

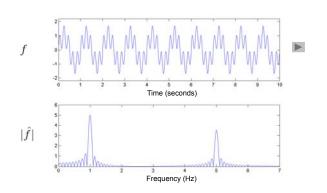
Lecture **Music Processing**

Audio Features

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Fourier Transform



Fourier Transform

Signal $f:\mathbb{R}\to\mathbb{R}$

Fourier representation $f(t)=\int\limits_{\omega\in\mathbb{R}}c_{\omega}e^{2\pi i\omega t}d\omega$, $c_{\omega}=\hat{f}(\omega)$ Fourier transform $\hat{f}(\omega)=\int\limits_{t\in\mathbb{R}}f(t)e^{-2\pi i\omega t}dt$

Fourier Transform

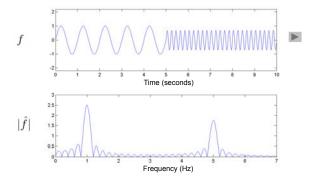
Signal $f: \mathbb{R} \to \mathbb{R}$

Fourier representation $f(t)=\int\limits_{\omega\in\mathbb{R}}c_{\omega}e^{2\pi i\omega t}d\omega$, $c_{\omega}=\hat{f}(\omega)$

 $\hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t)e^{-2\pi i\omega t} dt$ Fourier transform

- Tells which notes (frequencies) are played, but does not tell when the notes are played
- Frequency information is averaged over the entire time interval
- Time information is hidden in the phase

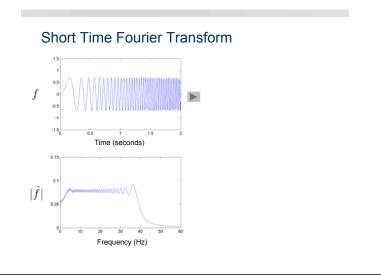
Fourier Transform

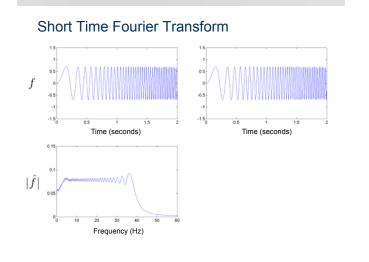


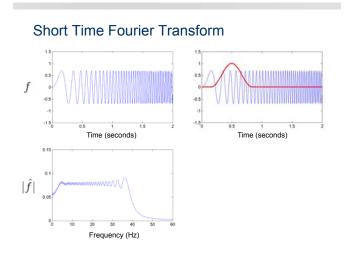
Short Time Fourier Transform

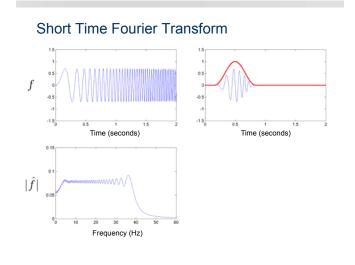
Idea (Dennis Gabor, 1946):

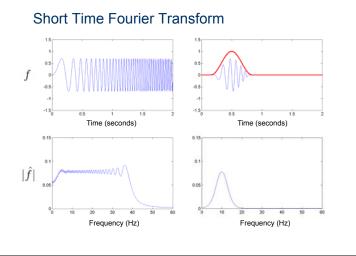
- Consider only a small section of the signal for the spectral analysis
 - → recovery of time information
- Short Time Fourier Transform (STFT)
- Section is determined by pointwise multiplication of the signal with a localizing window function

