

Lecture

Music Processing

Audio Features

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Fourier Transform

Fourier Transform

Signal $f : \mathbb{R} \to \mathbb{R}$ Fourier representation $f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} e^{2\pi i \omega t} d\omega$, $c_{\omega} = \hat{f}(\omega)$ Fourier transform $\hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t) e^{-2\pi i \omega t} dt$

Fourier Transform

Signal $f: \mathbb{R} \to \mathbb{R}$ Fourier representation $f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} e^{2\pi i \omega t} d\omega$, $c_{\omega} = \hat{f}(\omega)$ Fourier transform $\hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t) e^{-2\pi i \omega t} dt$

- Tells which notes (frequencies) are played, but does not tell when the notes are played
- Frequency information is averaged over the entire time interval
- Time information is hidden in the phase

Fourier Transform

Short Time Fourier Transform

Idea (Dennis Gabor, 1946):

- Consider only a small section of the signal for the spectral analysis
 - \rightarrow recovery of time information
- Short Time Fourier Transform (STFT)
- Section is determined by pointwise multiplication of the signal with a localizing window function

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

2

0.05

Frequency (Hz)

Frequency (Hz)

0.05

°0

Short Time Fourier Transform

Short Time Fourier Transform

Definition

- Signal $f: \mathbb{R} \to \mathbb{R}$
- Window function $g:\mathbb{R}\to\mathbb{R}$ $(g\in L^2(\mathbb{R}), \|g\|=1)$

• STFT
$$\tilde{f}(\omega,t) := \int_{\mathbb{R}} f(u)\bar{g}(u-t)e^{-2\pi i\omega u}du = \langle f|g_{\omega,t}\rangle$$

with $g_{\omega,t}(u) := e^{2\pi i \omega u} g(u-t), \quad u \in \mathbb{R}$

Short Time Fourier Transform

Intuition:

• $g_{\omega,t}$ is "musical note" of frequency ω , which oscillates within the translated window $u \to g(u-t)$

Short Time Fourier Transform

Intuition:

• $g_{\omega,t}$ is "musical note" of frequency ω , which oscillates within the translated window $u \to g(u-t)$

• Innere product $\langle f|g_{\omega,t}\rangle$ measures the correlation between the musical note $g_{\omega,t}$ and the signal f.

Window Function

Box window

Window Function

Window Function

Hann window

Window Function

Trade off between smoothing and "ringing"

Time-Frequency Representation

Time-Frequency Representation

Time-Frequency Representation

Chirp signal and STFT with box window of length 0.05

Time-Frequency Representation

Chirp signal and STFT with Hann window of length 0.05

Time-Frequency Localization

 Size of window constitutes a trade-off between time resolution and frequency resolution:

Large window :	poor time resolution		
	good frequency resolution		
Small window :	good time resolution		
	poor frequency resolution		

 Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary position.

Short Time Fourier Transform

Signal and STFT with Hann window of length 0.02

Short Time Fourier Transform

Signal and STFT with Hann window of length 0.1

Heisenberg Uncertainty Principle

Window function $g \in L^2(\mathbb{R})$ with ||g|| = 1

Center

Width

$$t_{0} = t_{0}(g) := \int_{-\infty}^{\infty} t|g(t)|^{2} dt \qquad T(g) := \left(\int_{-\infty}^{\infty} (t - t_{0})^{2} |g(t)|^{2} dt\right)^{\frac{1}{2}}$$
$$\omega_{0} = \omega_{0}(g) := \int_{-\infty}^{\infty} \omega |\hat{g}(\omega)|^{2} d\omega \qquad \Omega(g) := \left(\int_{-\infty}^{\infty} (\omega - \omega_{0})^{2} |\hat{g}(\omega)|^{2} d\omega\right)^{\frac{1}{2}}$$

$$T(g) \cdot \Omega(g) \ge \frac{1}{4\pi}$$

Information Cells

 $g_{\omega,t}(u) := e^{2\pi i \omega u} g(u-t)$ "musical note"

