
Lecture
Music Processing

Music Synchronization

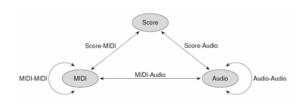
Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Music Data

Music Data

Various interpretations - Beethoven's Fifth


Bernstein	
Karajan	
Scherbakov (piano)	>
MIDI (piano)	

General Goals

- Automated organization of complex and inhomogeneous music collections
- Generation of annotations and cross-links
- Tools and methods for multimodal search, navigation and interaction

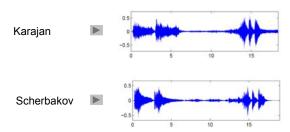
Music Information Retrieval (MIR)

Music Synchronization

Schematic view of various synchronization tasks

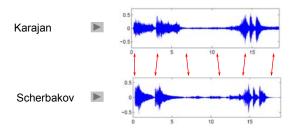
Music Synchronization (Audio Alignment)

- Turetsky/Ellis (ISMIR 2003)
- Soulez/Rodet/Schwarz (ISMIR 2003)
- Arifi/Clausen/Kurth/Müller (ISMIR 2003)
- Hu/Dannenberg/Tzanetakis (WASPAA 2003)
- Müller/Kurth/Röder (ISMIR 2004)
- Raphael (ISMIR 2004)
- Dixon/Widmer (ISMIR 2005)
- Müller/Mattes/Kurth (ISMIR 2006)
- Dannenberg /Raphael (Special Issue ACM 2006)
- Kurth/Müller/Fremerey/Chang/Clausen (ISMIR 2007)
- Fujihara/Goto (ICASSP 2008)
- Wang/Iskandar/New/Shenoy (IEEE-TASLP 2008)
- Ewert/Müller/Grosche (ICASSP 2009)


Music Synchronization: Audio-Audio

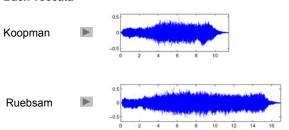
Given: Two different audio recordings of the same underlying piece of music.

Find for each position in one audio recording the musically corresponding position in the other audio recording. Goal:

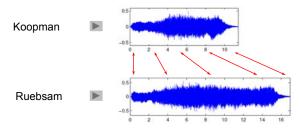

Music Synchronization: Audio-Audio

Beethoven's Fifth

Music Synchronization: Audio-Audio


Beethoven's Fifth

Synchronization: Karajan → Scherbakov ▶


Music Synchronization: Audio-Audio

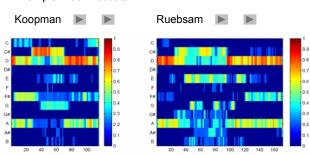
Bach Toccata

Music Synchronization: Audio-Audio

Bach Toccata

Synchronization: Koopman → Ruebsam

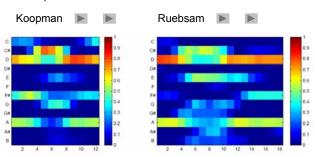
Music Synchronization: Audio-Audio


· Transformation of audio recordings into sequences of feature vectors

$$\begin{array}{ll} \leadsto & V := (v^1, v^2, \ldots, v^N) \\ \leadsto & W := (w^1, w^2, \ldots, w^M) \end{array}$$

- Fix cost measure c on the feature space
- Compute $N \times M$ cost matrix $C(n,m) := c(v^n,w^m)$
- $\ ^{\bullet}$ Compute cost-minimizing warping path from C

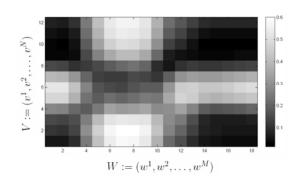
Chroma Features


Example: Bach Toccata

Feature resolution: 10 Hz

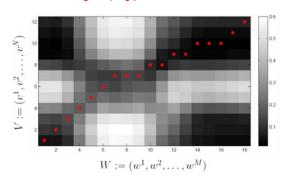
Chroma Features

Example: Bach Toccata



Feature resolution: 1 Hz

Music Synchronization: Audio-Audio


- Koopman $\leadsto V:=(v^1,v^2,\ldots,v^N)$ N=12 $\text{Ruebsam} \ \leadsto \ W:=(w^1,w^2,\ldots,w^M) \qquad M=18$
- v^n, w^m = 12-dimensional normalized chroma vectors
- Local cost measure $c: \mathbb{R}^{12} \times \mathbb{R}^{12} \to \mathbb{R}$ $c(v^n, w^m) := 1 \langle v^n, w^m \rangle$
- $N \times M$ cost matrix $C(n,m) := c(v^n,w^m)$

