Music Processing

Meinard Müller
University of Erlangen-Nuremberg International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Dynamic Time Warping (DTW)

Solution to Problem 1

\qquad

$$
\operatorname{DTW}(X, Y)=3, \quad \operatorname{DTW}(X, Z)=3, \quad \operatorname{DTW}(Y, Z)=3
$$

Solution to Problem 2

$$
C=\left(\begin{array}{llll}
5 & 4 & 4 & 1 \\
3 & 2 & 2 & 3 \\
3 & 2 & 2 & 3 \\
6 & 5 & 5 & 0 \\
0 & 1 & 1 & 6
\end{array}\right) \quad D=\left(\begin{array}{cccc}
17 & 13 & 13 & 9 \\
12 & 9 & 9 & 8 \\
9 & 7 & 7 & 5 \\
6 & 5 & 6 & 2 \\
0 & 1 & 2 & 8
\end{array}\right)
$$

An optimal warping path is given by

$$
((1,1),(1,2),(1,3),(2,4),(3,4),(4,4),(5,4))
$$

There is no other optimal warping path.

Solution to Problem 3

\qquad
Let $X=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ and $Y=\left(y_{1}, y_{2}, \ldots, y_{M}\right)$ be two arbitrary sequences over \mathcal{F}. Furthermore, let $p=\left(p_{1}, \ldots, p_{L}\right)$ with $p_{\ell}=\left(n_{\ell}, m_{\ell}\right) \in[1: N] \times[1: M], \ell \in[1: L]$, be a warping path between X and Y with total cost

$$
c_{p}(X, Y):=\sum_{\ell=1}^{L} c\left(x_{n_{\ell}}, y_{m_{\ell}}\right)
$$

We define a path $q=\left(q_{1}, \ldots, q_{L}\right)$ by $q_{\ell}:=\left(m_{\ell}, n_{\ell}\right) \in[1: M] \times[1: N]$. Obviously, q defines a warping path between Y and X. Furthermore, because of the symmetry of c, one has $c_{q}(Y, X)=$ $c_{p}(X, Y)$. It follows that q is an optimal warping path between Y and X if and only if p is an optimal warping path between X and Y. Hence, DTW $(X, Y)=\operatorname{DTW}(Y, X)$.

Let $\mathcal{F}=\{\alpha, \beta, \gamma\}$ and $c: \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{R}_{\geq 0}$ defined by $c(x, y):=1-\delta_{x y}$. Furthermore, let $X=\alpha \beta \gamma$, $Y=\alpha \beta \beta \gamma$ and $Z=\alpha \gamma \gamma$. Then $\operatorname{DTW}(X, Y)=\operatorname{DTW}(Y, X)=0, \operatorname{DTW}(X, Z)=1$ and

$$
\operatorname{DTW}(Y, Z)=2>1=\operatorname{DTW}(Y, X)+\operatorname{DTW}(X, Z) .
$$

Hence, the triangular inequality is violated.

Solution to Problem 4

Let L_{k} be the length of the warping path at level k between the sequences X_{k} and Y_{k} each having length $2^{n-k+1}, 1 \leq k \leq n$. Then,

$$
L_{k} \leq 2 \cdot 2^{n-k+1}=2^{n-k+2}
$$

i. e., $L_{1} \leq 2 N, L_{2} \leq 2(N / 2)=N$, and so on. Then the following holds:

$$
\begin{aligned}
A^{\mathrm{MsDTW}}(N) & =A^{\mathrm{MsDTW}}\left(\frac{N}{2}\right)+f_{1}^{2} \cdot L_{2} \\
& \leq A^{\operatorname{MsDTW}}\left(\frac{N}{2}\right)+4 \cdot N \\
& =A^{\operatorname{MsDTW}}\left(\frac{N}{2^{2}}\right)+f_{2}^{2} \cdot L_{3}+4 \cdot N \\
& \leq A^{\operatorname{MsDTW}}\left(\frac{N}{2^{2}}\right)+4 \cdot\left(\frac{N}{2}\right)+4 \cdot N \\
& \leq \cdots \\
& \leq A^{\operatorname{MsDTW}}\left(\frac{N}{2^{n-1}}\right)+4 \cdot\left(\frac{N}{2^{n-2}}\right) \ldots+4 \cdot\left(\frac{N}{2^{2}}\right)+4 \cdot\left(\frac{N}{2}\right)+4 \cdot N \\
& \leq A^{\mathrm{DTW}}(2)+4 \cdot\left(4+\ldots+2^{n-2}+2^{n-1}+2^{n}\right) \\
& \leq 4 \cdot \sum_{k=0}^{n} 2^{k} \\
& \leq 4 \cdot 2^{n+1} \\
& =8 N
\end{aligned}
$$

The last inequality can be shown easily via induction.

