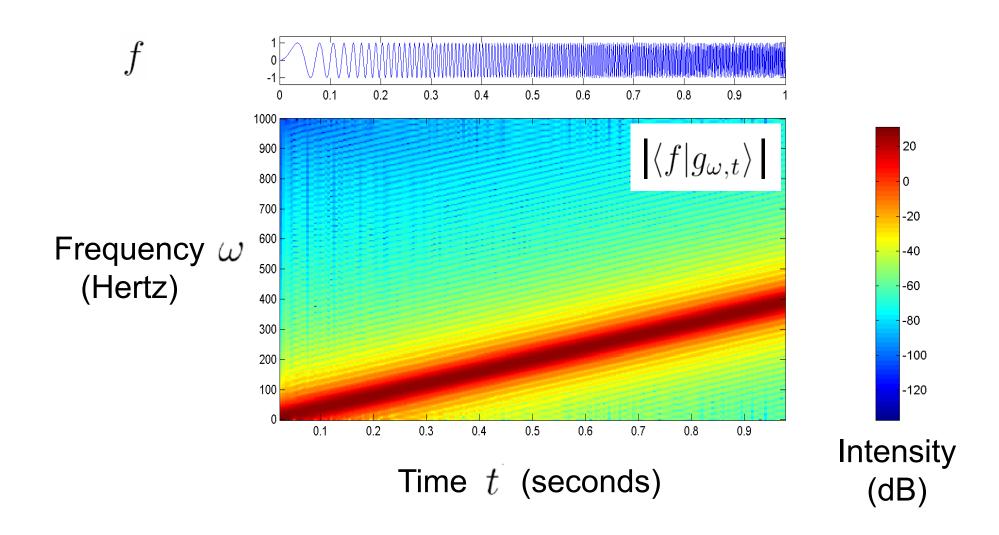
Hann window



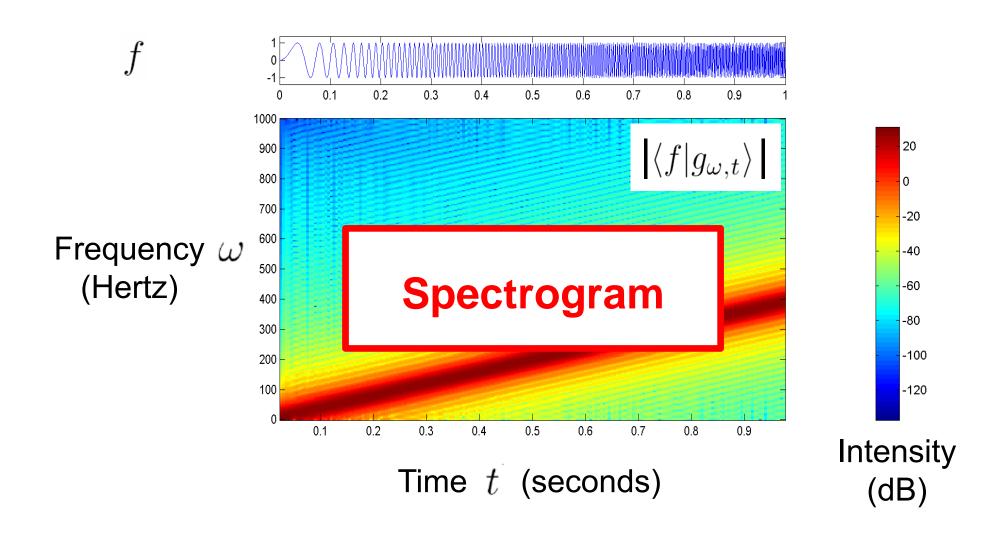


Trade off between smoothing and "ringing"

Time-Frequency Representation

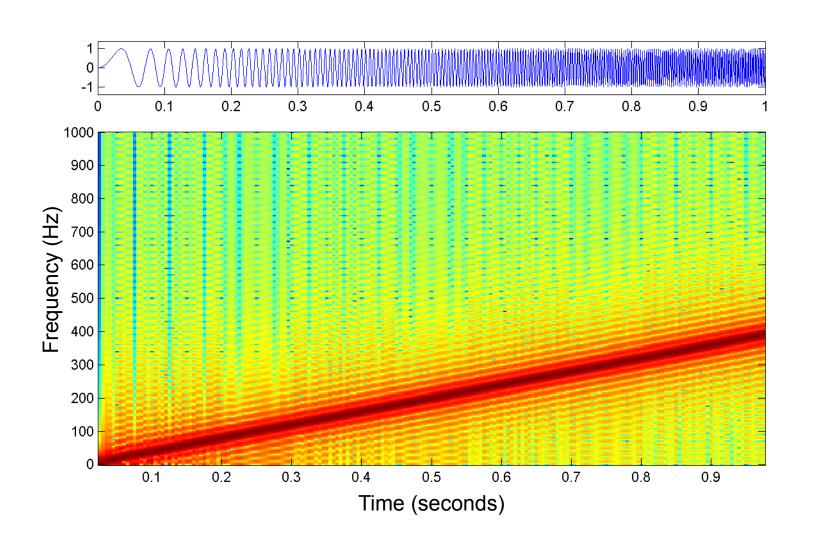


Time-Frequency Representation



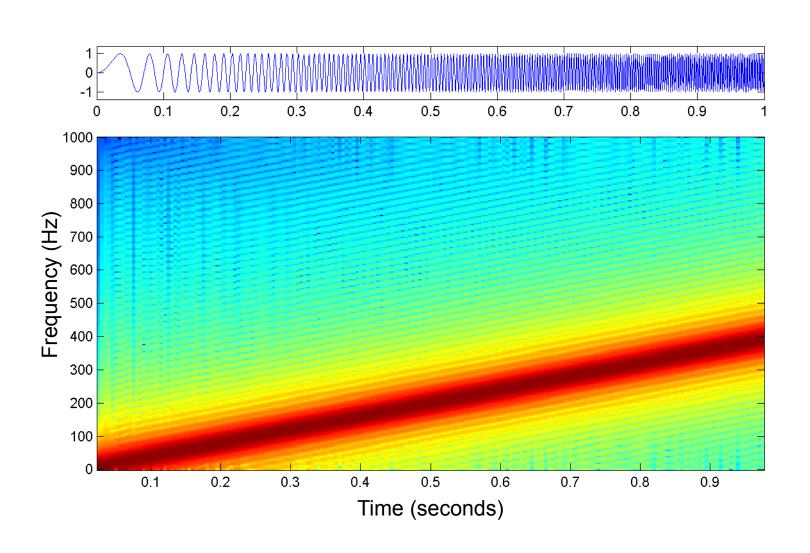
Time-Frequency Representation

Chirp signal and STFT with box window of length 0.05



Time-Frequency Representation

Chirp signal and STFT with Hann window of length 0.05



Time-Frequency Localization

 Size of window constitutes a trade-off between time resolution and frequency resolution:

Large window: poor time resolution

good frequency resolution

Small window: good time resolution

poor frequency resolution

 Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary position.

