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Music Retrieval

 Textual metadata
– Traditional retrieval

– Searching for artist, title, …

 Rich and expressive metadata
– Generated by experts

– Crowd tagging, social networks

 Content-based retrieval
– Automatic generation of tags

– Query-by-example



Query-by-Example

Query

Audio identification

Audio matching

Version identification

Category-based music retrieval

Retrieval tasks:

Database

Hits

Bernstein (1962) 
Beethoven, Symphony No. 5

Beethoven, Symphony No. 5:
 Bernstein (1962) 
 Karajan (1982) 
 Gould (1992)

 Beethoven, Symphony No. 9
 Beethoven, Symphony No. 3
 Haydn Symphony No. 94

Query-by-Example

Audio identification

Audio matching

Version identification

Category-based music retrieval

Retrieval tasks:

High
specificity

Low
specificity

Fragment-based 
retrieval 

Document-based 
retrieval

Specificity
level

Granularity
level

Taxonomy



Overview (Audio Retrieval)

 Audio identification
(audio fingerprinting)

 Audio matching

 Cover song identification
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Audio Identification

Database: Huge collection consisting of all audio

recordings (feature representations) to be

potentially identified.

Goal: Given a short query audio fragment, identify

the original audio recording the query is taken

from.

Notes:  Instance of fragment-based retrieval

 High specificity

 Not the piece of music is identified but a
specific rendition of the piece

Application Scenario

 User hears music playing in the environment

 User records music fragment (5-15 seconds) with mobile 
phone

 Audio fingerprints are extracted from the recording 
and sent to an audio identification service

 Service identifies audio recording based on fingerprints

 Service sends back metadata (track title, artist) to user



Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes some specific audio content.

Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Ability to accurately identify an 
item within a huge number of 
other items
(informative, characteristic)

 Low probability of false positives

 Recorded query excerpt
only a few seconds

 Large audio collection on the
server side (millions of songs)



Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Recorded query may be 
distorted and superimposed with 
other audio sources

 Background noise

 Pitching
(audio played faster or slower)

 Equalization

 Compression artifacts

 Cropping, framing

 …

Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Reduction of complex
multimedia objects

 Reduction of dimensionality

 Making indexing feasible

 Allowing for fast search



Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Computational efficiency

 Extraction of fingerprint should 
be simple

 Size of fingerprints should be 
small

Literature (Audio Identification)

 Allamanche et al. (AES 2001)

 Cano et al. (AES 2002)

 Haitsma/Kalker (ISMIR 2002)

 Kurth/Clausen/Ribbrock (AES 2002)

 Wang (ISMIR 2003)

 Dupraz/Richard (ICASSP 2010)

 Ramona/Peeters (ICASSP 2011)

…
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Fingerprints (Shazam) 
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 Efficiently computable

 Standard transform

 Robust
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equalization
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room acoustics, 
equalization

 Audio codec

 Superposition 
of other audio 
sources

Robustness:

1. Spectrogram

2. Peaks / differing peaks



Matching Fingerprints (Shazam) 
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Matching Fingerprints (Shazam) 
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Matching Fingerprints (Shazam) 
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1. Shift query across 
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2. Count matching peaks
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 Index the fingerprints using hash lists

 Hashes correspond  to (quantized) frequencies
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Indexing (Shazam) 

 Index the fingerprints using hash lists

 Hashes correspond  to (quantized) frequencies

 Hash list consists of time positions
(and document IDs) 

 N =  number of spectral peaks

 B =  #(bits) used to encode spectral peaks

 2B         =  number of hash lists 

 N / 2B = average number of elements per list

Problem:

 Individual peaks are not characteristic

 Hash lists may be very long

 Not suitable for indexing
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List to Hash 1:

Indexing (Shazam) 
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1. Peaks

2. Fix anchor point

3. Define target zone

4. Use paris of points

5. Use every point as 
anchor point



Indexing (Shazam) 
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Idea: Use pairs of peaks to increase specificity of hashes

New hash:

1. Peaks

2. Fix anchor point

3. Define target zone

4. Use paris of points

5. Use every point as 
anchor point

Consists of two frequency
values and a time difference:

(     ,     ,      )

f1

f2

∆t

f1 f2 ∆t

Indexing (Shazam)

 A hash is formed between an anchor point and each 
point in the target zone using two frequency values 
and a time difference.