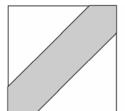
Music Synchronization: Audio-Audio

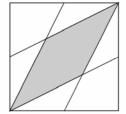
Music Synchronization: Audio-Audio

Cost-minimizing warping path

Cost-Minimizing Warping Path

- Computation via dynamic programming
 - → Dynamic Time Warping (DTW)
- Memory requirements and running time: O(NM)
- Problem: Infeasible for large N and M
- Example: Feature resolution 10 Hz, pieces 15 min

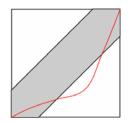

 \Rightarrow N, M ~ 10,000


 $\Rightarrow N \cdot M \sim 100,000,000$

Strategy: Global Constraints

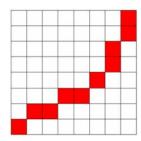
Sakoe-Chiba band

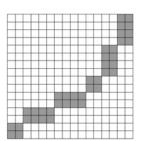
Itakura parallelogram



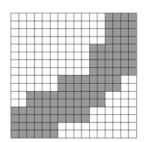
Strategy: Global Constraints

Sakoe-Chiba band

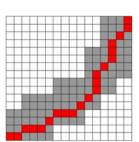

Itakura parallelogram


Problem: Optimal warping path not in constraint region

Strategy: Multiscale Approach


Compute optimal warping path on coarse level

Strategy: Multiscale Approach


Project on fine level

Strategy: Multiscale Approach

Specify constraint region

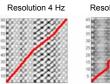
Strategy: Multiscale Approach

Compute constrained optimal warping path

Strategy: Multiscale Approach

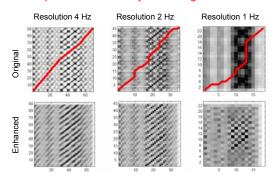
- Suitable features?
- Suitable resolution levels?
- Size of constraint regions?

Good trade-off between efficiency and robustness?


Strategy: Multiscale Approach

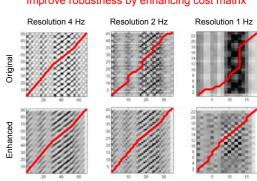
Resolution 4 Hz

Strategy: Multiscale Approach



Problem: Cost matrix may degenerate

useless warping path


Strategy: Multiscale Approach

Improve robustness by enhancing cost matrix

Strategy: Multiscale Approach

Improve robustness by enhancing cost matrix

Strategy: Multiscale Approach

Chroma features at three levels: 0.33 Hz / 1 Hz / 10 Hz

Recording 1	length [sec]	Recording 2		$t_{ m DTW}$ [sec]		[%]
Beet9Bern	1144.9	Beet9Kar	1054.8	31.18	1.08	3.46

Strategy: Multiscale Approach

Chroma features at three levels: 0.33 Hz / 1 Hz / 10 Hz

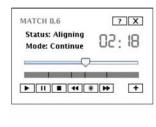
Recording 1	length [sec]	Recording 2	length [sec]	$t_{ m DTW}$ [sec]	$t_{ m MsDTW}$ [sec]	[%]
Beet9Bern	1144.9	Beet9Kar	1054.8	31.18	1.08	3.46

Number of matrix entries needed for DTW and MsDTW:

	DTW	MsDTW	%
Level 1	120,808,050	2,117,929	1.75
Level 2	1,209,030	17,657	1.46
Level 3	134,464	134,464	100

Music Synchronization: Audio-Audio

Conclusions

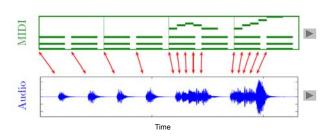

- Chroma features
- Relatively coarse but good global alignments
- Multiscale approach: simple, robust, fast

Music Synchronization: Audio-Audio

Applications

- Efficient music browsing
- Blending from one interpretation to another one
- Mixing and morphing different interpretations
- Tempo studies

System: Match (Dixon)



Argerich1965_Chopin_op15_1
Arrau1978_Chopin_op15_1
Ashkenazy1985_Chopin_ep15_1
Barenboim1981_Chopin_op15_1
Harasiewicz1961_Chopin_op15_1
Horowitz1957_Chopin_op15_1
LeonsKaja1992_Chopin_op15_1
Maisenberg1995_Chopin_op15_1
Perahia1994_Chopin_op15_1
Pires1996_Chopin_op15_1
Pics1996_Chopin_op15_1
Richter1968_Chopin_op15_1
Rubinstein1965_Chopin_op15_1

System: SyncPlayer/AudioSwitcher

Music Synchronization: MIDI-Audio

Music Synchronization: MIDI-Audio

MIDI = meta data

Automated annotation

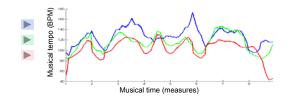
Audio recording

Sonification of annotations

Music Synchronization: MIDI-Audio

MIDI = reference (score)

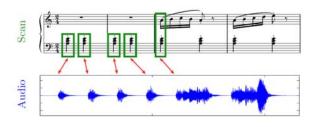
Tempo information


Audio recording

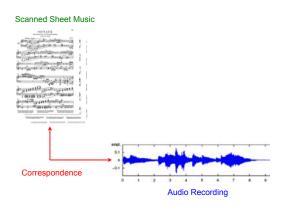
Performance Analysis: Tempo Curves

Performance Analysis: Tempo Curves

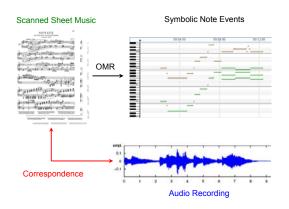
What can be done if no reference is available?