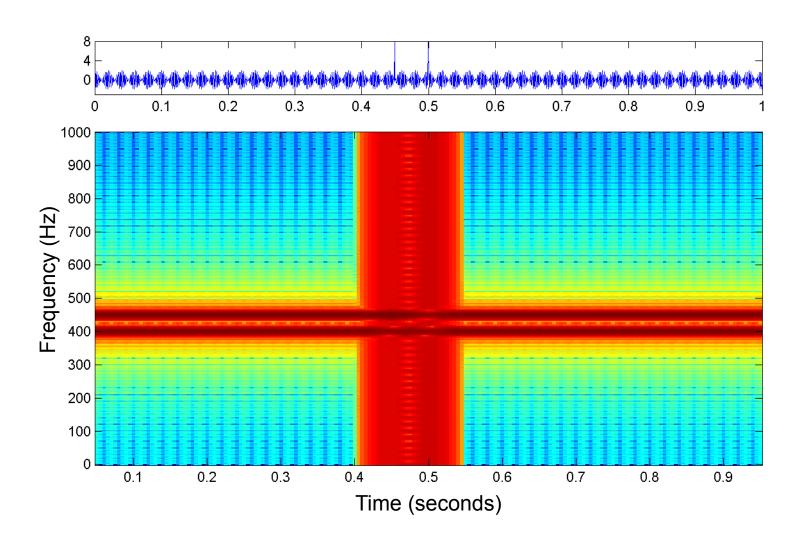
Short Time Fourier Transform

Signal and STFT with Hann window of length 0.02



Short Time Fourier Transform

Signal and STFT with Hann window of length 0.1



MATLAB

- MATLAB function SPECTROGRAM
- N = window length (in samples)
- M = overlap (usually N/2)
- Compute DFT_N for every windowed section
- Keep lower N/2 Fourier coefficients

ightarrow Sequence of spectral vectors (for each window a vector of dimension N/2)

Example

```
Let x be a discrete time signal x(n) = f(Tn)
```

Sampling rate:
$$1/T = 22050 \text{ Hz}$$

Window length:
$$N = 4096$$

Overlap:
$$N/2 = 2048$$

Hopsize: window length – overlap

Let
$$v_0 := (x(0), x(1), \dots, x(4095))$$
 $v_1 := (x(2048), \dots, x(6143))$
 $v_2 := (x(4096), \dots, x(8191))$
 \vdots

 v_m corresponds to window $[m \cdot 2048 : m \cdot 2048 + 4095]$

Example

Time resolution:

$$\frac{\text{hopsize}}{\text{sampling rate}} = \frac{4096 - 2048}{22050} = 0.093 = 93 \ ms$$

Frequency resolution:

$$v = v_0$$
, $\hat{v} := DFT_N(v)$

$$\hat{v}(k) \approx \frac{1}{T} \cdot \hat{f}\left(\frac{k}{N} \cdot \frac{1}{T}\right)$$

$$\omega = \frac{k}{N} \cdot \frac{1}{T} = k \cdot \frac{22050}{4096} = k \cdot 5.38 \text{ Hz}$$

Model assumption: Equal-tempered scale

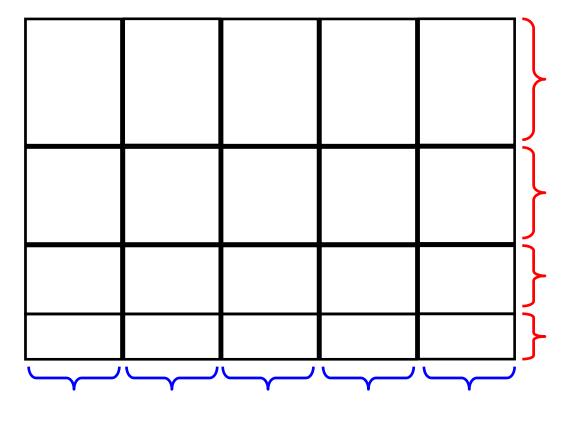
- MIDI pitches: $p \in [1:128]$
- Piano notes: p = 21 (A0) to p = 108 (C8)
- Concert pitch: p = 69 (A4)
- Center frequency: $f_{\text{MIDI}}(p) = 2^{\frac{p-69}{12}} \cdot 440$ Hz

→ Logarithmic frequency distribution Octave: doubling of frequency

Idea: Binning of Fourier coefficients

Divide up the fequency axis into logarithmically spaced "pitch regions" and combine spectral coefficients of each region to a single pitch coefficient.

Time-frequency representation



Windowing in the time domain

Windowing in the frequency domain

Details:

• Let \hat{v} be a spectral vector obtained from a spectrogram w.r.t. a sampling rate 1/T and a window length N. The spectral coefficient $\hat{v}(k)$ corresponds to the frequency

$$f_{\text{coeff}}(k) := \frac{k}{N} \cdot \frac{1}{T}$$

Let

$$S(p) := \{k : f_{\text{MIDI}}(p - 0.5) \le f_{\text{coeff}}(k) < f_{\text{MIDI}}(p + 0.5)\}$$

be the set of coefficients assigned to a pitch $p \in [1:128]$ Then the pitch coefficient P(p) is defined as

$$P(p) := \sum_{k \in S(p)} |\hat{v}(k)|^2$$

Example: A4, p = 69

- Center frequency: $f(p = 69) = 2^{\frac{0}{12}} \cdot 440 = 440 \; Hz$
- Lower bound: $f(p = 68.5) = 2^{\frac{-0.5}{12}} \cdot 440 = 427.5 \ Hz$
- Upper bound: $f(p = 69.5) = 2^{\frac{0.5}{12}} \cdot 440 = 452.9 \ Hz$
- STFT with N=4096 , 1/T=22050

```
\begin{array}{rcl} \vdots \\ f(k=79) & = & 425.3 \; Hz \\ f(k=80) & = & 430.7 \; Hz \\ f(k=81) & = & 436.0 \; Hz \\ f(k=82) & = & 441.4 \; Hz \\ f(k=83) & = & 446.8 \; Hz \\ f(k=84) & = & 452.2 \; Hz \\ f(k=85) & = & 457.6 \; Hz \\ \vdots \end{array}
```

Example: A4, p = 69

- Center frequency: $f(p = 69) = 2^{\frac{0}{12}} \cdot 440 = 440 \; Hz$
- Lower bound: $f(p=68.5) = 2^{\frac{-0.5}{12}} \cdot 440 = 427.5 \; Hz$ Upper bound: $f(p=69.5) = 2^{\frac{0.5}{12}} \cdot 440 = 452.9 \; Hz$
- STFT with N = 4096 , 1/T = 22050