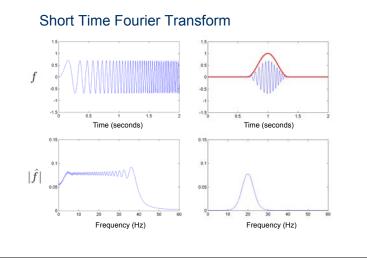




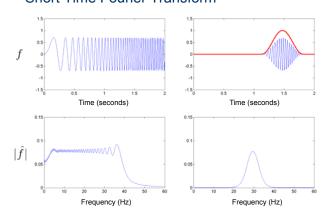








Short Time Fourier Transform



Short Time Fourier Transform

Definition

- Signal $f: \mathbb{R} \to \mathbb{R}$
- Window function $g:\mathbb{R}\to\mathbb{R}$ $(g\in L^2(\mathbb{R}),\|g\|=1)$
- STFT $\tilde{f}(\omega, t) := \int_{\mathbb{R}} f(u)\bar{g}(u t)e^{-2\pi i\omega u}du = \langle f|g_{\omega,t}\rangle$

with
$$g_{\omega,t}(u) := e^{2\pi i \omega u} g(u-t), \quad u \in \mathbb{R}$$

Short Time Fourier Transform

Intuition:

• $g_{\omega,t}$ is "musical note" of frequency ω , which oscillates within the translated window $u \to g(u-t)$

Short Time Fourier Transform

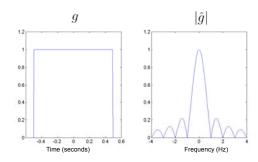
Intuition:

= $g_{\omega,t}$ is "musical note" of frequency ω , which oscillates within the translated window $u \to g(u-t)$

Innere product $\ \langle f|g_{\omega,t} \rangle$ measures the correlation between the musical note $\ g_{\omega,t}$ and the signal $\ f.$

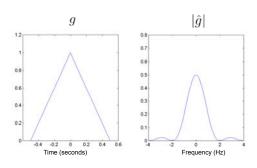
Window Function

Box window



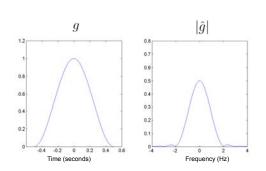
Window Function

Triangle window

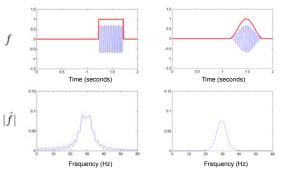


Window Function

Hann window

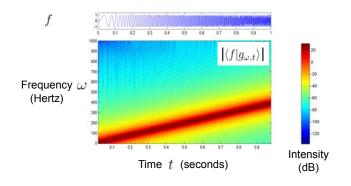


Window Function

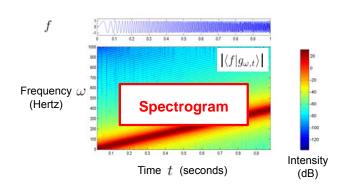


Trade off between smoothing and "ringing"

Time-Frequency Representation

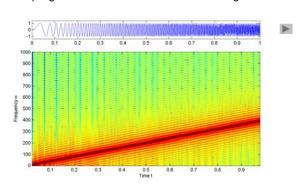


Time-Frequency Representation



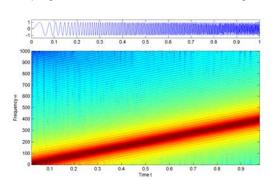
Time-Frequency Representation

Chirp signal and STFT with box window of length 0.05



Time-Frequency Representation

Chirp signal and STFT with Hann window of length 0.05



Time-Frequency Localization

 Size of window constitutes a trade-off between time resolution and frequency resolution:

Large window: poor time resolution

good frequency resolution

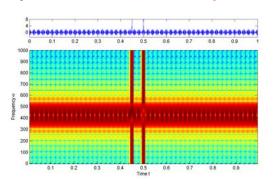
Small window: good time resolution

poor frequency resolution

 Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary position.

