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Music Retrieval

 Textual metadata
– Traditional retrieval
– Searching for artist, title, …

 Rich and expressive metadata
– Generated by experts
– Crowd tagging, social networks

 Content-based retrieval
– Automatic generation of tags
– Query-by-example

Query-by-Example

Query

Audio identification

Audio matching

Version identification

Category-based music retrieval

Retrieval tasks:

Database

Hits

Bernstein (1962) 
Beethoven, Symphony No. 5

Beethoven, Symphony No. 5:
 Bernstein (1962) 
 Karajan (1982) 
 Gould (1992)

 Beethoven, Symphony No. 9
 Beethoven, Symphony No. 3
 Haydn Symphony No. 94

Query-by-Example

Audio identification

Audio matching

Version identification

Category-based music retrieval

Retrieval tasks:

High
specificity

Low
specificity

Fragment-based 
retrieval 

Document-based 
retrieval

Specificity
level

Granularity
level

Taxonomy

Overview (Audio Retrieval)

 Audio identification
(audio fingerprinting)

 Audio matching

 Cover song identification
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Audio Identification

Database: Huge collection consisting of all audio
recordings (feature representations) to be
potentially identified.

Goal: Given a short query audio fragment, identify
the original audio recording the query is taken
from.

Notes:  Instance of fragment-based retrieval
 High specificity
 Not the piece of music is identified but a

specific rendition of the piece

Application Scenario

 User hears music playing in the environment

 User records music fragment (5-15 seconds) with mobile 
phone

 Audio fingerprints are extracted from the recording 
and sent to an audio identification service

 Service identifies audio recording based on fingerprints

 Service sends back metadata (track title, artist) to user

Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes some specific audio content.

Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Ability to accurately identify an 
item within a huge number of 
other items
(informative, characteristic)

 Low probability of false positives

 Recorded query excerpt
only a few seconds

 Large audio collection on the
server side (millions of songs)

Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Recorded query may be 
distorted and superimposed with 
other audio sources

 Background noise
 Pitching

(audio played faster or slower)
 Equalization
 Compression artifacts
 Cropping, framing
 …

Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Reduction of complex
multimedia objects

 Reduction of dimensionality

 Making indexing feasible

 Allowing for fast search



Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Computational efficiency

 Extraction of fingerprint should 
be simple

 Size of fingerprints should be 
small

Literature (Audio Identification)

 Allamanche et al. (AES 2001)
 Cano et al. (AES 2002)
 Haitsma/Kalker (ISMIR 2002)
 Kurth/Clausen/Ribbrock (AES 2002)
 Wang (ISMIR 2003)

 Dupraz/Richard (ICASSP 2010)
 Ramona/Peeters (ICASSP 2011)

…
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Fingerprints (Shazam) 
Steps:
1. Spectrogram
2. Peaks
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 Efficiently computable

 Standard transform

 Robust
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room acoustics, 
equalization

Robustness:



Fingerprints (Shazam) 
Steps:
1. Spectrogram
2. Peaks / differing peaks
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Robustness:

Fingerprints (Shazam) 
Steps:

Time (seconds)

Fr
eq

ue
nc

y 
(H

z)

In
te

ns
ity

 Noise, reverb, 
room acoustics, 
equalization

 Audio codec

 Superposition 
of other audio 
sources

Robustness:

1. Spectrogram
2. Peaks / differing peaks

Matching Fingerprints (Shazam) 

Database document
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1. Shift query across 
database document

2. Count matching peaks
3. High count indicates a hit

(document ID & position)
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Indexing (Shazam) 
 Index the fingerprints using hash lists
 Hashes correspond  to (quantized) frequencies
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Indexing (Shazam) 
 Index the fingerprints using hash lists
 Hashes correspond  to (quantized) frequencies
 Hash list consists of time positions

(and document IDs) 

 N =  number of spectral peaks
 B =  #(bits) used to encode spectral peaks
 2B         =  number of hash lists 
 N / 2B = average number of elements per list