MATLAB

- MATLAB function SPECTROGRAM
- N = window length (in samples)
- M = overlap (usually N/2)
- Compute DFT_N for every windowed section
- Keep lower N/2 Fourier coefficients
- \rightarrow Sequence of spectral vectors (for each window a vector of dimension N/2)

Example

Let x be a discrete time signal x(n) = f(Tn)Sampling rate: 1/T = 22050 Hz Window length: N = 4096Overlap: N/2 = 2048Hopsize: window length – overlap

Let $v_0 := (x(0), x(1), \dots, x(4095))$ $v_1 := (x(2048), \dots, x(6143))$ $v_2 := (x(4096), \dots, x(8191))$ \vdots

 v_m corresponds to window $[m \cdot 2048 : m \cdot 2048 + 4095]$

Example

Time resolution:

 $\frac{\text{hopsize}}{\text{sampling rate}} = \frac{4096 - 2048}{22050} = 0.093 = 93 \ ms$

Frequency resolution:

$$v = v_0 , \ \hat{v} := \mathrm{DFT}_N(v)$$
$$\hat{v}(k) \approx \frac{1}{T} \cdot \hat{f}\left(\frac{k}{N} \cdot \frac{1}{T}\right)$$
$$\omega = \frac{k}{N} \cdot \frac{1}{T} = k \cdot \frac{22050}{4096} = k \cdot 5.38 \text{ Hz}$$

Model assumption: Equal-tempered scale

- MIDI pitches: $p \in [1:128]$
- Piano notes: p = 21 (A0) to p = 108 (C8)
- Concert pitch: p = 69 (A4)
- Center frequency: $f_{\text{MIDI}}(p) = 2^{\frac{p-69}{12}} \cdot 440$ Hz

 \rightarrow Logarithmic frequency distribution Octave: doubling of frequency

Pitch Features

Idea: Binning of Fourier coefficients

Divide up the fequency axis into logarithmically spaced "pitch regions" and combine spectral coefficients of each region to a single pitch coefficient.

Details:

$$f_{\text{coeff}}(k) := \frac{k}{N} \cdot \frac{1}{T}$$

Let

 $S(p) := \{k : f_{\text{MIDI}}(p - 0.5) \le f_{\text{coeff}}(k) < f_{\text{MIDI}}(p + 0.5)\}$ be the set of coefficients assigned to a pitch $p \in [1 : 128]$ Then the pitch coefficient P(p) is defined as

$$P(p) := \sum_{k \in S(p)} |\hat{v}(k)|^2$$

Example: A4, p = 69

- Center frequency: $f(p = 69) = 2^{\frac{0}{12}} \cdot 440 = 440 \ Hz$
- Lower bound: $f(p = 68.5) = 2^{\frac{-0.5}{12}} \cdot 440 = 427.5 \ Hz$
- Upper bound: $f(p = 69.5) = 2^{\frac{0.5}{12}} \cdot 440 = 452.9 \ Hz$
- STFT with N = 4096, 1/T = 22050

f(k = 79) = 425.3 Hz f(k = 80) = 430.7 Hz f(k = 81) = 436.0 Hz f(k = 82) = 441.4 Hz f(k = 83) = 446.8 Hz f(k = 84) = 452.2 Hz f(k = 85) = 457.6 Hz:

Pitch Features

Example: A4, p = 69

- Center frequency: $f(p = 69) = 2^{\frac{0}{12}} \cdot 440 = 440 \ Hz$
- Lower bound: $f(p = 68.5) = 2^{\frac{-0.5}{12}} \cdot 440 = 427.5 \ Hz$
- Upper bound: $f(p = 69.5) = 2^{\frac{0.5}{12}} \cdot 440 = 452.9 \ Hz$
- STFT with N = 4096, 1/T = 22050

$$\frac{f(k = 79) = 425.3 Hz}{f(k = 80) = 430.7 Hz} \\
f(k = 81) = 436.0 Hz \\
f(k = 82) = 441.4 Hz \\
f(k = 83) = 446.8 Hz \\
f(k = 84) = 452.2 Hz$$

