
Friedrich-Alexander-Universität Erlangen-Nürnberg

Master Thesis

Deep-Learning Approaches for
Fundamental Frequency Estimation of Music Recordings

submitted by

Judith Bauer

submitted

November 18, 2019

Supervisor / Advisor

Prof. Dr. Meinard Müller
M.Sc. Sebastian Rosenzweig

Reviewers

Prof. Dr. Meinard Müller
Prof. Dr. Andreas Maier

International Audio Laboratories Erlangen
A joint institution of the

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and
the Fraunhofer-Institut für Integrierte Schaltungen IIS.

ERKLÄRUNG

Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen
oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.
Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form in einem
Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Erlangen, November 18, 2019

Judith Bauer

i Master Thesis, Judith Bauer

ACKNOWLEDGEMENTS

Acknowledgements

First, I would like to thank my supervisors Sebastian Rosenzweig and Prof. Dr. Meinard Müller
from the International Audio Laboratories Erlangen. Sebastian Rosenzweig was always helpful
and supporting in case of questions and provided me with constructive critics and suggestions.
Thanks also to Prof. Dr. Meinard Müller for the opportunity to write my Master thesis in this
interesting research area and his guidance and continuous support. Furthermore, I would like to
extend my thanks to the complete AudioLabs group for the friendly working atmosphere.

Many thanks of course also to my family and Manuel for the support and encouragement.

iii Master Thesis, Judith Bauer

ABSTRACT

Abstract

A main characteristic of music is its melody. A melody is a sequence of notes. Notes are

characterized by their duration and pitch. So the investigation of pitches plays an important

role in music processing. The task of extracting pitches closely relates to the examination of

the fundamental frequencies (F0) of an audio recording. The pitch is a perceived property of

a note whereas the fundamental frequency is a physical property of the waveform of an audio

recording. For most cases, the pitch corresponds to the fundamental frequency. F0-estimation

is a challenging task, because each note played on an instrument consists of the fundamental

frequency and multiple (differently weighted) overtones. For polyphonic audio recordings with

simultaneously occurring notes, this task becomes even more difficult.

For fundamental frequency estimation, several approaches already exist. There are multiple

model-based approaches that use techniques from signal processing. Additionally, with the rise

of artificial intelligence and deep learning, approaches using neural networks are developed for

F0-estimation.

In this thesis, we first give an overview of model-based approaches and evaluate them for some

audio examples. As main contribution, we analyze and evaluate CREPE, a convolutional neural

network for F0-estimation developed by Kim et al. [1]. Then, as a next step, modifications for the

network and the training process are presented and evaluated. This includes data augmentation,

layer freezing, and modifications to the network structure. Finally, CREPE is evaluated on a

dataset consisting of Georgian vocal music.

The result of our experiments is that CREPE achieves high accuracies on a dataset of resynthesized

audio recordings and performs similar or better compared to previous model-based approaches.

We also successfully retrained the network. In order to improve training in the presence of few

training samples we found out that data augmentation is a useful technique. The training process

was accelerated using layer freezing or a smaller network with only a slight decline in accuracies.

v Master Thesis, Judith Bauer

ZUSAMMENFASSUNG

Zusammenfassung

Eine wichtige Eigenschaft von Musik ist die Melodie. Eine Melodie ist eine Sequenz von

Tönen. Töne werden durch ihre Dauer und die Tonhöhe beschrieben. Deshalb spielt die

Untersuchung von Tonhöhen eine wichtige Rolle in der Musikverarbeitung. Die Extraktion von

Tonhöhen hängt eng mit der Untersuchung der Fundamentalfrequenzen (F0) einer Audioaufnahme

zusammen. Die Tonhöhe ist eine wahrgenommene Eigenschaft eines Tons, während es sich bei der

Fundamentalfrequenz um eine physikalische Eigenschaft der Wellenform einer Audioaufnahme

handelt. In den meisten Fällen entspricht die wahrgenommene Tonhöhe der Fundamentalfrequenz.

F0-Schätzung ist eine anspruchsvolle Aufgabe, weil jeder Ton, der auf einem Instrument gespielt

wird, sich aus der Fundamentalfrequenz und mehreren (unterschiedlich gewichteten) Obertönen

zusammensetzt. Für mehrstimmige Audioaufnahmen mit gleichzeitig erklingenden Tönen wird

diese Aufgabe noch schwieriger.