Problem:
 Individual peaks are not characteristic
 Hash lists may be very long
 Not suitable for indexing Time (seconds)
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Hash 2B

List to Hash 1:

Indexing (Shazam) 
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Idea: Use pairs of peaks to increase specificity of hashes

1. Peaks
2. Fix anchor point
3. Define target zone
4. Use paris of points
5. Use every point as 

anchor point

Indexing (Shazam) 
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Idea: Use pairs of peaks to increase specificity of hashes

New hash:

1. Peaks
2. Fix anchor point
3. Define target zone
4. Use paris of points
5. Use every point as 

anchor point

Consists of two frequency
values and a time difference:

(     ,     ,      )

f1

f2

∆t

f1 f2 ∆t

Indexing (Shazam)

 A hash is formed between an anchor point and each 
point in the target zone using two frequency values 
and a time difference.

 Fan-out (taking pairs of peaks) may cause a 
combinatorial explosion in the number of tokens. 
However, this can be controlled by the size of the 
target zone.

 Using more complex hashes increases specificity 
(leading to much smaller hash lists) and speed 
(making the retrieval much faster).

Indexing (Shazam)
Definitions:
 N = number of spectral peaks
 p = probability that a spectral peak can be found in (noisy and distorted) query
 F = fan-out of target zone, e. g. F = 10
 B = #(bits) used to encode spectral peaks and time difference

Consequences:
 F · N            =  #(tokens) to be indexed
 2B+B =  increase of specifity  (2B+B+B instead of 2B)
 p2 =  propability of a hash to survive
 p·(1-(1-p)F)  =  probability that, at least, on hash survives per anchor point

Example:  F = 10 and B = 10
 Memory requirements:      F · N = 10 · N
 Speedup factor:   2B+B / F2 ~ 106 / 102 = 10000 

(F times as many tokens in query and database, respectively)

Conclusions (Shazam)

Many parameters to choose:

 Temporal and spectral resolution in spectrogram

 Peak picking strategy

 Target zone and fan-out parameter

 Hash function

 …



Literature (Audio Identification)

 Allamanche et al. (AES 2001)
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 Haitsma/Kalker (ISMIR 2002)
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 Efficiently computable

 Standard transform

 Robust
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Fingerprints (Philips)
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(long window)
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 Coarse temporal resolution

 Large overlap of windows

 Robust to temporal distortion
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 300 – 2000 Hz
 Most relevant spectral range 

(perceptually)
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(long window)

2. Consider limited 
frequency range

Fingerprints (Philips)

Steps:
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 300 – 2000 Hz
 Most relevant spectral range 

(perceptually)
 33 bands (roughly bark scale)
 Coarse frequency resolution
 Robust to spectral distortions
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Fingerprints (Philips)

1. Spectrogram
(long window)

2. Consider limited 
frequency range

3. Log-frequency 
(Bark scale)

Steps:
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 Local thresholding
 Sign of energy difference

(simultanously along time 
and frequency axes)

 Sequence of 32-bit vectors
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Fingerprints (Philips)

1. Spectrogram
(long window)

2. Consider limited 
frequency range

3. Log-frequency 
(Bark scale)

4. Binarization



Fingerprints (Philips)
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 32-bit vector 
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Matching Fingerprints (Philips) 
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database document

2. Calculate a block-wise
bit-error-rate (BER) 

3. Low BER indicates hit
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Indexing (Philips) 

 Computation of BER between query fingerprint-block 
and every database fingerprint-block is expensive

 Chance that a complete fingerprint-block survives is low
 Exact hashing problematic

Note:

Problem:

 Individual sub-fingerprints (32 bit) are not characteristic
 Fingerprint blocks (256 sub-fingerprints, 8 kbit) are used

Strategy:  Only sub-fingerprints are indexed using hashing 
 Exact sub-fingerprint matches are used to identify 

candidate fingerprint-blocks in database. 
 BER is only computed between query fingerprint-block 

and candidate fingerprint-blocks
 Procedure is terminated when database fingerprint-block 

is found, where BER falls below a certain threshold 



Indexing (Philips) 