Note	MIDI pitch	Center [Hz] frequency	Left [Hz] boundary	Right [Hz] boundary	Width [Hz]
A3	57	220.0	213.7	226.4	12.7
A#3	58	233.1	226.4	239.9	13.5
В3	59	246.9	239.9	254.2	14.3
C4	60	261.6	254.2	269.3	15.1
C#4	61	277.2	269.3	285.3	16.0
D4	62	293.7	285.3	302.3	17.0
D#4	63	311.1	302.3	320.2	18.0
E4	64	329.6	320.2	339.3	19.0
F4	65	349.2	339.3	359.5	20.2
F#4	66	370.0	359.5	380.8	21.4
G4	67	392.0	380.8	403.5	22.6
G#4	68	415.3	403.5	427.5	24.0
A4	69	440.0	427.5	452.9	25.4

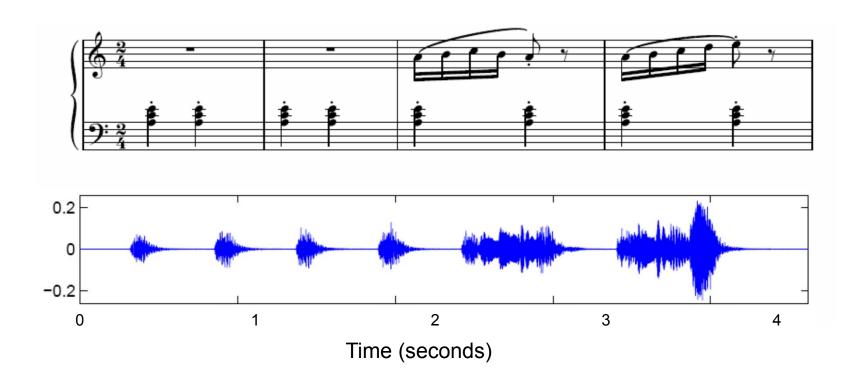
Note:

- $P \in \mathbb{R}^{128}$
- For some pitches, S(p) may be empty. This
 particularly holds for low notes corresponding to
 narrow frequency bands.
- → Linear frequency sampling is problematic!

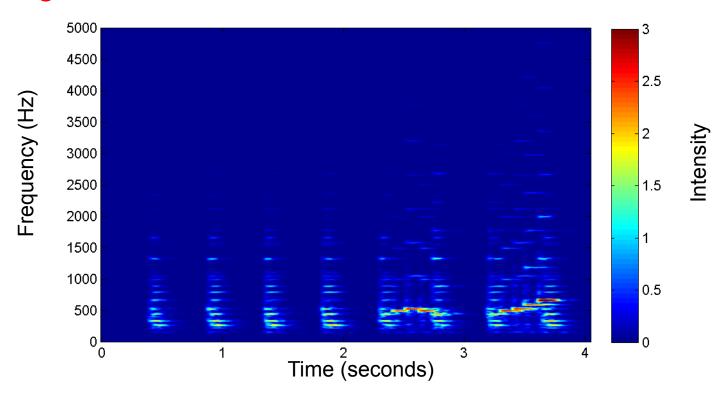
Solution:

Multi-resolution spectrograms or multirate filterbanks

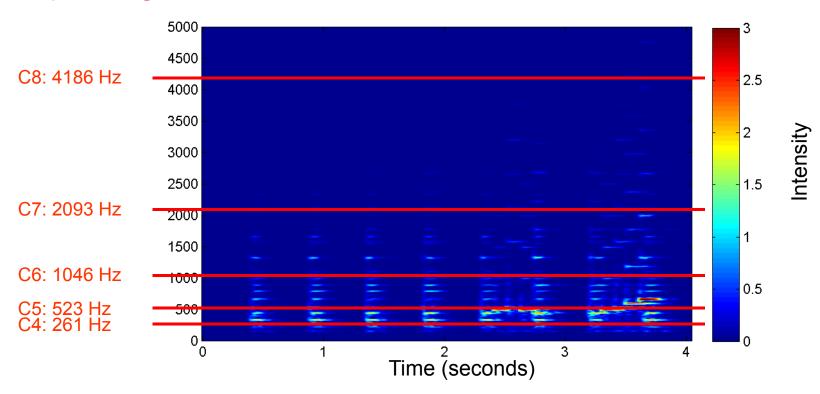
Example: Friedrich Burgmüller, Op. 100, No. 2