Zur Fundamentalfrequenzschätzung existieren bereits mehrere Ansätze. Es gibt modellbasierte

Ansätze, die Techniken aus der Signalverarbeitung nutzen. Durch den immer größeren Einfluss

von künstlicher Intelligenz und Deep Learning werden auch zunehmend Ansätze zur F0-Schätzung

mit neuronalen Netzen entwickelt.

In dieser Arbeit geben wir zuerst einen Überblick über modellbasierte Ansätze und wenden

diese auf ausgewählte Audiobeispiele an. Der Hauptbeitrag dieser Arbeit ist die Analyse und

Evaluation von CREPE, einem Convolutional Neural Network zur F0-Schätzung von Kim et

al. [1]. Des Weiteren werden Anpassungen an dem Netz und dem Trainingsprozess vorgestellt

und evaluiert. Dazu gehören die Anreicherung der Daten, die Fixierung von Schichten und

Änderungen der Netzstruktur. Abschließend wird CREPE auf einem Datensatz mit georgischer

Vokalmusik evaluiert.

Das Ergebnis unserer Experimente ist, dass CREPE hohe Genauigkeiten auf einem Datensatz

mit resynthetisierten Daten erzielt und vergleichbar oder besser abschneidet als bisherige Ansätze.

Des Weiteren war ein erneutes Training des Netzes erfolgreich. Zur Verbesserung des Trainings

mit einem eingeschränkten Datensatz hat sich die Anreicherung der Daten als nützlich erwiesen.

Außerdem konnten wir das Training des Netzes mit Hilfe von fixierten Schichten oder einer

reduzierten Netzgröße beschleunigen, was nur zu geringfügig niedrigeren Genauigkeiten führte.

vii Master Thesis, Judith Bauer

CONTENTS

Contents

Erklärung i

Acknowledgements iii

Abstract v

Zusammenfassung vii

1 Introduction 3

1.1 Structure of Thesis . 5

1.2 Main Contributions . 5

2 Fundamentals 7

2.1 Signal Processing . 7

2.2 Fundamental Frequency Estimation . 10

2.3 Datasets . 14

2.4 Evaluation Measures . 20

3 Model-Based Fundamental Frequency Estimation 25

3.1 YIN . 25

3.2 pYIN . 30

3.3 SWIPE . 32

3.4 Melodia . 34

4 DNN-Based Approach 41

4.1 CREPE . 41

4.2 Own Approaches . 55

5 Evaluation on MDB-stem-synth 63

5.1 CREPE . 63

5.2 Own Approaches . 65

6 Evaluation on Georgian Recordings 79

1 Master Thesis, Judith Bauer

CONTENTS

6.1 Pitch Estimation . 79

6.2 Voicing Estimation . 84

7 Conclusions 89

Bibliography 91

2 Master Thesis, Judith Bauer

1. INTRODUCTION

Chapter 1

Introduction

Music and speech recordings are complex data with a high informational content which can be

analyzed automatically. In both music and speech, the pitch is a characteristic attribute. In

speech, the pitch depends on the speaker and the context of the speech recording (surrounding,

situation of the speaker). While speaking, the pitch changes and indicates for example that a

sentence is a question or a request. Also in music, pitch is an important aspect to be analyzed.

The pitches correspond to the musical notes and therefore describe the melody of a music

recording. The results of pitch estimation can be used for example to convert a recording into a

symbolic representation using a sequence of musical notes. Another application is to synchronize

a music recording with an existing music transcription by analyzing the pitches of the recording

using pitch estimation.

Pitch is a property of a note perceived by the listener [2]. In contrast, the fundamental frequency

(F0) is a physical property of the waveform of an audio recording. Although, the pitch corresponds

to the fundamental frequency for most cases, so we use these terms interchangeably. The research

concerning fundamental frequency estimation can be separated into different tasks. First, it

can be divided into F0-estimation for monophonic audio and F0-estimation for polyphonic

audio. When analyzing the pitches of polyphonic audio, the object can either be to analyze the

fundamental frequencies of the main melody (predominant melody estimation) or to analyze

multiple simultaneously occurring pitches, e.g. multiple music instruments (multipitch estimation).

In this thesis, we focus on monophonic pitch tracking as basic task of pitch estimation.

For monophonic pitch estimation, the input is a monophonic audio recording. At each time

instance, there is only one musical note played. A note played on a melodic instrument usually

consist of a fundamental frequency. Additionally, there are harmonic partials which can be

differently weighted depending on the timbre of the instrument. The task is to examine the

music recordings over time and determine the fundamental frequencies at these time instances.