1. Efficient search for  
exact matches of 
sub-fingerprints 
(anchor points)
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Indexing (Philips) 

1. Efficient search for  
exact matches of 
sub-fingerprints 
(anchor points)

2. Calculate BER 
only for blocks 
containing anchor 
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Database document 
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Query document
(fingerprint-block)

Conclusions (Philips) 

 Comparing binary fingerprint-blocks expressing 
tempo-spectral changes

 Usage of some sort of shingling technique

→  see [Casey et al. 2008, IEEE-TASLP] for a similar
approach applied to a more general retrieval task

 Acceleration using hash-based search for 
anchor-points (sub-fingerprints)

 Concepts of fault tolereance are required to increase robustness

 Susceptible to distortions in specific  frequency bands 
(e. g. equalization) or to superpositions with other sources

Conclusions (Audio Identification)

 Basic techniques used in Shazam and Philip systems

 Many more ways to define robust audio fingerprints

 Delicate trade-off between specificity, robustness, and efficiency

 Audio recording is identified (not a piece of music)

 Does not allow for identifying studio recording using 
a query taken from live recordings

 Does not generalize to identify different 
interpretations or versions of the same piece of music

Overview (Audio Retrieval)

 Audio identification
(audio fingerprinting)

 Audio matching

 Cover song identification

Audio Matching

Database: Audio collection containing:
 Several recordings of the same piece of music
 Different interpretations by various musicians
 Arrangements in different instrumentations

Goal: Given a short query audio fragment, find all
corresponding audio fragments of similar 
musical content.

Notes:  Instance of fragment-based retrieval
 Medium specificity
 A single document may contain several hits
 Cross-modal retrieval also feasible



Bernstein

Karajan

Scherbakov (piano)

MIDI (piano)

Audio Matching

Beethoven’s Fifth

Various interpretations  

Application Scenario

Content-based retrieval

Application Scenario

Cross-modal retrieval

Literature (Audio Matching)

 Pickens et al. (ISMIR 2002)
 Müller/Kurth/Clausen (ISMIR 2005)
 Suyoto et al. (IEEE TASLP 2008)
 Casey et al. (IEEE TASLP 2008)
 Kurth/Müller (IEEE TASLP 2008)
 Yu et al. (ACM MM 2010)

…

Audio Matching

Two main ingredients:

 Robust but discriminating
 Chroma-based features
 Correlate to harmonic progression
 Robust to variations in dynamics, timbre, articulation, local tempo

1.)  Audio features

 Efficient
 Robust to local and global tempo variations
 Scalable using index structure

2.)   Matching procedure 

Audio Features

Example: Chromatic scale
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Audio Features

Example: Chromatic scale
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Audio Features

Example: Chromatic scale
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Example: Chromatic scale
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Example: Chromatic scale
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Example: Chromatic scale
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 Pitches are perceived as related (harmonically similar) 
if they differ by an octave

 Idea: through away information which is difficult to 
estimate and not so important for harmonic analysis

 Separation of pitch into two components: 
tone height (octave number) and chroma

 Chroma: 12 traditional pitch classes of the equal-
tempered scale. For example:
Chroma C

 Computation: pitch features  chroma features
Add up all pitches belonging to the same class

 Result: 12-dimensional chroma vector

Audio Features



Audio Features

Time (seconds) Time (seconds)
Time (seconds) Time (seconds)

Example: Beethoven’s Fifth

Karajan Scherbakov

Chroma representation (normalized, 10 Hz)

Audio Features

Time (seconds) Time (seconds)
Time (seconds) Time (seconds)

Example: Beethoven’s Fifth

Karajan Scherbakov

Smoothing (2 seconds) + downsampling (factor 5)
Chroma representation (normalized, 2 Hz)

Audio Features

Time (seconds) Time (seconds)
Time (seconds) Time (seconds)

Example: Beethoven’s Fifth

Karajan Scherbakov

Smoothing (4 seconds) + downsampling (factor 10)
Chroma representation (normalized, 1 Hz)

