Music Processing

Meinard Müller
University of Erlangen-Nuremberg International Audio Laboratories Erlangen
meinard.mueller@audiolabs-erlangen.de

Dynamic Time Warping (DTW)

Problem 1

Let $\mathcal{F}=\{\alpha, \beta, \gamma\}$ be a feature space. Furthermore, let $c: \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{R}_{\geq 0}$ be local cost measure defined by

$$
c(x, y):=1-\delta_{x y}= \begin{cases}0 & \text { falls } x=y, \\ 1 & \text { falls } x \neq y,\end{cases}
$$

for $x, y \in \mathcal{F}$. Specify the DTW distances $\operatorname{DTW}(X, Y), \operatorname{DTW}(X, Z)$ und DTW (Y, Z) for the following sequences:

$$
X=\alpha \beta \gamma \alpha \beta \gamma, \quad Y=\gamma \alpha \beta, \quad Z=\alpha \alpha \gamma \alpha .
$$

Problem 2

Let $F=\mathbb{R}$ be a feature space and $c: \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{R}_{\geq 0}$ the local cost measure defined by $c(x, y)=|x-y|$, $x, y \in \mathbb{R}$. Furthermore, let $X=(1,7,4,4,6)$ and $Y=(1,2,2,7)$. Execute the algorithm by hand as described in the lecture for computing $\operatorname{DTW}(X, Y)$. In particular, specify the cost matrix C and the accumulated cost matrix D. Furthermore, specify an optimal warping path. Is there another optimal warping path?

Problem 3

\qquad
Let \mathcal{F} be a feature space and $c: \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{R}_{\geq 0}$ be a symmetric local cost measure, i. e., $c(x, y)=$ $c(y, x)$ for all $x, y \in \mathcal{F}$. Show that in this case the DTW distance is symmetric as well. Furthermore, show that the DTW distance generally does not satisfy the triangle inequality.

Problem 4

In this problem, the multiscale approach for DTW (MsDTW) is to be analyzed in more detail. Let $X=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ and $Y=\left(y_{1}, y_{2}, \ldots, y_{M}\right)$ be sequences of length N and M. For simplicity, we assume that $N=M=2^{n}$ for a natural number $n \in \mathbb{N}$. Let $A^{\text {DTW }}(N)=N^{2}$ denote the number of evaluations of the local cost measure that are required in the classical DTW algorithm.

In the following, we assume that the MsDTW-approach is performed recursively with $f_{1}=f_{2}=$ $\ldots=f_{n}=2$. Let $A^{\operatorname{MsDTW}}(N)$ denote the number of evaluations of the local cost measure that are required in the MsDTW algorithm. Specify a possibly small upper bound for $A^{\operatorname{MsDTW}}(N)$. What can be said about the memory requirements?
(Note: In the analysis, the operations required for computing the coarsened sequences $X_{1}, X_{2}, \ldots, X_{n}$ und $Y_{1}, Y_{2}, \ldots, Y_{n}$ are left unconsidered.)