 Fan-out (taking pairs of peaks) may cause a 
combinatorial explosion in the number of tokens. 
However, this can be controlled by the size of the 
target zone.

 Using more complex hashes increases specificity 
(leading to much smaller hash lists) and speed 
(making the retrieval much faster).



Indexing (Shazam)

Definitions:

 N = number of spectral peaks

 p = probability that a spectral peak can be found in (noisy and distorted) query

 F = fan-out of target zone, e. g. F = 10

 B = #(bits) used to encode spectral peaks and time difference

Consequences:

 F · N            =  #(tokens) to be indexed

 2B+B =  increase of specifity  (2B+B+B instead of 2B)

 p2 =  propability of a hash to survive

 p·(1-(1-p)F)  =  probability that, at least, on hash survives per anchor point

Example:  F = 10 and B = 10

 Memory requirements:      F · N = 10 · N

 Speedup factor:   2B+B / F2 ~ 106 / 102 = 10000 
(F times as many tokens in query and database, respectively)

Conclusions (Shazam)

Many parameters to choose:

 Temporal and spectral resolution in spectrogram

 Peak picking strategy

 Target zone and fan-out parameter

 Hash function

 …



Literature (Audio Identification)

 Allamanche et al. (AES 2001)

 Cano et al. (AES 2002)

 Haitsma/Kalker (ISMIR 2002)

 Kurth/Clausen/Ribbrock (AES 2002)

 Wang (ISMIR 2003)

 Dupraz/Richard (ICASSP 2010)

 Ramona/Peeters (ICASSP 2011)

…
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Steps:
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 Coarse temporal resolution

 Large overlap of windows

 Robust to temporal distortion
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 300 – 2000 Hz
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(perceptually)
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1. Spectrogram
(long window)

2. Consider limited 
frequency range
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 300 – 2000 Hz

 Most relevant spectral range 
(perceptually)

 33 bands (roughly bark scale)

 Coarse frequency resolution

 Robust to spectral distortions

Time (seconds)

Fingerprints (Philips)

1. Spectrogram
(long window)

2. Consider limited 
frequency range

3. Log-frequency 
(Bark scale)
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 Local thresholding

 Sign of energy difference
(simultanously along time 
and frequency axes)

 Sequence of 32-bit vectors
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1. Spectrogram
(long window)

2. Consider limited 
frequency range

3. Log-frequency 
(Bark scale)

4. Binarization
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Matching Fingerprints (Philips) 
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Matching Fingerprints (Philips) 
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1. Shift query across 
database document

2. Calculate a block-wise
bit-error-rate (BER) 

3. Low BER indicates hit
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Indexing (Philips) 

 Computation of BER between query fingerprint-block 
and every database fingerprint-block is expensive

 Chance that a complete fingerprint-block survives is low

 Exact hashing problematic

Note:

Problem:

 Individual sub-fingerprints (32 bit) are not characteristic

 Fingerprint blocks (256 sub-fingerprints, 8 kbit) are used

Strategy:  Only sub-fingerprints are indexed using hashing 

 Exact sub-fingerprint matches are used to identify 
candidate fingerprint-blocks in database. 

 BER is only computed between query fingerprint-block 
and candidate fingerprint-blocks

 Procedure is terminated when database fingerprint-block 
is found, where BER falls below a certain threshold 



Indexing (Philips) 

1. Efficient search for  
exact matches of 
sub-fingerprints 
(anchor points)
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Indexing (Philips) 

1. Efficient search for  
exact matches of 
sub-fingerprints 
(anchor points)

2. Calculate BER 
only for blocks 
containing anchor 
pointsIn
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Database document 
(fingerprint-blocks)

Query document
(fingerprint-block)



Conclusions (Philips) 

 Comparing binary fingerprint-blocks expressing 
tempo-spectral changes

 Usage of some sort of shingling technique

→  see [Casey et al. 2008, IEEE-TASLP] for a similar
approach applied to a more general retrieval task

 Acceleration using hash-based search for 
anchor-points (sub-fingerprints)

 Concepts of fault tolereance are required to increase robustness

 Susceptible to distortions in specific  frequency bands 
(e. g. equalization) or to superpositions with other sources

Conclusions (Audio Identification)