Matching Procedure

Compute chroma feature sequences

 Database
 Query
 N very large (database size), M small (query size)

Matching curve

Matching Procedure

Query

DB

Bach Beethoven/Bernstein Shostakovich

Time (seconds)

Beethoven/Sawallisch

Matching Procedure

Query

DB

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Time (seconds)



Matching Procedure

Query

DB

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Time (seconds)

Matching Procedure

Query

DB

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Time (seconds)

Matching Procedure

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Query: Beethoven’s Fifth / Bernstein (first 20 seconds)
Matching curve

Time (seconds)

Matching Procedure

Query: Beethoven’s Fifth / Bernstein (first 20 seconds)

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

1 2 5 3 4 6 7Hits

Matching curve

Time (seconds)

Matching Procedure

Time (seconds)

Problem: How to deal with tempo differences?

Karajan is much 
faster then Bernstein!

Matching curve does not indicate any hits!

Beethoven/Karajan

Matching Procedure
1. Strategy: Usage of local warping 

Karajan is much 
faster then Bernstein!

Beethoven/Karajan

Warping strategies 
are computationally 
expensive and hard 
for indexing.

Time (seconds)



Matching Procedure
2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)

Matching Procedure
2. Strategy: Usage of multiple scaling

Beethoven/Karajan
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Matching Procedure
2. Strategy: Usage of multiple scaling

Beethoven/Karajan
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Matching Procedure
2. Strategy: Usage of multiple scaling

Query resampling simulates tempo changes

Beethoven/Karajan

Time (seconds)

Matching Procedure
2. Strategy: Usage of multiple scaling

Minimize over all curves

Beethoven/Karajan

Query resampling simulates tempo changes

Time (seconds)

Matching Procedure
2. Strategy: Usage of multiple scaling

Minimize over all curves

Beethoven/Karajan

Query resampling simulates tempo changes

Resulting curve is similar warping curve

Time (seconds)



Experiments

 Audio database  ≈ 110 hours, 16.5 GB

 Preprocessing    → chroma features, 40.3 MB

 Query clip           ≈    20 seconds

 Retrieval time     ≈ 10 seconds            (using MATLAB)

Experiments

Rank Piece Position
1 Beethoven‘s Fifth/Bernstein 0 - 21
2 Beethoven‘s Fifth/Bernstein 101- 122
3 Beethoven‘s Fifth/Karajan 86 - 103

10 Beethoven‘s Fifth/Karajan 252 - 271
11 Beethoven (Liszt) Fifth/Scherbakov 0 - 19
12 Beethoven‘s Fifth/Sawallisch 275 - 296
13 Beethoven (Liszt) Fifth/Scherbakov 86 - 103
14 Schumann Op. 97,1/Levine 28 - 43

Query: Beethoven’s Fifth / Bernstein (first 20 seconds)

…
…

…
…

…
…

…
…

Experiments

Shostakovich/Chailly Shostakovich/Yablonsky

Time (seconds)

Query: Shostakovich, Waltz / Chailly (first 21 seconds)

Expected hits

Experiments

Rank Piece Position
1 Shostakovich/Chailly 0 - 21
2 Shostakovich/Chailly 41- 60
3 Shostakovich/Chailly 180 - 198
4 Shostakovich/Yablonsky 1 - 19
5 Shostakovich/Yablonsky 36 - 52
6 Shostakovich/Yablonsky 156 - 174
7 Shostakovich/Chailly 144 - 162
8 Bach BWV 582/Chorzempa 358 - 373
9 Beethoven Op. 37,1/Toscanini 12 - 28

10 Beethoven Op. 37,1/Pollini 202 - 218

Query: Shostakovich, Waltz / Chailly (first 21 seconds)

Indexing

 Matching procedure is linear in size of database

 Retrieval time was 10 seconds for 110 hours of audio

→  Much too slow

→  Does not scale to millions of songs

→  Need of indexing methods

Indexing

 Convert database into feature sequence (chroma)
 Quantize features with respect to a fixed codebook
 Create an inverted file index

– contains for each codebook vector an inverted list
– each list contains feature indices in ascending order

General procedure

[Kurth/Müller, IEEE-TASLP 2008]



Indexing

Visualization (3D)

Quantization

 Feature space

Indexing

 Feature space

 Codebook selection
of suitable size R

 Quantization using nearest neighbors

Quantization

Indexing

 Codebook selection by unsupervised learning
– Linde–Buzo–Gray (LBG) algorithm
– similar to k-means
– adjust algorithm to spheres

 Codebook selection based on musical knowledge

How to derive a good codebook?