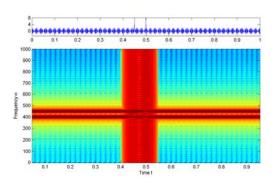
Short Time Fourier Transform

Signal and STFT with Hann window of length 0.02



Short Time Fourier Transform

Signal and STFT with Hann window of length 0.1



Heisenberg Uncertainty Principle

Window function $\ g \in L^2(\mathbb{R}) \ \text{with} \quad \|g\| = 1$

Center

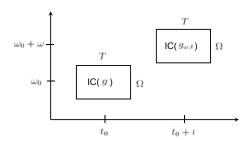
\/\idth

$$\begin{split} t_0 &= t_0(g) := \int_{-\infty}^{\infty} t |g(t)|^2 dt & T(g) := \left(\int_{-\infty}^{\infty} (t-t_0)^2 |g(t)|^2 dt \right)^{\frac{1}{2}} \\ \omega_0 &= \omega_0(g) := \int_{-\infty}^{\infty} \omega |\hat{g}(\omega)|^2 d\omega & \Omega(g) := \left(\int_{-\infty}^{\infty} (\omega-\omega_0)^2 |\hat{g}(\omega)|^2 d\omega \right)^{\frac{1}{2}} \end{split}$$

$$T(g)\cdot\Omega(g)\geq\frac{1}{4\pi}$$

Information Cells

$$g_{\omega,t}(u) := e^{2\pi i \omega u} g(u-t)$$
 "musical note"



MATLAB

- MATLAB function SPECTROGRAM
- N = window length (in samples)
- M = overlap (usually N/2)
- Compute DFT_N for every windowed section
- Keep lower N/2 Fourier coefficients
- ightarrow Sequence of spectral vectors (for each window a vector of dimension N/2)

Example

Let x be a discrete time signal x(n) = f(Tn)

 $\begin{array}{ll} \mbox{Sampling rate:} & 1/T = 22050 \ \mbox{Hz} \\ \mbox{Window length:} & N = 4096 \\ \mbox{Overlap:} & N/2 = 2048 \end{array}$

Hopsize: window length – overlap

Let $v_0 := (x(0), x(1), \dots, x(4095))$ $v_1 := (x(2048), \dots, x(6143))$ $v_2 := (x(4096), \dots, x(8191))$

 v_m corresponds to window $\left[m \cdot 2048 : m \cdot 2048 + 4095\right]$

Example

Time resolution:

$$\frac{\text{hopsize}}{\text{sampling rate}} = \frac{4096 - 2048}{22050} = 0.093 = 93 \ ms$$

Frequency resolution:

$$v = v_0$$
, $\hat{v} := DFT_N(v)$

$$\hat{v}(k) \approx \frac{1}{T} \cdot \hat{f}\left(\frac{k}{N} \cdot \frac{1}{T}\right)$$

$$\omega = \frac{k}{N} \cdot \frac{1}{T} = k \cdot \frac{22050}{4096} = k \cdot 5.38 \ \text{Hz}$$

Pitch Features

Model assumption: Equal-tempered scale

• MIDI pitches: $p \in [1:128]$

• Piano notes: p = 21 (A0) to p = 108 (C8)

• Concert pitch: p = 69 (A4)

• Center frequency: $f_{\mathrm{MIDI}}(p) = 2^{\frac{p-69}{12}} \cdot 440 \;\; \mathrm{Hz}$

→ Logarithmic frequency distribution Octave: doubling of frequency

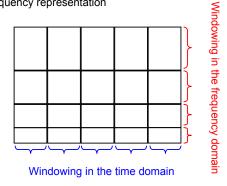
Pitch Features

Idea: Binning of Fourier coefficients

Divide up the fequency axis into logarithmically spaced "pitch regions" and combine spectral coefficients of each region to a single pitch coefficient.

