Music Processing

Meinard Müller

University of Erlangen-Nuremberg International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Dynamic Time Warping (DTW)

D.	no.	h	lem	1
\mathbf{P}	r()	n	em	

Let $\mathcal{F} = \{\alpha, \beta, \gamma\}$ be a feature space. Furthermore, let $c : \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{\geq 0}$ be local cost measure defined by

$$c(x,y) := 1 - \delta_{xy} = \begin{cases} 0 & \text{falls } x = y, \\ 1 & \text{falls } x \neq y, \end{cases}$$

for $x, y \in \mathcal{F}$. Specify the DTW distances $\mathrm{DTW}(X, Y)$, $\mathrm{DTW}(X, Z)$ und $\mathrm{DTW}(Y, Z)$ for the following sequences:

$$X = \alpha \beta \gamma \alpha \beta \gamma$$
, $Y = \gamma \alpha \beta$, $Z = \alpha \alpha \gamma \alpha$.

Problem 2

Let $F = \mathbb{R}$ be a feature space and $c : \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{\geq 0}$ the local cost measure defined by c(x,y) = |x-y|, $x,y \in \mathbb{R}$. Furthermore, let X = (1,7,4,4,6) and Y = (1,2,2,7). Execute the algorithm by hand as described in the lecture for computing DTW(X,Y). In particular, specify the cost matrix C and the accumulated cost matrix D. Furthermore, specify an optimal warping path. Is there another optimal warping path?

Problem 3_

Let \mathcal{F} be a feature space and $c: \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{\geq 0}$ be a symmetric local cost measure, i. e., c(x,y) = c(y,x) for all $x,y \in \mathcal{F}$. Show that in this case the DTW distance is symmetric as well. Furthermore, show that the DTW distance generally does not satisfy the triangle inequality.

Problem 4

In this problem, the multiscale approach for DTW (MsDTW) is to be analyzed in more detail. Let $X = (x_1, x_2, \ldots, x_N)$ and $Y = (y_1, y_2, \ldots, y_M)$ be sequences of length N and M. For simplicity, we assume that $N = M = 2^n$ for a natural number $n \in \mathbb{N}$. Let $A^{\text{DTW}}(N) = N^2$ denote the number of evaluations of the local cost measure that are required in the classical DTW algorithm.

In the following, we assume that the MsDTW-approach is performed recursively with $f_1 = f_2 = \dots = f_n = 2$. Let $A^{\text{MsDTW}}(N)$ denote the number of evaluations of the local cost measure that are required in the MsDTW algorithm. Specify a possibly small upper bound for $A^{\text{MsDTW}}(N)$. What can be said about the memory requirements?

(Note: In the analysis, the operations required for computing the coarsened sequences X_1, X_2, \dots, X_n und Y_1, Y_2, \dots, Y_n are left unconsidered.)