Indexing
LBG algorithm

Steps:

1. Initialization of
codebook vectors

2. Assignment
3. Recalculation
4. Iteration (back to 2.)

Indexing
LBG algorithm

Steps:

1. Initialization of
codebook vectors

2. Assignment
3. Recalculation
4. Iteration (back to 2.)

Indexing
LBG algorithm

Steps:

1. Initialization of
codebook vectors

2. Assignment
3. Recalculation
4. Iteration (back to 2.)



Indexing
LBG algorithm

Steps:

1. Initialization of
codebook vectors

2. Assignment
3. Recalculation
4. Iteration (back to 2.)

Indexing
LBG algorithm

Steps:

1. Initialization of
codebook vectors

2. Assignment
3. Recalculation
4. Iteration (back to 2.)

Indexing
LBG algorithm

Steps:

1. Initialization of
codebook vectors

2. Assignment
3. Recalculation
4. Iteration (back to 2.)

Indexing
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1. Initialization of
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3. Recalculation
4. Iteration (back to 2.)

Indexing
LBG algorithm

Steps:

1. Initialization of
codebook vectors

2. Assignment
3. Recalculation
4. Iteration (back to 2.)

Until convergence

Indexing
LBG algorithm for spheres

 Example: 2D
 Assignment
 Recalculation
 Projection



Indexing
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Indexing
LBG algorithm for spheres

 Example: 2D
 Assignment
 Recalculation
 Projection

Indexing
LBG algorithm for spheres

 Example: 2D
 Assignment
 Recalculation
 Projection

Indexing
Codebook using musical knowledge

 Observation: Chroma features capture
harmonic information

 Example: C-Major

 Example: C#-Major 

 Experiments: For more then 95% of all chroma features
>50% of energy lies in at most 4 components

n 1 2 3 4

template

# 12 66 220 495 793

Indexing
Codebook using musical knowledge

 C-Major 

 C#-Major

 Choose codebook to contain n-chords for n=1,2,3,4 

Replace by
with suitable weights for the harmonics

Indexing
Codebook using musical knowledge

Additional consideration of harmonics in chord templates

Harmonics 1 2 3 4 5 6
Pitch C3 C4 G4 C5 E5 G5
Frequency 131 262 392 523 654 785
Chroma C C G C E C

Example: 1-chord C



Indexing
Quantization

Original

Orignal chromagram and projections on codebooks

LBG-based Model-based

Indexing

 Query consists of a short audio clip (10-40 seconds)
 Specification of fault tolerance setting

– fuzzyness of query
– number of admissable mismatches
– tolerance to tempo variations
– tolerance to modulations

Query and retrieval stage

Indexing

 Medium sized database
– 500 pieces
– 112 hours of audio
– mostly classical music

 Selection of various queries
– 36 queries
– duration between 10 and 40 seconds
– hand-labelled matches in database

 Indexing leads to speed-up factor between 15 and 20 
(depending on query length)

 Only small degradation in precision and recall

Retrieval results

Indexing
Retrieval results

Average Recall

Av
er

ag
e 

P
re

ci
si

on

No index
LBG-based index
Model-based index

Indexing

 Described method suitable for medium-sized databases
– index is assumed to be in main memory
– inverted lists may be long

 Goal was to find all meaningful matches 
– high-degree of fault-tolerance required (fuzzyness, mismatches)
– number of intersections and unions may explode

 What to do when dealing with millions of songs?
 Can the quantization be avoided?
 Better indexing and retrieval methods needed!