 Basic techniques used in Shazam and Philip systems

 Many more ways to define robust audio fingerprints

 Delicate trade-off between specificity, robustness, and efficiency

 Audio recording is identified (not a piece of music)

 Does not allow for identifying studio recording using 
a query taken from live recordings

 Does not generalize to identify different 
interpretations or versions of the same piece of music



Overview (Audio Retrieval)

 Audio identification
(audio fingerprinting)

 Audio matching

 Cover song identification

Audio Matching

Database: Audio collection containing:
 Several recordings of the same piece of music

 Different interpretations by various musicians

 Arrangements in different instrumentations

Goal: Given a short query audio fragment, find all

corresponding audio fragments of similar 

musical content.

Notes:  Instance of fragment-based retrieval

 Medium specificity

 A single document may contain several hits

 Cross-modal retrieval also feasible



Bernstein

Karajan

Scherbakov (piano)

MIDI (piano)

Audio Matching

Beethoven’s Fifth

Various interpretations  

Application Scenario

Content-based retrieval



Application Scenario

Cross-modal retrieval

Literature (Audio Matching)

 Pickens et al. (ISMIR 2002)

 Müller/Kurth/Clausen (ISMIR 2005)

 Suyoto et al. (IEEE TASLP 2008)

 Casey et al. (IEEE TASLP 2008)

 Kurth/Müller (IEEE TASLP 2008)

 Yu et al. (ACM MM 2010)

…



Audio Matching

Two main ingredients:

 Robust but discriminating
 Chroma-based features
 Correlate to harmonic progression
 Robust to variations in dynamics, timbre, articulation, local tempo

1.)  Audio features

 Efficient
 Robust to local and global tempo variations
 Scalable using index structure

2.)   Matching procedure 

Audio Features

Example: Chromatic scale
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Audio Features

Example: Chromatic scale
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Audio Features

Example: Chromatic scale
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Audio Features

Example: Chromatic scale
M

ID
I 

pi
tc

h 
 

In
te

ns
ity

 (
dB

) 
 

Log-frequency spectrogram

Time (seconds)

Audio Features

Example: Chromatic scale

C
hr

om
a

In
te

ns
ity

 (
dB

) 
 

Chroma representation

Time (seconds)



Audio Features

Example: Chromatic scale
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Chroma representation (normalized, Euclidean)
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 Pitches are perceived as related (harmonically similar) 
if they differ by an octave

 Idea: through away information which is difficult to 
estimate and not so important for harmonic analysis

 Separation of pitch into two components: 
tone height (octave number) and chroma

 Chroma: 12 traditional pitch classes of the equal-
tempered scale. For example:

Chroma C

 Computation: pitch features  chroma features

Add up all pitches belonging to the same class

 Result: 12-dimensional chroma vector

Audio Features



Audio Features
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Example: Beethoven’s Fifth

Karajan Scherbakov

Chroma representation (normalized, 10 Hz)

Audio Features
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Example: Beethoven’s Fifth

Karajan Scherbakov

Smoothing (2 seconds) + downsampling (factor 5)
Chroma representation (normalized, 2 Hz)



Audio Features

Time (seconds) Time (seconds)
Time (seconds) Time (seconds)

Example: Beethoven’s Fifth

Karajan Scherbakov

Smoothing (4 seconds) + downsampling (factor 10)
Chroma representation (normalized, 1 Hz)

Matching Procedure

Compute chroma feature sequences

 Database

 Query

 N very large (database size), M small (query size)

Matching curve



Matching Procedure

Query

DB

Bach Beethoven/Bernstein Shostakovich
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Beethoven/Sawallisch
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Matching Procedure

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Query: Beethoven’s Fifth / Bernstein (first 20 seconds)

Matching curve

Time (seconds)

Matching Procedure

Query: Beethoven’s Fifth / Bernstein (first 20 seconds)

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

1 2 5 3 4 6 7Hits

Matching curve

Time (seconds)



Matching Procedure

Time (seconds)

Problem: How to deal with tempo differences?

Karajan is much 
faster then Bernstein!

Matching curve does not indicate any hits!

Beethoven/Karajan

Matching Procedure
1. Strategy: Usage of local warping 

Karajan is much 
faster then Bernstein!