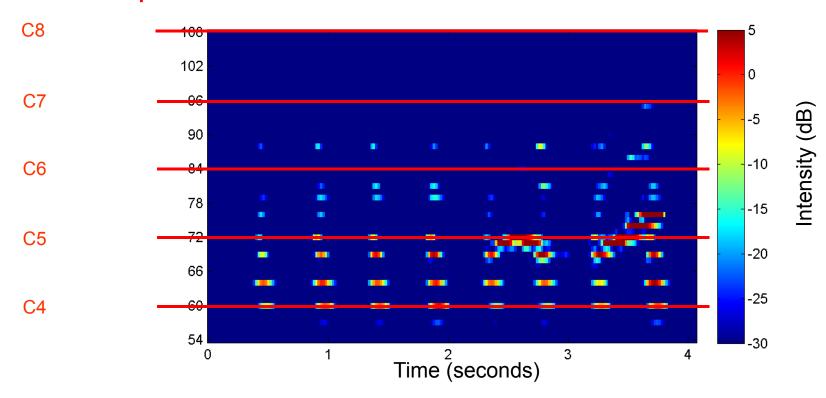
Spectrogram



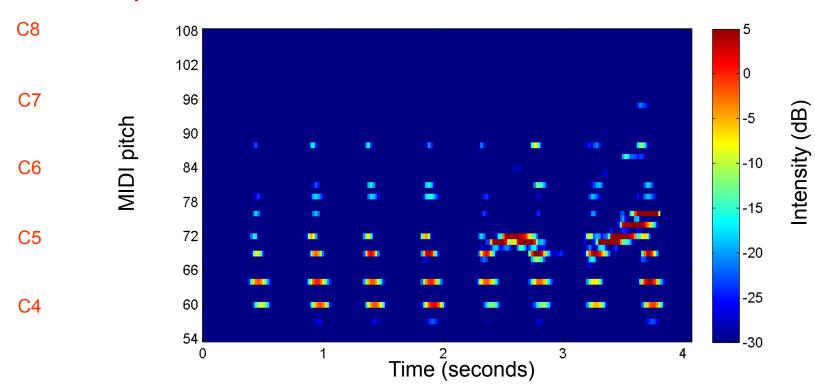
Spectrogram



Pitch representation

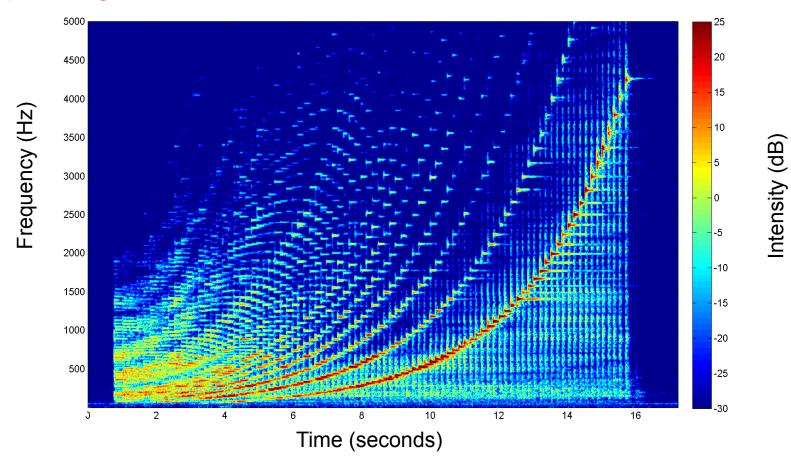


Pitch representation



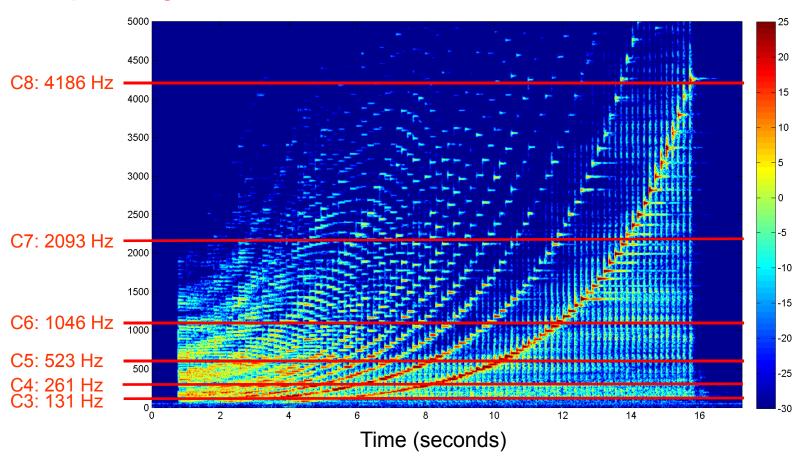
Example: Chromatic scale

Spectrogram



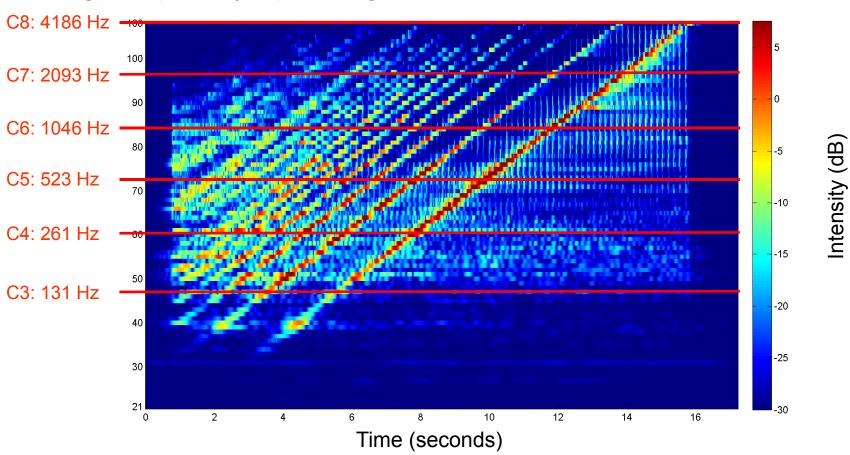
Example: Chromatic scale

Spectrogram

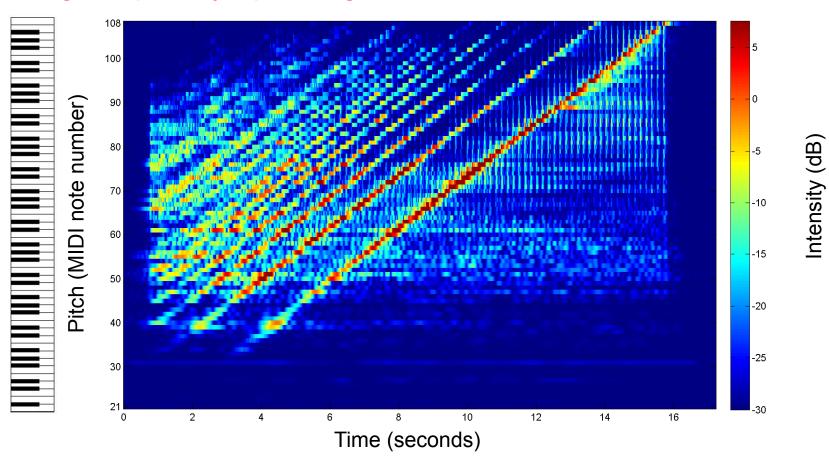


Intensity (dB)