– kd-trees
– locality sensitive hashing
– …

Conclusions

Conclusions (Audio Matching)

Matching procedure

 Strategy: Exact matching and multiple scaled queries
– simulate tempo variations by feature resampling
– different queries correspond to different tempi
– indexing possible

 Strategy: Dynamic time warping
– subsequence variant
– more flexible (in particular for longer queries)
– indexing hard



Conclusions (Audio Matching)

Audio Features

 Chroma            → invariance to timbre

 Normalization → invariance to dynamics

 Smoothing        →    invariance to local time deviations

Strategy: Absorb variations already at feature level

Message:  There is no standard chroma feature!
Variants can make a huge difference!

Feature Design

 Enhancement of chroma features

 Usage of audio matching framework for evaluating
the quality of obtained audio features

 Usage of matching curves as mid-level representation
to reveal a feature’s robustness and discriminative
capability

[Müller/Ewert, IEEE-TASLP 2010]

M. Müller and S. Ewert (2010):
Towards Timbre-Invariant Audio Features for Harmony-Based Music.
IEEE Trans. on Audio, Speech & Language Processing, Vol. 18, No. 3, 
pp. 649-662.

Motivation: Audio Matching

Time (seconds)

Motivation: Audio Matching

Four occurrences of the main theme

Third occurrenceFirst occurrence

1 2 3 4

Time (seconds)

Chroma Features

First occurrence Third occurrence

Time (seconds)Time (seconds)

C
hr

om
a 

sc
al

e

Chroma Features

First occurrence Third occurrence

How to make chroma features more robust to timbre changes?

C
hr

om
a 

sc
al

e

Time (seconds) Time (seconds)



Chroma Features

First occurrence Third occurrence

How to make chroma features more robust to timbre changes?
Idea:  Discard timbre-related information
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[Müller/Ewert, IEEE-TASLP 2010]

Time (seconds) Time (seconds)

MFCC Features and Timbre
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MFCC Features and Timbre

Lower MFCCs                     Timbre

[Müller/Ewert, IEEE-TASLP 2010]
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MFCC Features and Timbre

Idea:  Discard lower MFCCs to achieve timbre invariance 

Lower MFCCs                     Timbre

[Müller/Ewert, IEEE-TASLP 2010]
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Enhancing Timbre Invariance
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[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram
Steps:

Enhancing Timbre Invariance

Log Short-Time Pitch Energy
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[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram
2. Log (amplitude)

Steps:

Time (seconds)



Enhancing Timbre Invariance

PFCC
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[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram
2. Log (amplitude)
3. DCT

Steps:
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1. Log-frequency spectrogram
2. Log (amplitude)
3. DCT
4. Discard lower coefficients   

[1:n-1]

Steps:

Time (seconds)
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1. Log-frequency spectrogram
2. Log (amplitude)
3. DCT
4. Keep upper coefficients

[n:120]

Steps:
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1. Log-frequency spectrogram
2. Log (amplitude)
3. DCT
4. Keep upper coefficients

[n:120]
5. Inverse DCT

Steps:
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[Müller/Ewert, IEEE-TASLP 2010]

1. Log-frequency spectrogram
2. Log (amplitude)
3. DCT
4. Keep upper coefficients

[n:120]
5. Inverse DCT
6. Chroma & Normalization

Steps:

Enhancing Timbre Invariance

1. Log-frequency spectrogram
2. Log (amplitude)
3. DCT
4. Keep upper coefficients

[n:120]
5. Inverse DCT
6. Chroma & Normalization

Steps:

Chroma DCT-Reduced Log-Pitch

CRP(n)
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[Müller/Ewert, IEEE-TASLP 2010]
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Chroma versus CRP
Shostakovich Waltz

Third occurrenceFirst occurrence

Chroma

Time (seconds) Time (seconds)

[Müller/Ewert, IEEE-TASLP 2010]

Chroma versus CRP
Shostakovich Waltz

Third occurrenceFirst occurrence

Chroma

CRP(55)
n = 55

Time (seconds) Time (seconds)
[Müller/Ewert, IEEE-TASLP 2010]
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Quality: Audio Matching
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Overview (Audio Retrieval)