Beethoven/Karajan

Warping strategies 
are computationally 
expensive and hard 
for indexing.

Time (seconds)



Matching Procedure
2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)

Matching Procedure
2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)



Matching Procedure
2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)

Matching Procedure
2. Strategy: Usage of multiple scaling

Query resampling simulates tempo changes

Beethoven/Karajan

Time (seconds)



Matching Procedure
2. Strategy: Usage of multiple scaling

Minimize over all curves

Beethoven/Karajan

Query resampling simulates tempo changes

Time (seconds)

Matching Procedure
2. Strategy: Usage of multiple scaling

Minimize over all curves

Beethoven/Karajan

Query resampling simulates tempo changes

Resulting curve is similar warping curve

Time (seconds)



Experiments

 Audio database  ≈ 110 hours, 16.5 GB

 Preprocessing    → chroma features, 40.3 MB

 Query clip           ≈    20 seconds

 Retrieval time     ≈ 10 seconds            (using MATLAB)

Experiments

Rank Piece Position

1 Beethoven‘s Fifth/Bernstein 0 - 21

2 Beethoven‘s Fifth/Bernstein 101- 122

3 Beethoven‘s Fifth/Karajan 86 - 103

10 Beethoven‘s Fifth/Karajan 252 - 271

11 Beethoven (Liszt) Fifth/Scherbakov 0 - 19

12 Beethoven‘s Fifth/Sawallisch 275 - 296

13 Beethoven (Liszt) Fifth/Scherbakov 86 - 103

14 Schumann Op. 97,1/Levine 28 - 43

Query: Beethoven’s Fifth / Bernstein (first 20 seconds)

…
…

…
…

…
…

…
…



Experiments

Shostakovich/Chailly Shostakovich/Yablonsky

Time (seconds)

Query: Shostakovich, Waltz / Chailly (first 21 seconds)

Expected hits

Experiments

Rank Piece Position

1 Shostakovich/Chailly 0 - 21

2 Shostakovich/Chailly 41- 60

3 Shostakovich/Chailly 180 - 198

4 Shostakovich/Yablonsky 1 - 19

5 Shostakovich/Yablonsky 36 - 52

6 Shostakovich/Yablonsky 156 - 174

7 Shostakovich/Chailly 144 - 162

8 Bach BWV 582/Chorzempa 358 - 373

9 Beethoven Op. 37,1/Toscanini 12 - 28

10 Beethoven Op. 37,1/Pollini 202 - 218

Query: Shostakovich, Waltz / Chailly (first 21 seconds)



Indexing

 Matching procedure is linear in size of database

 Retrieval time was 10 seconds for 110 hours of audio

→  Much too slow

→  Does not scale to millions of songs

→  Need of indexing methods

Indexing

 Convert database into feature sequence (chroma)

 Quantize features with respect to a fixed codebook

 Create an inverted file index
– contains for each codebook vector an inverted list

– each list contains feature indices in ascending order

General procedure

[Kurth/Müller, IEEE-TASLP 2008]



Indexing

Visualization (3D)

Quantization

 Feature space

Indexing

 Feature space

 Codebook selection
of suitable size R

 Quantization using nearest neighbors

Quantization



Indexing

 Codebook selection by unsupervised learning
– Linde–Buzo–Gray (LBG) algorithm

– similar to k-means

– adjust algorithm to spheres

 Codebook selection based on musical knowledge

How to derive a good codebook?

Indexing

LBG algorithm
Steps:

1. Initialization of
codebook vectors

2. Assignment

3. Recalculation

4. Iteration (back to 2.)
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Indexing

LBG algorithm
Steps:

1. Initialization of
codebook vectors

2. Assignment
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4. Iteration (back to 2.)
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LBG algorithm
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Indexing

LBG algorithm
Steps:

1. Initialization of
codebook vectors

2. Assignment

3. Recalculation

4. Iteration (back to 2.)

Until convergence

Indexing

LBG algorithm for spheres

 Example: 2D

 Assignment

 Recalculation

 Projection
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LBG algorithm for spheres