An example using an excerpt of “In the Hall of the Mountain King” (Edvard Grieg) is shown

3 Master Thesis, Judith Bauer

1. INTRODUCTION

in Figure 1.1. In Figure 1.1a, the sheet music representation is displayed. Figure 1.1b shows

the corresponding waveform. The expected sequence of fundamental frequencies is shown in

Figure 1.1c. Several approaches for fundamental frequency estimation exist. These can be divided

into model-based methods (e.g. YIN [3] and pYIN [4]) and approaches based on deep neural

networks (DNN). Model-based approaches use techniques from signal processing to analyze a

music signal. DNN-based approaches are data-driven. They are trained using annotated data

consisting of audio excerpts and the correct fundamental frequencies for the excerpts. A recently

published approach is CREPE (A Convolutional Representation for Pitch Estimation) developed

by Kim et al. [1], which is based on a deep convolutional neural network. The input for CREPE

is an audio recording (as in Figure 1.1b) and the output is a sequence of estimated fundamental

frequencies (as in Figure 1.1c). In this thesis, we use the network of CREPE as an example for

a data-driven approach for fundamental frequency estimation and compare it to model-based

approaches. As a main contribution, we present modifications to the network and evaluate the

modifications by retraining the network.

Figure 1.1: Short excerpt of “In the Hall of the Mountain King” (Edvard Grieg) played by a
viola. (a) Sheet music representation. (b) Waveform of a resynthesized recording. (c) Sequence
of fundamental frequency values from the annotation.

4 Master Thesis, Judith Bauer

1.1 STRUCTURE OF THESIS

1.1 Structure of Thesis

In Chapter 2, we discuss the fundamentals that are necessary for this thesis. This includes basic

aspects of signal processing. Then the task of fundamental frequency estimation is explained. For

the development and the evaluation of F0-estimation approaches, some datasets are necessary,

so the utilized datasets are presented. Furthermore, we discuss evaluation metrics for pitch

estimation and voicing estimation.

In Chapter 3, we give an overview of model-based approaches for fundamental frequency estima-

tion. This includes YIN [3] and its probabilistic version pYIN [4]. Also a pitch estimator using a

sawtooth function (SWIPE [5, 6]) and an algorithm for polyphonic music (MELODIA [7]) are

presented.

In Chapter 4, we discuss models based on deep neural networks. First, the convolutional neural

network CREPE [1] is presented. It is examined using some artificial signals. Then, we develop

modifications using data augmentation, layer freezing and changes to the network structure.

We evaluate CREPE and the new approaches in Chapter 5. For evaluation, a dataset with

monophonic audio stems and pitch annotations (MDB-stem-synth [8]) is used.

Finally, we use a more realistic dataset of traditional Georgian vocal music for evaluation of

pitch estimation and voicing estimation in Chapter 6.

1.2 Main Contributions

The first contribution of this thesis is the analysis of CREPE [1]. Here, the functioning is examined

using artificially generated data of sinusoidals, a chirp signal and a signal with harmonics. CREPE

is also applied to some examples of the MDB-stem-synth dataset [8] and the results are compared

to the results obtained with other pitch estimators. Then, the original version of CREPE is

applied to the full MDB-stem-synth dataset.

As our main contribution, we test several strategies to improve the network performance and

the training process. First, we use data augmentation in order to increase the available dataset

for training and compensate for biases in the dataset. For this, we apply pitch shifting to the

audio files. Second, we examine the role of the first convolutional layer and exclude this layer

from training by precomputing appropriate weights. Next, we analyze the output layer and

increase its dimension. Then, we modify the network structure and decrease the filter sizes and

the number of filters in order to create a smaller network.

We evaluate these modifications using the MDB-stem-synth dataset [8]. In summary, we show that

data augmentation (pitch shifting) is useful for improving the network performance. Furthermore,

we show that the training process can be accelerated using fixed weights for the first layer and a

smaller network.

5 Master Thesis, Judith Bauer

2. FUNDAMENTALS

Chapter 2

Fundamentals

In this chapter, we present the fundamentals that are necessary for this thesis. We start with the

basics of signal processing (Fourier analysis and the short-time Fourier transform) in Section 2.1.

Next, in Section 2.2, we present the task of fundamental frequency estimation. Then, the datasets

that are used in the following chapters are introduced in Section 2.3. Here, also the running

examples are presented. Finally, we introduce evaluation measures for pitch estimation and

voicing estimation in Section 2.4.