Pitch Features

Time-frequency representation



Pitch Features

Details:

Let \hat{v} be a spectral vector obtained from a spectrogram w.r.t. a sampling rate 1/T and a window length N. The spectral coefficient $\hat{v}(k)$ corresponds to the frequency

$$f_{\text{coeff}}(k) := \frac{k}{N} \cdot \frac{1}{T}$$

Let

 $S(p) := \{k: f_{\mathrm{MIDI}}(p-0.5) \leq f_{\mathrm{coeff}}(k) < f_{\mathrm{MIDI}}(p+0.5)\}$ be the set of coefficients assigned to a pitch $p \in [1:128]$ Then the pitch coefficient P(p) is defined as

$$P(p) := \sum_{k \in S(p)} |\hat{v}(k)|^2$$

Pitch Features

Example: A4, p = 69

• Center frequency: $f(p=69) = 2^{\frac{0}{12}} \cdot 440 = 440 \ Hz$

• Lower bound: $f(p = 68.5) = 2^{\frac{-0.5}{12}} \cdot 440 = 427.5 \ Hz$

• Upper bound: $f(p = 69.5) = 2^{\frac{0.5}{12}} \cdot 440 = 452.9 \; Hz$

• STFT with N = 4096 , 1/T = 22050

Pitch Features

Example: A4, p = 69

• Center frequency: $f(p=69) = 2^{\frac{0}{12}} \cdot 440 = 440 \ Hz$

• Lower bound: $f(p = 68.5) = 2^{\frac{-0.5}{12}} \cdot 440 = 427.5 \ Hz$

• Upper bound: $f(p=69.5) = 2^{\frac{0.5}{12}} \cdot 440 = 452.9 \; Hz$

• STFT with N = 4096 , 1/T = 22050

$$\begin{array}{lll} \vdots & \vdots & \vdots \\ f(k=79) & = & 425.3 \; Hz \\ f(k=80) & = & 430.7 \; Hz \\ f(k=81) & = & 436.0 \; Hz \\ f(k=82) & = & 441.4 \; Hz \\ f(k=83) & = & 446.8 \; Hz \\ f(k=84) & = & 452.2 \; Hz \\ f(k=85) & = & 457.6 \; Hz \\ \vdots & & \vdots & & \\ \end{array} \right\} \quad \mathcal{S}(p=69) \\ P(p=69) = \sum_{k=80}^{84} |\hat{v}(k)|^2$$

Pitch Features

Note	MIDI pitch	Center [Hz] frequency	Left [Hz] boundary	Right [Hz] boundary	Width [Hz]
A3	57	220.0	213.7	226.4	12.7
A#3	58	233.1	226.4	239.9	13.5
B3	59	246.9	239.9	254.2	14.3
C4	60	261.6	254.2	269.3	15.1
C#4	61	277.2	269.3	285.3	16.0
D4	62	293.7	285.3	302.3	17.0
D#4	63	311.1	302.3	320.2	18.0
E4	64	329.6	320.2	339.3	19.0
F4	65	349.2	339.3	359.5	20.2
F#4	66	370.0	359.5	380.8	21.4
G4	67	392.0	380.8	403.5	22.6
G#4	68	415.3	403.5	427.5	24.0
A4	69	440.0	427.5	452.9	25.4

Pitch Features

Note:

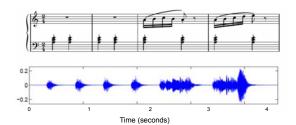
- $P \in \mathbb{R}^{128}$
- For some pitches, S(p) may be empty. This particularly holds for low notes corresponding to narrow frequency bands.
- \rightarrow Linear frequency sampling is problematic!

Solution:

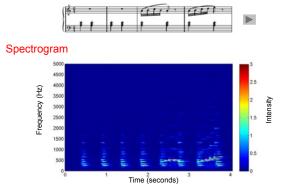
Multi-resolution spectrograms or multirate filterbanks

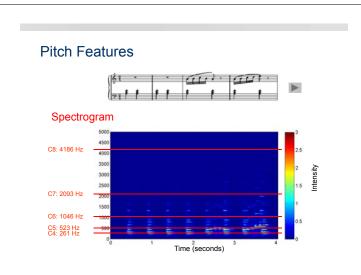
Pitch Features

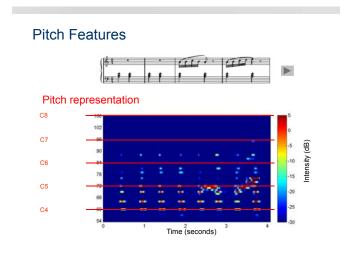
Example: Friedrich Burgmüller, Op. 100, No. 2