 Example: 2D
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 Recalculation

 Projection

Indexing

LBG algorithm for spheres

 Example: 2D

 Assignment

 Recalculation

 Projection



Indexing

LBG algorithm for spheres

 Example: 2D

 Assignment

 Recalculation

 Projection

Indexing

Codebook using musical knowledge

 Observation: Chroma features capture
harmonic information

 Example: C-Major

 Example: C#-Major 

 Experiments: For more then 95% of all chroma features
>50% of energy lies in at most 4 components



n 1 2 3 4

template

# 12 66 220 495 793

Indexing

Codebook using musical knowledge

 C-Major 

 C#-Major

 Choose codebook to contain n-chords for n=1,2,3,4 

Replace by

with suitable weights for the harmonics

Indexing

Codebook using musical knowledge

Additional consideration of harmonics in chord templates

Harmonics 1 2 3 4 5 6

Pitch C3 C4 G4 C5 E5 G5

Frequency 131 262 392 523 654 785

Chroma C C G C E C

Example: 1-chord C



Indexing
Quantization

Original

Orignal chromagram and projections on codebooks

LBG-based Model-based

Indexing

 Query consists of a short audio clip (10-40 seconds)

 Specification of fault tolerance setting
– fuzzyness of query

– number of admissable mismatches

– tolerance to tempo variations

– tolerance to modulations

Query and retrieval stage



Indexing

 Medium sized database
– 500 pieces

– 112 hours of audio

– mostly classical music

 Selection of various queries
– 36 queries

– duration between 10 and 40 seconds

– hand-labelled matches in database

 Indexing leads to speed-up factor between 15 and 20 
(depending on query length)

 Only small degradation in precision and recall

Retrieval results

Indexing

Retrieval results

Average Recall

A
ve

ra
ge

 P
re

ci
si

on

No index
LBG-based index
Model-based index



Indexing

 Described method suitable for medium-sized databases
– index is assumed to be in main memory

– inverted lists may be long

 Goal was to find all meaningful matches 
– high-degree of fault-tolerance required (fuzzyness, mismatches)

– number of intersections and unions may explode

 What to do when dealing with millions of songs?

 Can the quantization be avoided?

 Better indexing and retrieval methods needed!
– kd-trees

– locality sensitive hashing

– …

Conclusions

Conclusions (Audio Matching)

Matching procedure

 Strategy: Exact matching and multiple scaled queries

– simulate tempo variations by feature resampling

– different queries correspond to different tempi

– indexing possible

 Strategy: Dynamic time warping

– subsequence variant

– more flexible (in particular for longer queries)

– indexing hard



Conclusions (Audio Matching)

Audio Features

 Chroma            → invariance to timbre

 Normalization → invariance to dynamics

 Smoothing        →    invariance to local time deviations

Strategy: Absorb variations already at feature level

Message:  There is no standard chroma feature!
Variants can make a huge difference!

Feature Design

 Enhancement of chroma features

 Usage of audio matching framework for evaluating
the quality of obtained audio features

 Usage of matching curves as mid-level representation
to reveal a feature’s robustness and discriminative
capability

[Müller/Ewert, IEEE-TASLP 2010]

M. Müller and S. Ewert (2010):
Towards Timbre-Invariant Audio Features for Harmony-Based Music.
IEEE Trans. on Audio, Speech & Language Processing, Vol. 18, No. 3, 
pp. 649-662.



Motivation: Audio Matching
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Motivation: Audio Matching

Four occurrences of the main theme

Third occurrenceFirst occurrence

1 2 3 4

Time (seconds)



Chroma Features

First occurrence Third occurrence

Time (seconds)Time (seconds)
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Chroma Features

First occurrence Third occurrence

How to make chroma features more robust to timbre changes?
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Chroma Features

First occurrence Third occurrence

How to make chroma features more robust to timbre changes?

Idea:  Discard timbre-related information

C
hr

om
a 

sc
al

e

[Müller/Ewert, IEEE-TASLP 2010]
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MFCC Features and Timbre

Time (seconds)
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[Müller/Ewert, IEEE-TASLP 2010]



MFCC Features and Timbre

Lower MFCCs                     Timbre

[Müller/Ewert, IEEE-TASLP 2010]
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MFCC Features and Timbre

Idea:  Discard lower MFCCs to achieve timbre invariance 

Lower MFCCs                     Timbre

[Müller/Ewert, IEEE-TASLP 2010]
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Enhancing Timbre Invariance