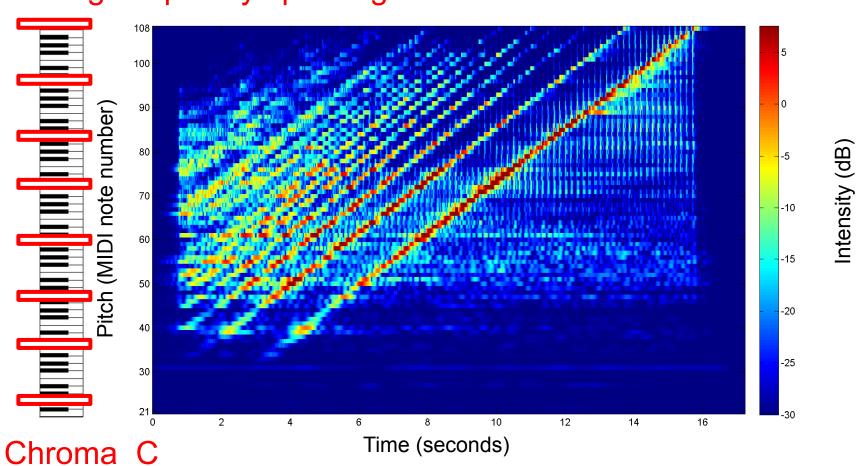
Example: Chromatic scale



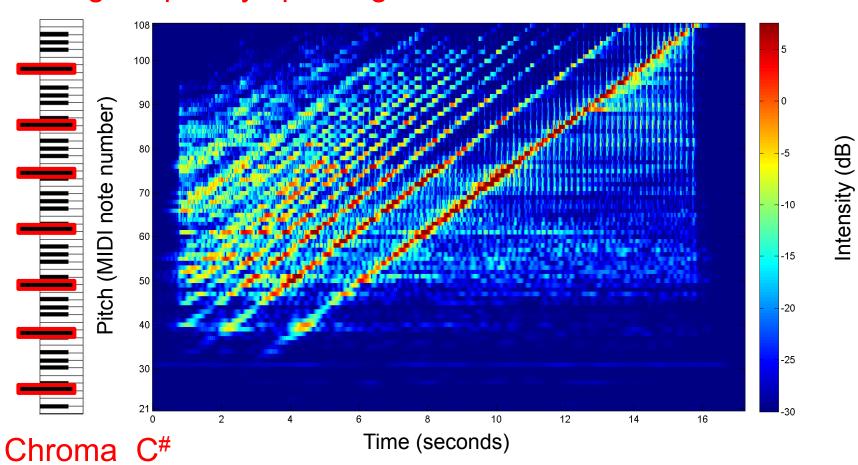
Example: Chromatic scale



Example: Chromatic scale

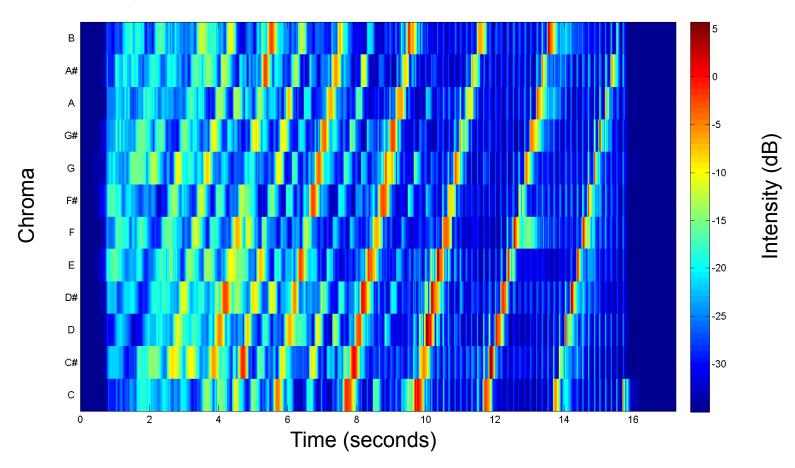


Example: Chromatic scale

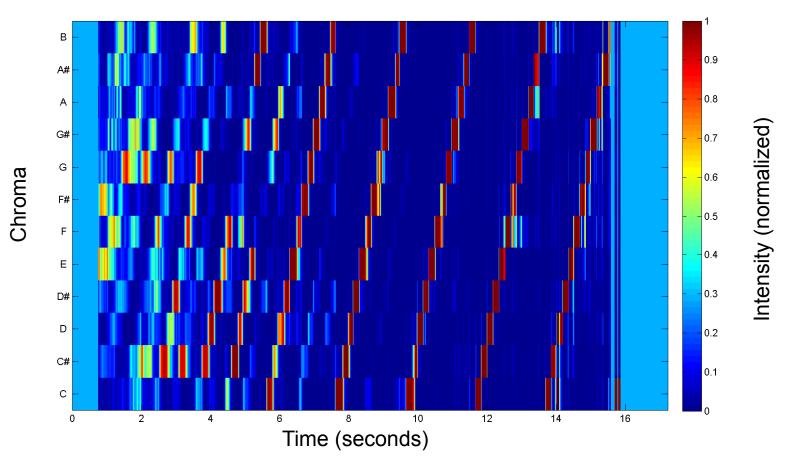


Example: Chromatic scale

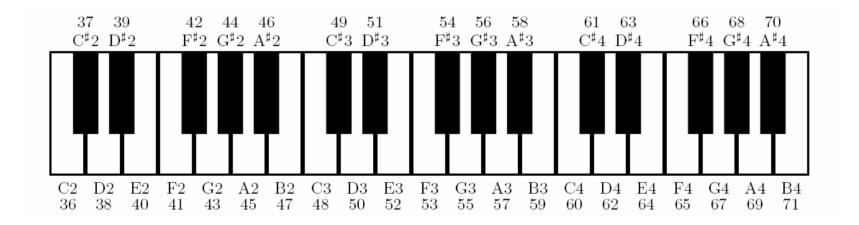
Chroma representation

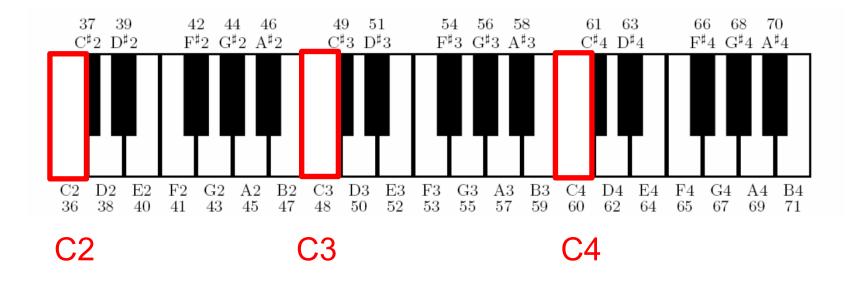


Example: Chromatic scale

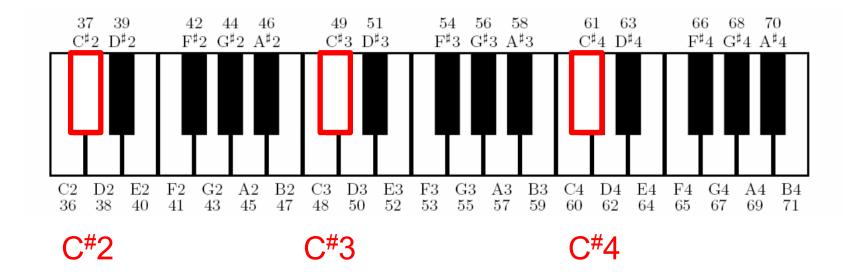


- Human perception of pitch is periodic in the sense that two pitches are perceived as similar in color if they differ by an octave.
- Seperation of pitch into two components: tone height (octave number) and chroma.
- Chroma: 12 traditional pitch classes of the equaltempered scale. For example:
 - Chroma C $\widehat{=} \{ \ldots, C0, C1, C2, C3, \ldots \}$
- Computation: pitch features → chroma features
 Add up all pitches belonging to the same class
- Result: 12-dimensional chroma vector.