2.1 Signal Processing

Music is physically represented by audio signals. When, e.g. an instrument is played, this creates

air pressure changes. At one location, these air pressure changes can be measured over time. This

leads to a pressure-time signal which captures properties of the music like pitch, loudness and

timbre. Mathematically, the signal is a function f : R→ R. So each point in time t is mapped to

a value f(t). If a pattern of air pressure occurs repeatedly after a period of time, it is a periodic

waveform. The number of periods per second (reciprocal of the period) is the frequency ω. It is

measured in Hertz (Hz). In order to examine the frequencies in a signal, Fourier analysis is an

important tool.

2.1.1 Fourier Analysis

The object of the Fourier analysis is to examine which frequencies are present in a signal. For

each signal, it is possible to decompose it into weighted sinusoids of different frequencies (and

phases). Figure 2.1 shows an example signal (blue curve) that can be decomposed into two

components (gray lines) using the Fourier transform. The representation of the original signal

7 Master Thesis, Judith Bauer

2. FUNDAMENTALS

as two sinusoids with weights 1 and 0.7 is the Fourier representation of the signal. When an

Figure 2.1: The blue signal can be decomposed into the two grey signals: sin(t) + 0.7 * sin(2t).

ideal artificial single tone is produced, it causes a waveform with a frequency specific to the

pitch of the tone. For example if an artificial A4 is produced it leads to changes in air pressure

with a frequency of 440 Hz. So analyzing the sinusoids and their amplitudes in a waveform

corresponds to analyzing the pure tones of which the signal is composed. To approach the present

frequencies and their amplitudes, the Fourier transform is computed. As continuous functions

cannot be processed by computers, a discrete version of the Fourier transform is often used. For

this, instead of the original signal f , we use a discrete-time signal x that is sampled equidistantly

with a sampling period T

x(n) := f(n · T). (2.1)

The sampling rate Fs in Hertz (Hz) can be derived from the sampling period by taking the

inverse

Fs := 1/T. (2.2)

The chosen sampling rate determines whether the original signal can be reconstructed from the

discretized signal. According to the sampling theorem, reconstruction is possible, if there are no

frequencies higher than Fs/2. So if a signal has a sampling rate of e.g. 44100 Hz, the original

signal can be reconstructed if it contains only frequencies below 22050 Hz (humans can hear

frequencies until approximately 20 kHz). The formula for the discrete Fourier transform (DFT)

is (cf. [9, Section 2.1.3]):

X(k) =

N−1∑
n=0

x(n)exp(−2πikn/N) (2.3)

8 Master Thesis, Judith Bauer

2.1 SIGNAL PROCESSING

for samples x(0), x(1), ..., x(N − 1) and frequency indices k ∈ [0 : N − 1].

X(k) then corresponds to the physical frequency

Fcoef(k) :=
k · Fs

N
(2.4)

measured in Hertz.

2.1.2 Short-Time Fourier Transform

The discrete Fourier transform analyzes the frequencies of the complete signal. However, most

audio signals change over time and are only consistent in a short time interval. So for audio

processing, the short-time Fourier transform (STFT) can be used instead. It only examines

the frequencies in a short interval. The size of the interval is determined by the window size

N ∈ N. A window with this size is slided over the signal in intervals determined by the hop size

H ∈ N. The Fourier transform is then computed for each frame. This leads to the following

definition of the short-time Fourier transform for a discrete time signal x : Z→ R (according to

[9, Section 2.1.4]):

X (m, k) =
N−1∑
n=0

x(n+mH)w(n)exp(−2πikn/N). (2.5)

with m ∈ Z (time index), k ∈ [0 : K] (frequency index) and w : [0 : N − 1] → R (window

function). The time index m corresponds to the physical time

Tcoef(m) :=
m ·H
Fs

(2.6)

measured in seconds.

From the short-time Fourier transform, the spectrogram can be computed by taking the magni-

tude:

Y(m, k) =
∣∣X (m, k)

∣∣ . (2.7)

After computing a spectrogram, a compressed spectrogram can be derived. This procedure

balances out the sound components with low and high energy. The motivation for this is that the

intensity of sounds is perceived logarithmically. So components with low energy are enhanced

using logarithmic compression (cf. [9, Section 3.1.2.1]):

(Γγ ◦ Y)(m, k) := log(1 + γ · Y(m, k)) (2.8)

with the logarithmic compression function Γγ(v) := log(1 + γ · v) and γ ∈ R>0. The constant γ

determines the amount of compression. A higher value of γ indicates a higher compression.