Short-Time Pitch Energy

P
itc

h 
sc

al
e

Time (seconds)
[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram

Steps:

Enhancing Timbre Invariance

Log Short-Time Pitch Energy

P
itc

h 
sc

al
e

[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram

2. Log (amplitude)

Steps:

Time (seconds)



Enhancing Timbre Invariance

PFCC
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[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram

2. Log (amplitude)

3. DCT

Steps:

Time (seconds)

Enhancing Timbre Invariance

PFCC
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[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram

2. Log (amplitude)

3. DCT

4. Discard lower coefficients   
[1:n-1]

Steps:

Time (seconds)



Enhancing Timbre Invariance

PFCC
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[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram

2. Log (amplitude)

3. DCT

4. Keep upper coefficients
[n:120]

Steps:

Time (seconds)

Enhancing Timbre Invariance

P
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[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram

2. Log (amplitude)

3. DCT

4. Keep upper coefficients
[n:120]

5. Inverse DCT

Steps:

Time (seconds)



Enhancing Timbre Invariance
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Time (seconds)

[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram

2. Log (amplitude)

3. DCT

4. Keep upper coefficients
[n:120]

5. Inverse DCT

6. Chroma & Normalization

Steps:

Enhancing Timbre Invariance

1. Log-frequency spectrogram

2. Log (amplitude)

3. DCT

4. Keep upper coefficients
[n:120]

5. Inverse DCT

6. Chroma & Normalization

Steps:

Chroma DCT-Reduced Log-Pitch

CRP(n)
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hr

om
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e

[Müller/Ewert, IEEE-TASLP 2010]
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Chroma versus CRP
Shostakovich Waltz

Third occurrenceFirst occurrence

Chroma

Time (seconds) Time (seconds)

[Müller/Ewert, IEEE-TASLP 2010]

Chroma versus CRP
Shostakovich Waltz

Third occurrenceFirst occurrence

Chroma

CRP(55)

n = 55

Time (seconds) Time (seconds)
[Müller/Ewert, IEEE-TASLP 2010]



Quality: Audio Matching
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Quality: Audio Matching

Shostakovich/Chailly Shostakovich/Yablonsky

Standard Chroma (Chroma Pitch)

Query: Shostakovich, Waltz / Yablonsky (3. occurrence)
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Quality: Audio Matching

Shostakovich/Chailly Shostakovich/Yablonsky

Standard Chroma (Chroma Pitch)

CRP(55)

Query: Shostakovich, Waltz / Yablonsky (3. occurrence)

Time (seconds)



Quality: Audio Matching

Standard Chroma (Chroma Pitch)

Free in you/Indigo Girls Free in you/Dave Cooley

Query: Free in you / Indigo Girls (1. occurence)

Time (seconds)

Quality: Audio Matching

Standard Chroma (Chroma Pitch)

CRP(55)

Free in you/Indigo Girls Free in you/Dave Cooley

Query: Free in you / Indigo Girls (1. occurence)

Time (seconds)



Overview (Audio Retrieval)

 Audio identification
(audio fingerprinting)

 Audio matching

 Cover song identification

Cover Song Identification

 Gómez/Herrera (ISMIR 2006)

 Casey/Slaney (ISMIR 2006)

 Serrà (ISMIR 2007)

 Ellis/Polioner (ICASSP 2007)

 Serrà/Gómez/Herrera/Serra (IEEE TASLP 2008)



Cover Song Identification

Goal: Given a music recording of a song or piece of music, 
find all corresponding music recordings within a huge 
collection that can be regarded as a kind of version, 
interpretation, or cover song. 

Instance of document-based retrieval! 

 Live versions

 Versions adapted to particular country/region/language

 Contemporary versions of an old song

 Radically different interpretations of a musical piece

 …

Cover Song Identification

 Automated organization of music collections

“Find me all covers of …”

 Musical rights management

 Learning about music itself

“Understanding the essence of a song”

Motivation



Cover Song Identification

Bob Dylan
Knockin’  on Heaven’s Door key Avril Lavigne

Knockin’  on Heaven’s Door

Metallica
Enter Sandman timbre Apocalyptica

Enter Sandman

Nirvana
Poly [Incesticide Album] tempo Nirvana

Poly [Unplugged]

Black Sabbath
Paranoid lyrics Cindy & Bert

Der Hund Der Baskerville

AC/DC
High Voltage recording conditions AC/DC

High Voltage [live]

song structure

Nearly anything can change! But something doesn't change. 