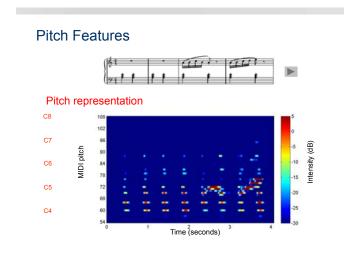


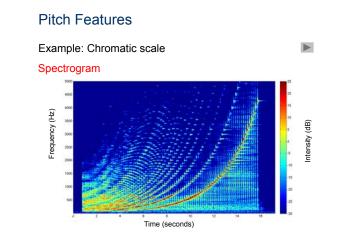
Pitch Features

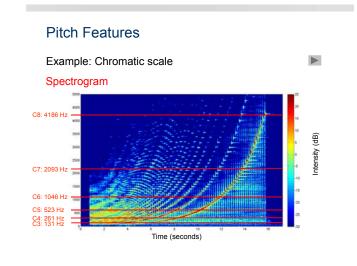


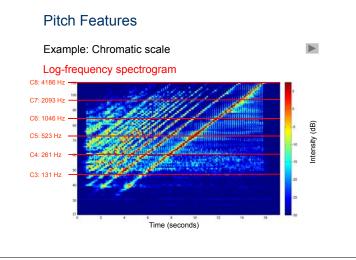


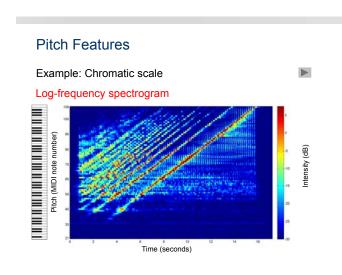


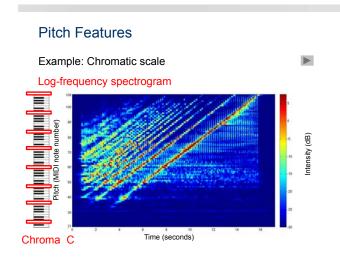


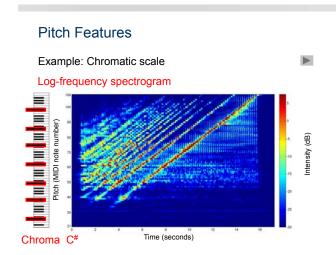


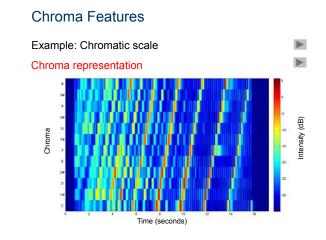


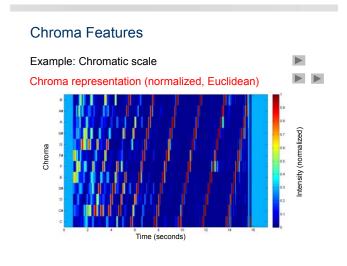










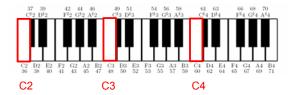


Chroma Features

- Human perception of pitch is periodic in the sense that two pitches are perceived as similar in color if they differ by an octave.
- Seperation of pitch into two components: tone height (octave number) and chroma.
- Chroma: 12 traditional pitch classes of the equaltempered scale. For example:
 - Chroma C $\widehat{=}$ {..., C0, C1, C2, C3, ...}
- Computation: pitch features → chroma features
 Add up all pitches belonging to the same class
- Result: 12-dimensional chroma vector.

