



Lecture

#### **Music Processing**

### **Signals and Fourier Transform**

#### **Meinard Müller**

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

#### Signals

Sinusoidal



### Signals

 $f(t) = A\sin(2\pi(\omega t - \varphi))$  for  $t \in [0, 2]$ Sinusoidal  $A = 1, \ \omega = 1, \ \varphi = 0$  $A = 1, \ \omega = 3, \ \varphi = 0$ 1 0 0 1  $A = 1.4, \, \omega = 1, \, \varphi = 0.25$  $A = 0.8, \omega = 3, \varphi = 0.5$ 1 1 0 0 -1 -1 0.5 0 0.5 1.5 0 1.5 1 1 2

### Signals



# Signals

#### Chirp signal



# Sampling

#### Original CT signal



# Sampling

#### **Original CT signal**

#### DT signal sampled with 50 Hz



### Sampling

#### **Original CT signal**

#### DT signal sampled with 32 Hz



# Sampling

#### **Original CT signal**

#### DT signal sampled with 16 Hz



### Sampling

#### **Original CT signal**

#### DT signal sampled with 10 Hz



# Signals

#### Superposition



# **Fourier Transform**

| Signal space                        | $L^2(\mathbb{R})$                                                                   | $L^{2}([0, 1])$                                                                         | $\ell^2(\mathbb{Z})$                                                                    |
|-------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Inner product                       | $\langle f   g \rangle = \int\limits_{t \in \mathbb{R}} f(t) \overline{g(t)} dt$    | $\langle f g\rangle = \int\limits_{t\in[0,1]} f(t)\overline{g(t)}dt$                    | $\langle f g \rangle = \sum_{n \in \mathbb{Z}} x(n) \overline{y(n)}$                    |
| Norm                                | $\ f\ _2 = \langle f f\rangle^{\frac{1}{2}}$                                        | $\ f\ _2 = \langle f f\rangle^{\frac{1}{2}}$                                            | $\ x\ _2 = \langle x x\rangle^{\frac{1}{2}}$                                            |
| Definition                          | $L^2(\mathbb{R}) := \{f: \mathbb{R} 	o \mathbb{C} \mid \ f\ _2 < \infty\}$          | $L^2([0,1]) :=$<br>$\{f: [0,1] \to \mathbb{C} \mid   f  _2 < \infty\}$                  | $L^2(\mathbb{Z}) :=$<br>$\{f: \mathbb{Z} \to \mathbb{C} \mid \ x\ _2 < \infty\}$        |
| Elementary<br>frequency<br>function | $\mathbb{R} 	o \mathbb{C}$<br>$t \mapsto e^{2\pi i \omega t}$                       | $egin{array}{lll} [0,1] & ightarrow \mathbb{C} \ t &\mapsto e^{2\pi i k t} \end{array}$ | $egin{array}{lll} \mathbb{Z} 	o \mathbb{C} \ n \mapsto e^{2\pi i \omega n} \end{array}$ |
| Frequency<br>parameter              | $\omega \in \mathbb{R}$                                                             | $k\in\mathbb{Z}$                                                                        | $\omega \in [0,1]$                                                                      |
| Fourier<br>representation           | $f(t) = \int\limits_{\omega \in \mathbb{R}} c_{\omega} e^{2\pi i \omega t} d\omega$ | $f(t) = \sum_{k \in \mathbb{Z}} c_k e^{2\pi i k t}$                                     | $x(n) = \int_{\omega \in [0,1]} c_{\omega} e^{2\pi i \omega n} d\omega$                 |
|                                     | $\widehat{f}:\mathbb{R} ightarrow\mathbb{C}$                                        | $\hat{f}:\mathbb{Z} ightarrow\mathbb{C}$                                                | $\hat{x}:[0,1] ightarrow\mathbb{C}$                                                     |
| Fourier<br>transform                | $\widehat{f}(\omega) = \int\limits_{t \in \mathbb{R}} f(t) e^{-2\pi i \omega t} dt$ | $\widehat{f}(k) = \int\limits_{t \in [0,1]} f(t) e^{-2\pi i k t} dt$                    | $\hat{x}(\omega) = \sum_{n \in \mathbb{Z}} x(n) e^{-2\pi i \omega n}$                   |
|                                     | $c_{\omega} = \hat{f}(\omega)$                                                      | $c_k = \hat{f}(k)$                                                                      | $c_{\omega} = \hat{x}(\omega)$                                                          |



**Fourier Transform** 





#### **Fourier Transform**



Box function



#### **Fourier Transform**

Box function (translated)









#### **Fourier Transform**

Dirac sequence





#### **Discrete Fourier Transform (DFT)**



#### Discrete Fourier Transform (DFT)

 $v(k) = f(Tk), \quad k \in [0:N-1], \quad \hat{v} = \mathrm{DFT}_N(v)$ 



# Fast Fourier Transform (FFT)

$$N = 2M$$

$$\mathrm{DFT}_{N} \cdot \begin{pmatrix} v_{0} \\ v_{1} \\ \vdots \\ v_{N-1} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathrm{id}_{M} & \Delta_{M} \\ \mathrm{id}_{M} & -\Delta_{M} \end{pmatrix} \begin{pmatrix} \mathrm{DFT}_{M} & 0 \\ 0 & \mathrm{DFT}_{M} \end{pmatrix} \begin{pmatrix} v_{0} \\ v_{2} \\ \vdots \\ v_{N-2} \\ \hline v_{1} \\ v_{3} \\ \vdots \\ v_{N-1} \end{pmatrix}$$

$$\operatorname{id}_M = \operatorname{diag}\left(1, 1, \ldots, 1\right)$$

$$\Delta_M = \operatorname{diag}\left(1, \Omega_N, \dots, \Omega_N^{M-1}\right)$$