 Audio identification
(audio fingerprinting)

 Audio matching

 Cover song identification

Cover Song Identification

 Gómez/Herrera (ISMIR 2006)
 Casey/Slaney (ISMIR 2006)
 Serrà (ISMIR 2007)
 Ellis/Polioner (ICASSP 2007)
 Serrà/Gómez/Herrera/Serra (IEEE TASLP 2008)



Cover Song Identification

Goal: Given a music recording of a song or piece of music, 
find all corresponding music recordings within a huge 
collection that can be regarded as a kind of version, 
interpretation, or cover song. 

Instance of document-based retrieval! 

 Live versions
 Versions adapted to particular country/region/language
 Contemporary versions of an old song
 Radically different interpretations of a musical piece
 …

Cover Song Identification

 Automated organization of music collections

“Find me all covers of …”

 Musical rights management

 Learning about music itself

“Understanding the essence of a song”

Motivation

Cover Song Identification

Bob Dylan
Knockin’  on Heaven’s Door key Avril Lavigne

Knockin’  on Heaven’s Door

Metallica
Enter Sandman timbre Apocalyptica

Enter Sandman

Nirvana
Poly [Incesticide Album] tempo Nirvana

Poly [Unplugged]

Black Sabbath
Paranoid lyrics Cindy & Bert

Der Hund Der Baskerville

AC/DC
High Voltage recording conditions AC/DC

High Voltage [live]

song structure

Nearly anything can change! But something doesn't change. 
Often this is chord progression and/or melody

Cover Song Identification
How to compare two different songs?

Song A

Song A

[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Chroma
Sequence

Chroma
Sequence

How to compare two different songs?

Song A

Song A

 Feature computation

[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Chroma
Sequence

Chroma
Sequence

How to compare two different songs?

Optimal 
Transposition

Song A

Song A

 Feature computation
 Dealing with different keys

[Serrà et al., IEEE-TASLP 2009]



Cover Song Identification

Chroma
Sequence

Chroma
Sequence

Binary 
Similarity 

Matrix

How to compare two different songs?

Optimal 
Transposition

Song A

Song A

 Feature computation
 Dealing with different keys
 Local similarity measure

[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Chroma
Sequence

Chroma
Sequence

Binary 
Similarity 

Matrix

How to compare two different songs?

Optimal 
Transposition

Dyncamic
Programming

Local
Alignment

Score

Song A

Song A

 Feature computation
 Dealing with different keys
 Local similarity measure
 Global similarity measure

[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification
Feature computation

 Chroma features
– correlates to harmonic progression
– robust to changes in timbre and instrumentation
– normalization introduces invariance to dynamics

 Enhancement strategies
– model for considering harmonics
– compensation of tuning differences
– finer resolution (1, 1/2, 1/3 semitone resolution)
→ 12/24/36 dimensional chroma features [Gómez, PhD 2006]
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Cover Song Identification
Dealing with different keys

Bob Dylan – Knockin’ on Heaven’s Door
Avril Lavigne – Knockin’ on Heaven’s Door

 Compute average chroma vectors for each song
 Consider cyclic shifts of the chroma vectors to 

simulate transpositions
 Determine optimal shift indices so that the shifted 

chroma vectors are matched with minimal cost
 Transpose the songs accordingly

Cyclic Chroma Shifts

 Feature space: 

 Chroma vector: 

 Cyclic shift operator:

 Composition of shifts:                                   , 

 Note: 

Cyclic Chroma Shifts
 Given chroma vectors  
 Fix a local cost measure
 Compute cost between x and shifted y
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Cyclic Chroma Shifts
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 Given chroma vectors  
 Fix a local cost measure
 Compute cost between x and shifted y
 Minimizing shift index: 3
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 What is a good local cost
meaure for chroma space?

Cyclic Chroma Shifts
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 What is a good local cost
meaure for chroma space?
Euclidean?           Cosine distance?