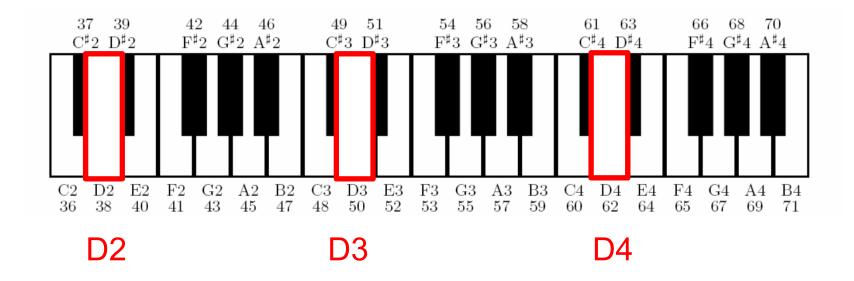




Chroma C



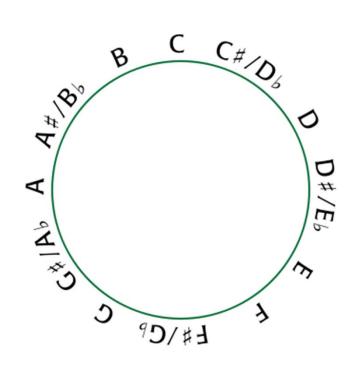
Chroma C#

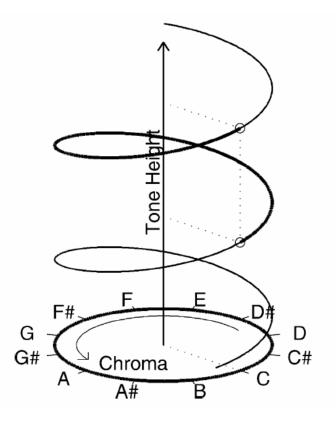


Chroma D

Chromatic circle

Shepard's helix of pitch perception

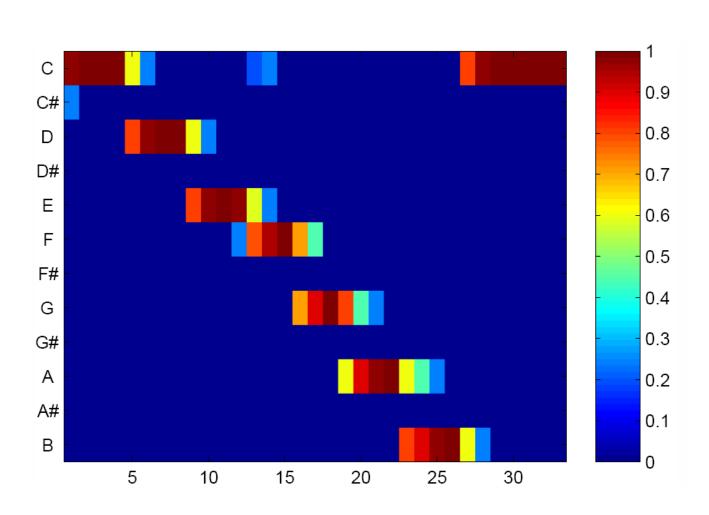




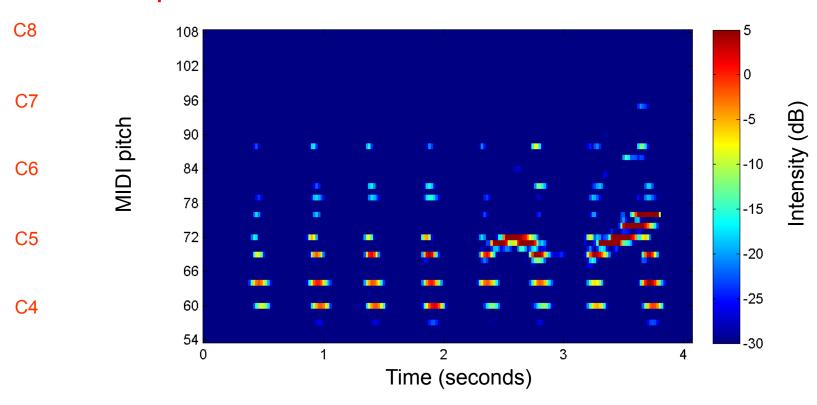
http://en.wikipedia.org/wiki/Pitch_class_space

Bartsch/Wakefield, IEEE Trans. Multimedia, 2005

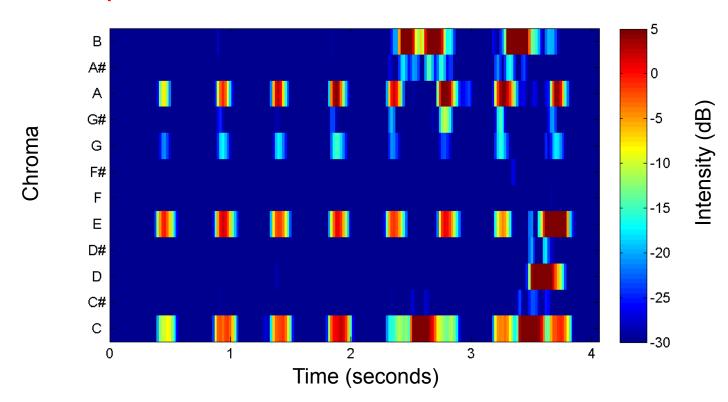
Example: C-Major Scale



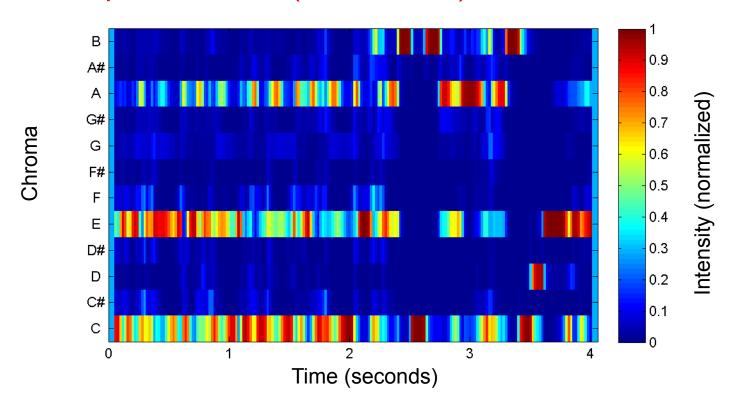
Pitch representation



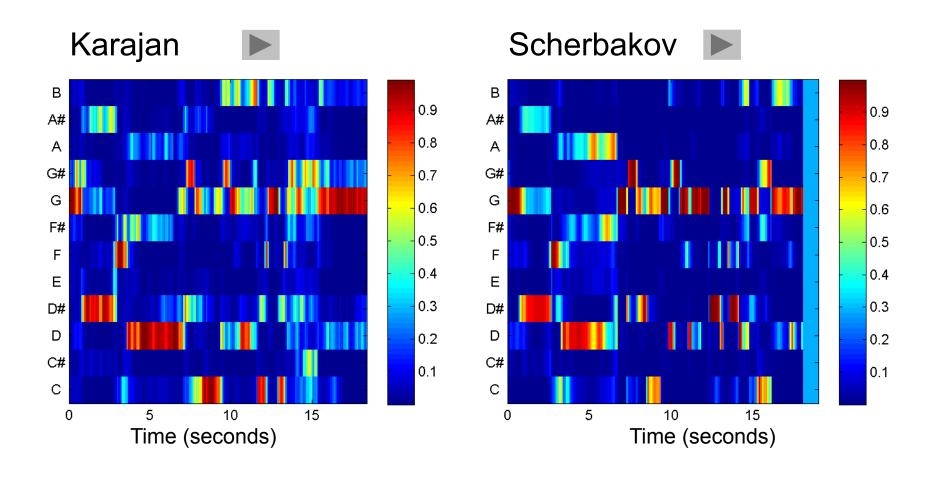
Chroma representation



Chroma representation (normalized)