Often this is chord progression and/or melody

Cover Song Identification

How to compare two different songs?

Song A

Song A

[Serrà et al., IEEE-TASLP 2009]



Cover Song Identification

Chroma
Sequence

Chroma
Sequence

How to compare two different songs?

Song A

Song A

 Feature computation

[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Chroma
Sequence

Chroma
Sequence

How to compare two different songs?

Optimal 
Transposition

Song A

Song A

 Feature computation

 Dealing with different keys

[Serrà et al., IEEE-TASLP 2009]



Cover Song Identification

Chroma
Sequence

Chroma
Sequence

Binary 
Similarity 

Matrix

How to compare two different songs?

Optimal 
Transposition

Song A

Song A

 Feature computation

 Dealing with different keys

 Local similarity measure

[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Chroma
Sequence

Chroma
Sequence

Binary 
Similarity 

Matrix

How to compare two different songs?

Optimal 
Transposition

Dyncamic
Programming

Local
Alignment

Score

Song A

Song A

 Feature computation

 Dealing with different keys

 Local similarity measure

 Global similarity measure
[Serrà et al., IEEE-TASLP 2009]



Cover Song Identification

Feature computation

 Chroma features
– correlates to harmonic progression

– robust to changes in timbre and instrumentation

– normalization introduces invariance to dynamics

 Enhancement strategies
– model for considering harmonics

– compensation of tuning differences

– finer resolution (1, 1/2, 1/3 semitone resolution)
→ 12/24/36 dimensional chroma features [Gómez, PhD 2006]
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Cover Song Identification

Dealing with different keys

Bob Dylan – Knockin’ on Heaven’s Door
Avril Lavigne – Knockin’ on Heaven’s Door

 Compute average chroma vectors for each song

 Consider cyclic shifts of the chroma vectors to 
simulate transpositions

 Determine optimal shift indices so that the shifted 
chroma vectors are matched with minimal cost

 Transpose the songs accordingly



Cyclic Chroma Shifts

 Feature space: 

 Chroma vector: 

 Cyclic shift operator:

 Composition of shifts:                                   , 

 Note: 

Cyclic Chroma Shifts

 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y

x 
y

Shift index

C
os

t

0      1      2      3      4      5      6      7       8     9     10    11      

1

0.5

0



Cyclic Chroma Shifts

x 
 (y)

Shift index
0      1      2      3      4      5      6      7       8     9     10    11      
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y

Cyclic Chroma Shifts
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Shift index
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y



Cyclic Chroma Shifts

Shift index

x 
 3(y)

Shift index
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y

Cyclic Chroma Shifts
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y



Cyclic Chroma Shifts

x 
 5(y)

Shift index
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y

Cyclic Chroma Shifts

Shift index
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Shift index
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y



Cyclic Chroma Shifts
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Shift index
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y

Cyclic Chroma Shifts
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 Given chroma vectors  

 Fix a local cost measure
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Cyclic Chroma Shifts
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 9(y)

Shift index
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y

Cyclic Chroma Shifts
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y



Cyclic Chroma Shifts

Shift index

x 
 11(y)
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y

Cyclic Chroma Shifts

Shift index
0      1      2      3      4      5      6      7       8     9     10    11      
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 Given chroma vectors  

 Fix a local cost measure

 Compute cost between x and shifted y

 Minimizing shift index: 3

x 
 3(y)



 What is a good local cost
meaure for chroma space?

Cyclic Chroma Shifts
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 What is a good local cost
meaure for chroma space?
Euclidean?           Cosine distance?

 Is the chroma space Euclidean? 
Probably not!
For example, C is musically closer to G than C#

 Idea: Usage of very coarse binary cost measure
that indicates the same tonal root

Cyclic Chroma Shifts
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[Serrà et al., IEEE-TASLP 2009]



Cyclic Chroma Shifts

[Serrà et al., IEEE-TASLP 2009]

 Original local cost measure

 Binary cost measure

for

Cyclic Chroma Shifts

[Serrà et al., IEEE-TASLP 2009]

Cost matrix based on c

Song B

Binary cost matrix based on cb
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Song B

1
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Cyclic Chroma Shifts

[Serrà et al., IEEE-TASLP 2009]
Song B

Binary similarity matrix

Song B

-1

Cost matrix based on c

Think positive!
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Cover Song Identification

Chroma
Sequence

Chroma
Sequence

Binary 
Similarity 

Matrix

How to compare two different songs?