 Is the chroma space Euclidean? 
Probably not!
For example, C is musically closer to G than C#

 Idea: Usage of very coarse binary cost measure
that indicates the same tonal root

Cyclic Chroma Shifts
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[Serrà et al., IEEE-TASLP 2009]

Cyclic Chroma Shifts

[Serrà et al., IEEE-TASLP 2009]

 Original local cost measure

 Binary cost measure

for

Cyclic Chroma Shifts

[Serrà et al., IEEE-TASLP 2009]

Cost matrix based on c

Song B
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Cyclic Chroma Shifts

[Serrà et al., IEEE-TASLP 2009]
Song B

Binary similarity matrix

Song B
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Cost matrix based on c
Think positive!
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[Serrà et al., IEEE-TASLP 2009]
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[Serrà et al., IEEE-TASLP 2009]

Local Alignment

Assumption: 
Two songs are considered as similar if they contain
possibly long subsegments that possess a similar
harmonic progression

Task:  
Let X=(x1,…,xN) and Y=(y1,…,yM) be the two chroma
sequences of the two given songs, and let S be the
resulting similarity matrix. Then find the maximum similarity
of a subsequence of X and a subsequence of Y. 

Local Alignment

Note: 
This problem is also known from bioinformatics. 
The Smith-Waterman algorithm is a well-known algorithm
for performing local sequence alignment; that is, for
determining similar regions between two nucleotide or
protein sequences.

Strategy:
We use a variant of the Smith-Waterman algorithm.

Local Alignment

X

 Classical DTW
Global correspondence
between X and Y

 Subsequence DTW
Subsequence of Y corresponds
to X

 Local Alignment
Subsequence of Y corresponds
to subequence of X

X
X

Y

Y

Y

Local Alignment

 Zero-entry allows for jumping to any cell without penalty
 g  penalizes “inserts” and “delets” in alignment
 Best local alignment score is the highest value in D
 Best local alignment ends at cell of highest value
 Start is obtained by backtracking to first cell of value zero

Computation of accumulated score matrix D
from given binary similarity (score) matrix S
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Knockin' on Heaven's Door
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Matching 
subsequences

Local Alignment Cover Song Identification
Query: Bob Dylan – Knockin’ on Heaven’s Door
Retrieval result:

Rank Recording Score

1. Guns and Roses: Knockin‘ On Heaven’s Door 94.2

2. Avril Lavigne: Knockin‘ On Heaven’s Door 86.6
3. Wyclef Jean: Knockin‘ On Heaven’s Door 83.8
4. Bob Dylan: Not For You 65.4
5. Guns and Roses: Patience 61.8
6. Bob Dylan: Like A Rolling Stone 57.2
7.-14. …



Cover Song Identification
Query: AC/DC – Highway To Hell
Retrieval result:

Rank Recording Score

1. AC/DC: Hard As a Rock 79.2

2. Hayseed Dixie: Dirty Deeds Done Dirt Cheap 72.9
3. AC/DC: Let There Be Rock 69.6
4. AC/DC: TNT (Live) 65.0
5.-11. …
12. Hayseed Dixie: Highway To Hell 30.4
13. AC/DC: Highway To Hell Live (live) 21.0
14. …

Conclusions (Cover Song Identification)

 Harmony-based approach

 Binary cost measure a good trade-off between 
robustness and expressiveness 

 Measure is suitable for document retrieval, but seems to 
be too coarse for audio matching applications

 Every song has to be compared with any other
→ method does not scale to large data collection

 What are suitable indexing methods?

Conclusions (Audio Retrieval)

Retrieval
task

Audio 
identification

Audio 
matching

Cover song
identification

Identification Concrete audio 
recording

Different 
interpretations

Different 
versions

Query Short fragment
(5-10 seconds)

Audio clip
(10-40 seconds)

Entire song

Retrieval level Fragment Fragment Document

Specificity High Medium Medium / Low

Features Spectral peaks
(abstract)

Chroma
(harmony) 

Chroma
(harmony)

Indexing Hashing Inverted lists No indexing