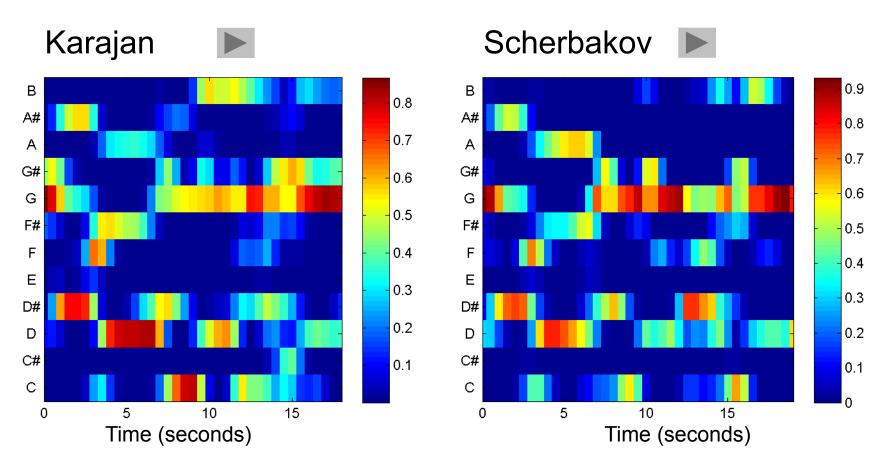
Example: Beethoven's Fifth Chroma representation (normalized, 10 Hz)



Example: Beethoven's Fifth

Chroma representation (normalized, 2 Hz)

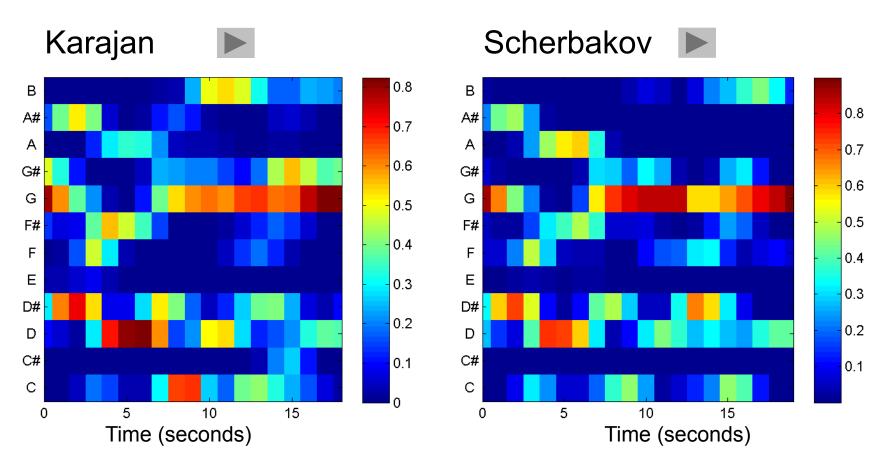
Smoothing (2 seconds) + downsampling (factor 5)



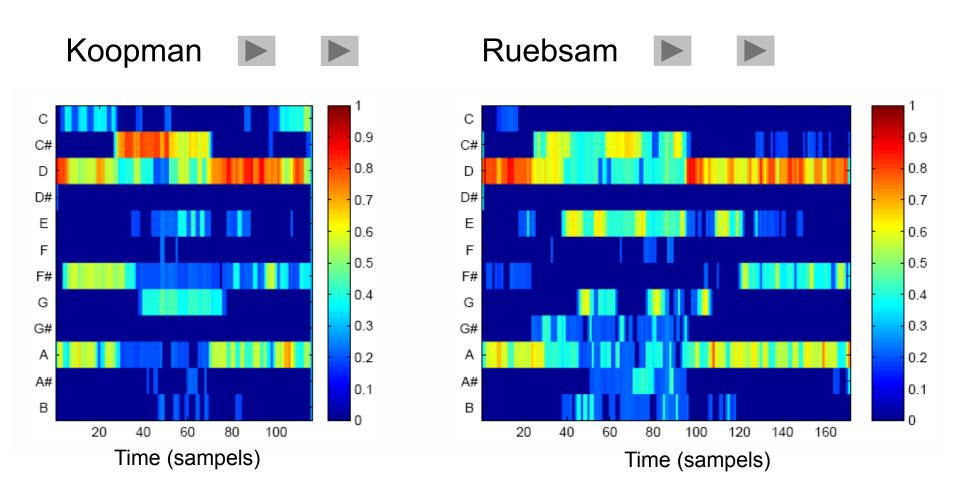
Example: Beethoven's Fifth

Chroma representation (normalized, 1 Hz)

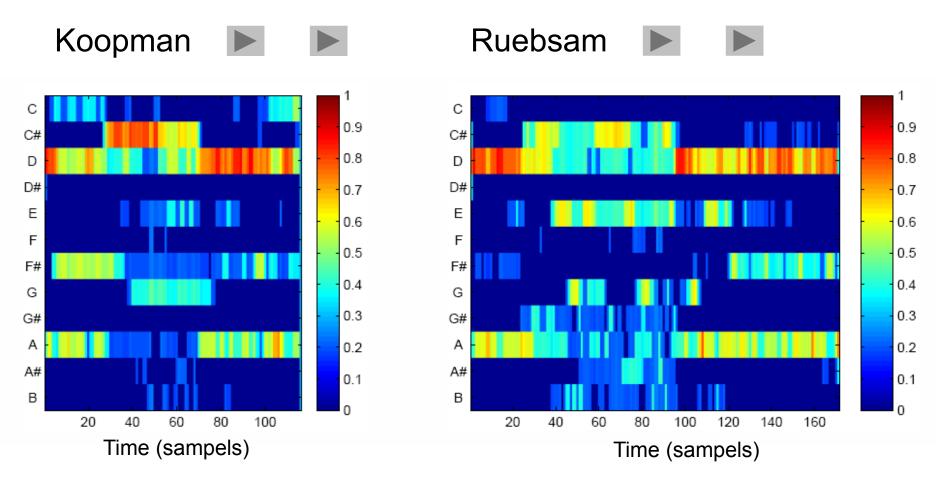
Smoothing (4 seconds) + downsampling (factor 10)