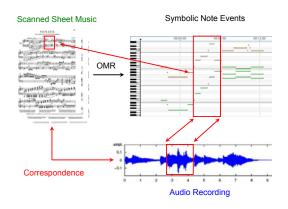


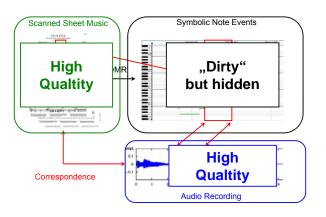
Music Synchronization: MIDI-Audio


Applications

- Automated audio annotation
- Accurate audio access after MIDI-based retrieval
- Automated tracking of MIDI note parameters during audio playback
- Performance Analysis

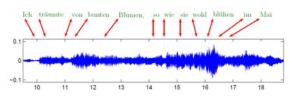

Music Synchronization: Scan-Audio


Music Synchronization: Scan-Audio


Music Synchronization: Scan-Audio

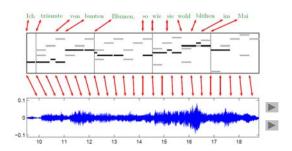
Music Synchronization: Scan-Audio

Music Synchronization: Scan-Audio



Application: Score Viewer

[ECDL 08, ICMI 08]


Music Synchronization: Lyrics-Audio

Difficult task!

Music Synchronization: Lyrics-Audio

Lyrics-Audio → Lyrics-MIDI + MIDI-Audio

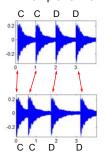
System: SyncPlayer/LyricsSeeker

High-Resolution Music Synchronization

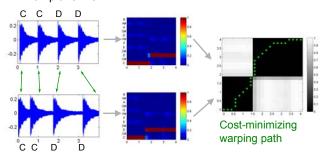
- Normalized chroma features
 - → robust to changes in instrumentation and dynamics
 - → robust synchronization of reasonable overall quality
- Drawback: low temporal alignment accuracy
- Idea: Integration of note onset information

High-Resolution Music Synchronization

- Normalized chroma features
 - → robust to changes in instrumentation and dynamics
 - → robust synchronization of reasonable overall quality
- Drawback: low temporal alignment accuracy
- Idea: Integration of note onset information
- Example: MIDI-Audio synchronization


Chroma-Chroma:
Chroma-Chroma + onset information:

>


High-Resolution Music Synchronization

Example: C - C - D - D

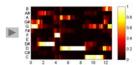
High-Resolution Music Synchronization

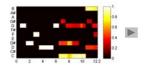
Example: C - C - D - D

High-Resolution Music Synchronization Example: C - C - D - D C C D D Musically correct warping path Cost-minimizing warping path

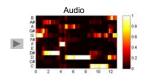
High-Resolution Music Synchronization Example: C - C - D - D C C D D Musically correct warping path Cost-minimizing

Problem: note onsets are not captured in feature representation


High-Resolution Music Synchronization


Example: Beethoven's Fifth

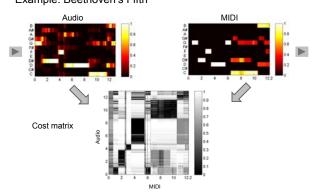
Chroma representations



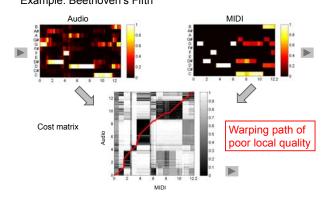
Problem: note onsets are not captured in feature representation

High-Resolution Music Synchronization

Example: Beethoven's Fifth

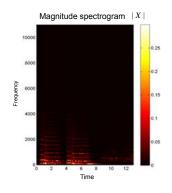


warping path


High-Resolution Music Synchronization

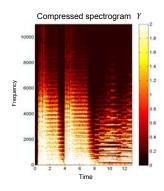
Example: Beethoven's Fifth

High-Resolution Music Synchronization


Example: Beethoven's Fifth

Onset Detection

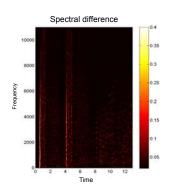
- General goal: Detection of onsets of musical notes
- Typical signal properties at note onset positions:
 - increase in energy
 - change of pitch
 - change of spectral content
 - high frequency content
- Idea: locate note onset candidates by measuring changes in spectral content