$$F(k = 85) = 457.6 Hz \\
\vdots$$

$$P(p = 69) = \sum_{k=80}^{84} |\hat{v}(k)|^{2}$$

Note	MIDI pitch	Center [Hz] frequency	Left [Hz] boundary	Right [Hz] boundary	Width [Hz]
A3	57	220.0	213.7	226.4	12.7
A#3	58	233.1	226.4	239.9	13.5
B3	59	246.9	239.9	254.2	14.3
C4	60	261.6	254.2	269.3	15.1
C#4	61	277.2	269.3	285.3	16.0
D4	62	293.7	285.3	302.3	17.0
D#4	63	311.1	302.3	320.2	18.0
E4	64	329.6	320.2	339.3	19.0
F4	65	349.2	339.3	359.5	20.2
F#4	66	370.0	359.5	380.8	21.4
G4	67	392.0	380.8	403.5	22.6
G#4	68	415.3	403.5	427.5	24.0
A4	69	440.0	427.5	452.9	25.4

Pitch Features

Note:

- $P \in \mathbb{R}^{128}$
- For some pitches, S(p) may be empty. This particularly holds for low notes corresponding to narrow frequency bands.

 \rightarrow Linear frequency sampling is problematic!

Solution:

Multi-resolution spectrograms or multirate filterbanks

Example: Friedrich Burgmüller, Op. 100, No. 2

Pitch Features

Spectrogram

Spectrogram

Pitch Features

Pitch representation

Pitch representation

Pitch Features Example: Chromatic scale Spectrogram 5000 4500 C8: 4186 Hz 15 4000 10 3500 Intensity (dB) 3000 2500 C7: 2093 Hz 2000 10 1500 15 C6: 1046 Hz -20 C5: 523 Hz 500 -25 C4: 261 Hz C3: 131 Hz Time (seconds)

Pitch Features

Example: Chromatic scale

Log-frequency spectrogram

Pitch Features

Chroma C

Time (seconds)

Intensity (dB)

-10

-15

20

16

Example: Chromatic scale

Log-frequency spectrogram

Chroma Features

Chroma Features

- Human perception of pitch is periodic in the sense that two pitches are perceived as similar in color if they differ by an octave.
- Seperation of pitch into two components: tone height (octave number) and chroma.
- Chroma : 12 traditional pitch classes of the equaltempered scale. For example:

Chroma C $\widehat{=} \{ \dots, C0, C1, C2, C3, \dots \}$

- Computation: pitch features → chroma features
 Add up all pitches belonging to the same class
- Result: 12-dimensional chroma vector.

Chroma Features

Chroma C

Chroma C[#]

Chroma Features

Chroma D

Chromatic circle

Shepard's helix of pitch perception

http://en.wikipedia.org/wiki/Pitch_class_space

Chroma Features

Example: C-Major Scale

Pitch representation

Chroma Features

Chroma representation

Chroma Features

Example: Beethoven's Fifth Chroma representation (normalized, 2 Hz) Smoothing (2 seconds) + downsampling (factor 5)

Chroma Features

Example: Beethoven's Fifth Chroma representation (normalized, 1 Hz) Smoothing (4 seconds) + downsampling (factor 10)

D#

D

Scherbakov в A# А G# G F# F Е

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Example: Bach Toccata

Chroma Features

Feature resolution: 10 Hz

Example: Bach Toccata

Chroma Features

- Sequence of chroma vectors correlates to the harmonic progression
- Normalization $v \to \frac{v}{\|v\|}$ makes features invariant to changes in dynamics
- Further quantization and smoothing: CENS features
- Taking logarithm before adding up pitch coefficients accounts for logarithmic sensation of intensity

Chroma Features

Example: Zager & Evans "In The Year 2525"

How to deal with transpositions?

Example: Zager & Evans "In The Year 2525"

Chroma Features

Example: Zager & Evans "In The Year 2525"

Audio Features

- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application

- http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
- MATLAB implementations for various chroma variants
- ISMIR 2011, Poster Session (PS2), Tuesday 13-15