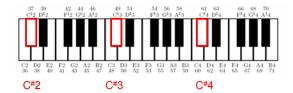
Chroma Features

Chroma Features



Chroma C

Chroma Features



Chroma C#

Chroma Features

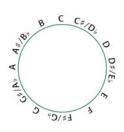


Chroma D

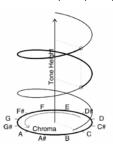
Chroma Features

Chromatic circle

Shepard's helix of pitch perception

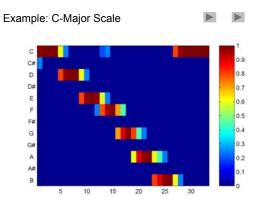


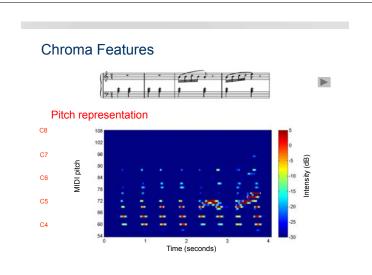
http://en.wikipedia.org/wiki/Pitch_class_space

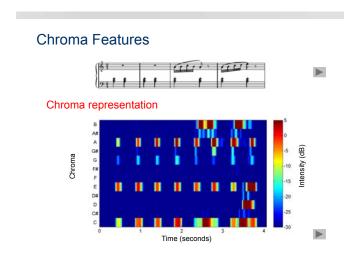


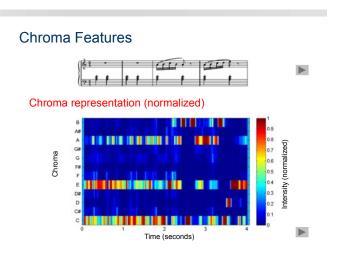
Bartsch/Wakefield, IEEE Trans. Multimedia, 2005

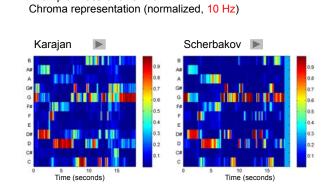
Chroma Features





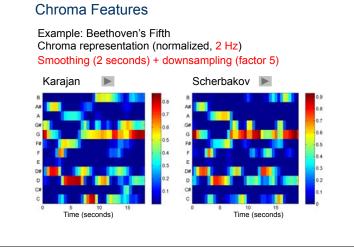


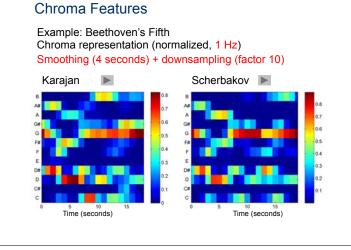




Chroma Features

Example: Beethoven's Fifth

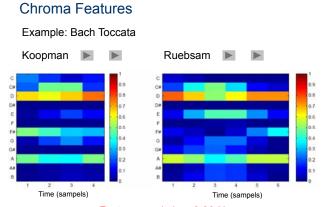




Chroma Features Example: Bach Toccata Koopman Ruebsam Ruebsam Time (sampels)

Chroma Features Example: Bach Toccata Koopman Ruebsam Ruebsam Feature resolution: 10 Hz

Chroma Features Example: Bach Toccata Koopman Ruebsam Ruebsam Companies Ruebsam Ruebsa



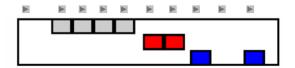
Feature resolution: 0.33 Hz

Chroma Features

- Sequence of chroma vectors correlates to the harmonic progression
- Normalization $v \to \frac{v}{\|v\|}$ makes features invariant to changes in dynamics
- Further quantization and smoothing: CENS features
- Taking logarithm before adding up pitch coefficients accounts for logarithmic sensation of intensity

Chroma Features

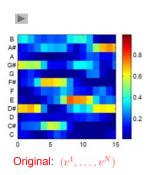
Example: Zager & Evans "In The Year 2525"



How to deal with transpositions?

Chroma Features

Example: Zager & Evans "In The Year 2525"



Audio Features

- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application

- http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
- MATLAB implementations for various chroma variants
- ISMIR 2011, Poster Session (PS2), Tuesday 13-15

Chroma Features

Example: Zager & Evans "In The Year 2525"