Example: Bach Toccata

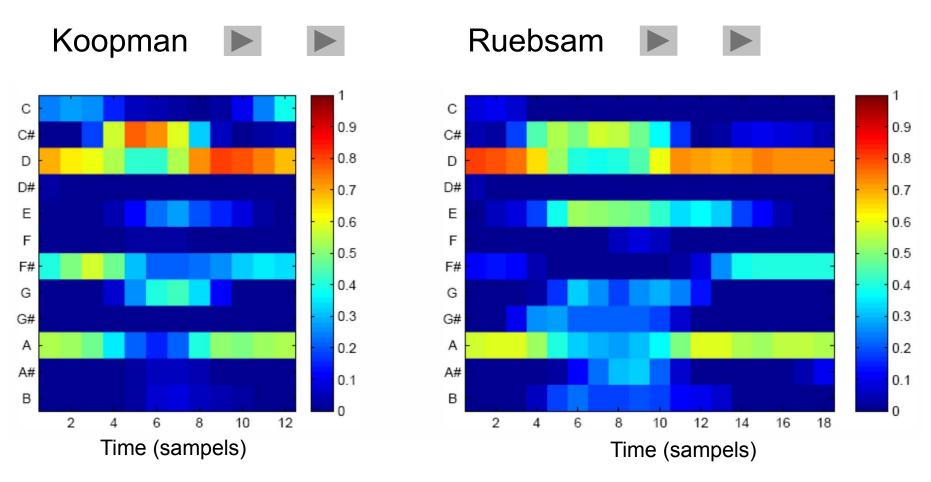


Example: Bach Toccata



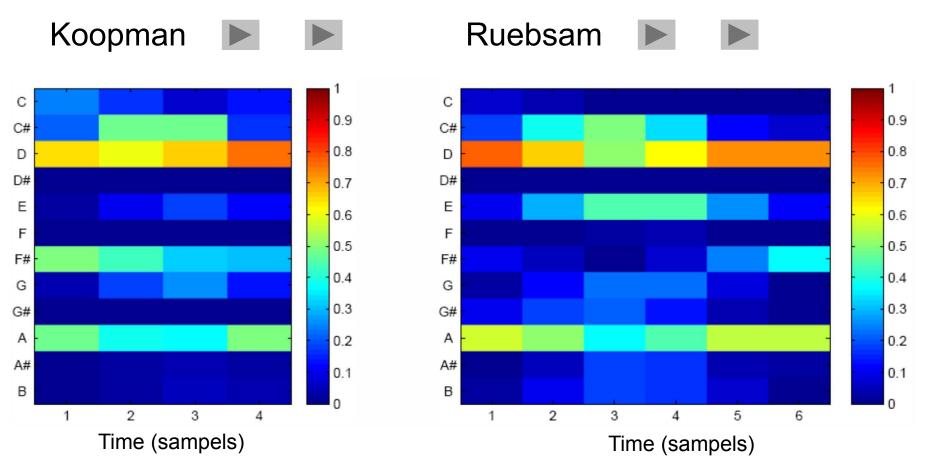
Feature resolution: 10 Hz

Example: Bach Toccata



Feature resolution: 1 Hz

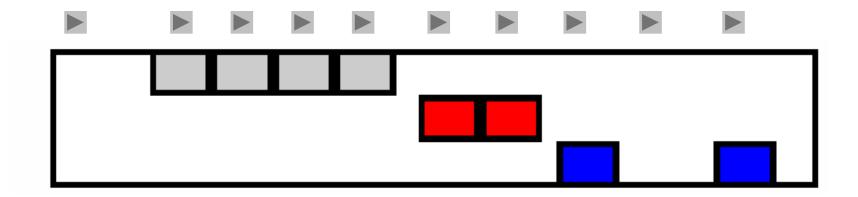
Example: Bach Toccata



Feature resolution: 0.33 Hz

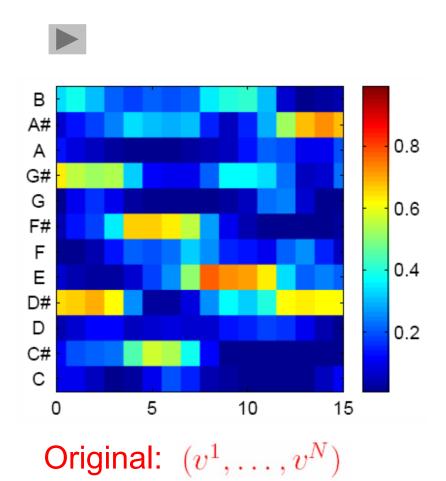
- Sequence of chroma vectors correlates to the harmonic progression
- Normalization $v \to \frac{v}{\|v\|}$ makes features invariant to changes in dynamics
- Further quantization and smoothing: CENS features
- Taking logarithm before adding up pitch coefficients accounts for logarithmic sensation of intensity

Example: Zager & Evans "In The Year 2525"

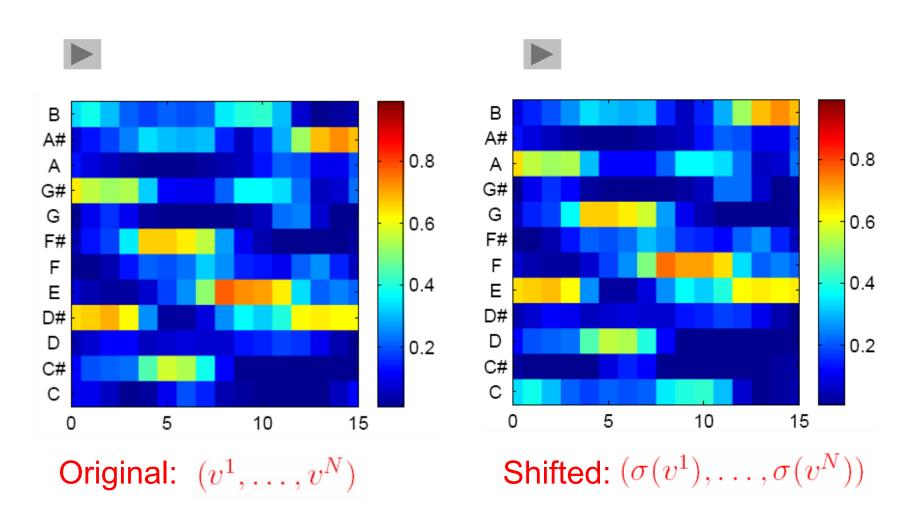


How to deal with transpositions?

Example: Zager & Evans "In The Year 2525"



Example: Zager & Evans "In The Year 2525"



Audio Features

- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application

Chroma Toolbox: Pitch, Chroma, CENS, CRP Universität Des SAARLANDES Universitätbonn universitätbonn

- http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
- MATLAB implementations for various chroma variants