Optimal 
Transposition

Dyncamic
Programming

Local
Alignment

Score

Song A

Song A

 Feature computation

 Dealing with different keys

 Local similarity measure

 Global similarity measure
[Serrà et al., IEEE-TASLP 2009]



Cover Song Identification

Chroma
Sequence

Chroma
Sequence

Binary 
Similarity 

Matrix

How to compare two different songs?

Optimal 
Transposition

Dyncamic
Programming

Local
Alignment

Score

Song A

Song A

 Feature computation

 Dealing with different keys

 Local similarity measure

 Global similarity measure
[Serrà et al., IEEE-TASLP 2009]

Local Alignment

Assumption: 

Two songs are considered as similar if they contain

possibly long subsegments that possess a similar

harmonic progression

Task:  

Let X=(x1,…,xN) and Y=(y1,…,yM) be the two chroma

sequences of the two given songs, and let S be the

resulting similarity matrix. Then find the maximum similarity

of a subsequence of X and a subsequence of Y. 



Local Alignment

Note: 

This problem is also known from bioinformatics. 

The Smith-Waterman algorithm is a well-known algorithm

for performing local sequence alignment; that is, for

determining similar regions between two nucleotide or

protein sequences.

Strategy:

We use a variant of the Smith-Waterman algorithm.

Local Alignment

X

 Classical DTW
Global correspondence
between X and Y

 Subsequence DTW
Subsequence of Y corresponds
to X

 Local Alignment
Subsequence of Y corresponds
to subequence of X

X
X

Y

Y

Y



Local Alignment

 Zero-entry allows for jumping to any cell without penalty

 g  penalizes “inserts” and “delets” in alignment

 Best local alignment score is the highest value in D

 Best local alignment ends at cell of highest value

 Start is obtained by backtracking to first cell of value zero

Computation of accumulated score matrix D
from given binary similarity (score) matrix S

Guns and Roses

B
ob

 D
yl

a
n

Knockin' on Heaven's Door
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Knockin' on Heavens's Door
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Cover Song Identification

Query: Bob Dylan – Knockin’ on Heaven’s Door

Retrieval result:

Rank Recording Score

1. Guns and Roses: Knockin‘ On Heaven’s Door 94.2

2. Avril Lavigne: Knockin‘ On Heaven’s Door 86.6

3. Wyclef Jean: Knockin‘ On Heaven’s Door 83.8

4. Bob Dylan: Not For You 65.4

5. Guns and Roses: Patience 61.8

6. Bob Dylan: Like A Rolling Stone 57.2

7.-14. …



Cover Song Identification

Query: AC/DC – Highway To Hell

Retrieval result:

Rank Recording Score

1. AC/DC: Hard As a Rock 79.2

2. Hayseed Dixie: Dirty Deeds Done Dirt Cheap 72.9

3. AC/DC: Let There Be Rock 69.6

4. AC/DC: TNT (Live) 65.0

5.-11. …

12. Hayseed Dixie: Highway To Hell 30.4

13. AC/DC: Highway To Hell Live (live) 21.0

14. …

Conclusions (Cover Song Identification)

 Harmony-based approach

 Binary cost measure a good trade-off between 
robustness and expressiveness 

 Measure is suitable for document retrieval, but seems to 
be too coarse for audio matching applications

 Every song has to be compared with any other
→ method does not scale to large data collection

 What are suitable indexing methods?



Conclusions (Audio Retrieval)

Retrieval
task

Audio 
identification

Audio 
matching

Cover song
identification

Identification Concrete audio 
recording

Different 
interpretations

Different 
versions

Query Short fragment
(5-10 seconds)

Audio clip
(10-40 seconds)

Entire song

Retrieval level Fragment Fragment Document

Specificity High Medium Medium / Low

Features Spectral peaks
(abstract)

Chroma
(harmony) 

Chroma
(harmony)

Indexing Hashing Inverted lists No indexing