Onset Detection

Steps:

1. Spectrogram

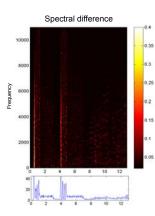
Onset Detection


Steps:

- 1. Spectrogram
- 2. Logarithmic compression

$$Y = \log(1 + C \cdot |X|)$$

- human sensation
- enhances low intensity values
- high frequency content
- reduces influence of amplitude modulation


Onset Detection

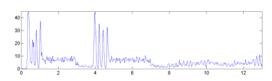
Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- energy increase to be captured
 only positive values considered

Onset Detection

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation

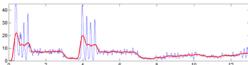

Novelty Curve

Onset Detection

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation

Novelty Curve

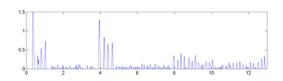

Onset Detection

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation
- 5. Normalization

Novelty Curve

Substraction of local average

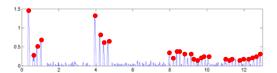


Onset Detection

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation
- 5. Normalization

Normalized novelty curve

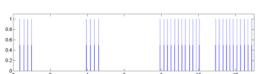

Onset Detection

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation
- 5. Normalization

Normalized novelty curve

6. Peak picking

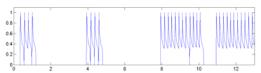


Onset Detection

Steps:

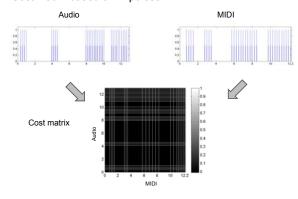
- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation
- 5. Normalization
- 6. Peak picking

Impulses

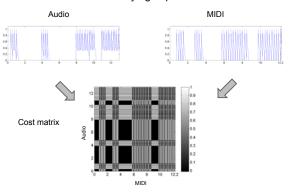


Onset Detection

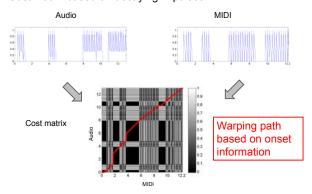
Decaying impulses


Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation
- Normalization
- 6. Peak picking
- Decay Filter


High-Resolution Music Synchronization

Cost matrix based on impulses


High-Resolution Music Synchronization

Cost matrix based on decaying impulses

High-Resolution Music Synchronization

Cost matrix based on decaying impulses

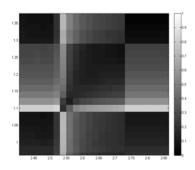
High-Resolution Music Synchronization

Ideas:

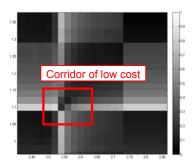
- Build up cost matrix with corridors of low cost
- Decaying strategy enforce corridor structure
- Each corridor corresponds to MIDI-audio pair of note onset candidates
- Warping path tends to run through corridors of low cost
 - → note onset positions are likely to be aligned

High-Resolution Music Synchronization

Impulses



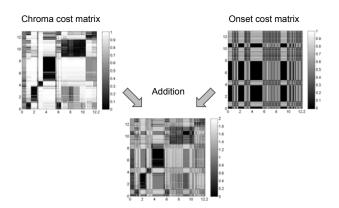
Decaying impulses


High-Resolution Music Synchronization

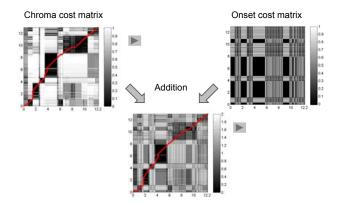
Cost matrix for decaying impulses

High-Resolution Music Synchronization

Cost matrix for decaying impulses



High-Resolution Music Synchronization


Combination of two different types of cost matrices:

- Cost matrix obtained from chroma features controls the global course of warping path
 - → robust synchronization
- Cost matrix obtained from onset information controls the local course of warping path
 - $\rightarrow \text{accurate alignment}$

High-Resolution Music Synchronization

High-Resolution Music Synchronization

Conclusions: Music Synchronization

Various requirements

- Efficiency
- Robustness
- Accuracy
- Variablity of music

Conclusions: Music Synchronization

Combination of various strategies

- Feature level
- Local cost measure level
- Global alignment level
- Evidence pooling using competing strategies

Conclusions: Music Synchronization

Offline vs. Online

- Online version: Dixon/Widmer (ISMIR 2005)
- Hidden Markov Models: Raphael (ISMIR 2004)
- Score-following
- Automatic accompaniment

Conclusions: Music Synchronization

Presence of variations

- Instrumentation
- Musical structure
- Polyphony
- Musical key
- ..