9 Master Thesis, Judith Bauer

2. FUNDAMENTALS

Figure 2.2: Signal of a C-major scale played by a piano (audio from [10]). (a) Waveform.
(b) Magnitude spectrogram. (c) Compressed spectrogram (γ = 10).

For an example using a C-major scale played by a piano, see Figure 2.2 (audio from [10]). It shows

the difference between a magnitude spectrogram and a logarithmically compressed spectrogram

(γ = 10). In the compressed spectrogram, the components with a lower energy are more visible.

2.2 Fundamental Frequency Estimation

The analysis of the melody of an audio recording is closely related to the task of estimating the

fundamental frequencies. This task, its variants and challenges are presented in this section.

Additionally, we explain one approach to solve this task using salience-based fundamental

frequency estimation.

10 Master Thesis, Judith Bauer

2.2 FUNDAMENTAL FREQUENCY ESTIMATION

2.2.1 Task Description

The task of fundamental frequency estimation can be separated into different tasks depending

on the input audio. If the input is a monophonic audio recording with only one pitch present

at each time frame, this is referred to as monophonic pitch estimation. The input can also

be a polyphonic audio recording (multiple pitches present at some time frames). This can be

the case if an instrument is recorded that produces multiple tones like a piano or if multiple

instruments are recorded where each instrument produces one pitch like multiple flutes. Also a

mixture of multiphonic and monophonic instruments is possible. When analyzing the pitches of

a polyphonic audio recording, this task can be divided into predominant melody estimation and

multipitch estimation. In predominant melody estimation, the objective is to identify the pitches

belonging to the main melody (for some recordings difficult to determine). If all pitches should

be investigated, this is referred to as multipitch estimation [11]. Here, we focus on monophonic

pitch estimation as a basic task of pitch estimation.

When referring to pitch estimation, this is often used interchangeably with fundamental frequency

estimation. As explained in Section 2.1, the signal of a recorded tone can be decomposed into

multiple sinusoids. Each sinusoid is called a partial. The fundamental frequency (F0) is the

frequency of the partial with the lowest frequency. This frequency is also referred to as the first

partial or the first harmonic [9]. Further harmonics are the partials with a frequency that is

an integer multiple of the fundamental frequency. So the fundamental frequency is a physical

property of the waveform. Pitch, in contrast, is a property perceived by the listener [2]. For most

cases, the pitch directly corresponds to the fundamental frequency. Still, there are examples

where another partial has a higher amplitude then the first partial.

Analyzing the melody of an audio recording is an important part of music processing. A melody

consists of multiple pitches over time. Therefore, when analyzing pitches of an audio recording,

a sequence of frequency values should be computed over time. A frequency path over time is

a frequency trajectory [9, Section 8.2]. Formally, a frequency trajectory can be defined as a

function η

η : Z→ R ∪ {∗}. (2.9)

The function η assigns to each time index a frequency value in Hertz (in R) or a symbol (∗)
indicating that there is no melody present at this time instance (unvoiced). In pitch estimation,

we are interested in the fundamental frequencies. Hence, the resulting trajectory is referred to as

F0-trajectory.

To calculate a F0-trajectory from a monophonic recording, there are different approaches. They

can be categorized as model-based or based on a deep neural network (DNN-based) approaches.

Model-based approaches often use techniques from signal processing. They can either directly

analyze the signal in the time-domain or transfer the signal to the frequency domain using the

11 Master Thesis, Judith Bauer

2. FUNDAMENTALS

Fourier transform and then analyze the spectrogram. Examples for model-based approaches are

YIN [3], pYIN [4], SWIPE [5, 6] and Melodia [7]. These are presented in Chapter 3. Besides

model-based approaches, there are DNN-based approaches. They use deep neural networks that

are trained for the estimation of fundamental frequencies using annotated audio data. One

example for an approach using a deep convolutional neural network is CREPE [1] which will be

presented in Section 4.1.

2.2.2 Salience-Based Fundamental Frequency Estimation

For frequency-domain based approaches for fundamental frequency estimation, a salience rep-

resentation based on a refined log-frequency spectrogram can be useful. We start with the

computation of a short-time Fourier transform as explained in Section 2.1.2. The frequency bins

of the STFT are equally spaced over the frequency space. But the perceived pitch is logarithmic

in the frequency. So instead of directly using the frequency values, each frequency ω is assigned

to a bin index Bin(ω)(cf. [9, Section 8.2.2.1]):

Bin(ω) :=

⌊
1200

R
· log2

(
ω

ωref

)
+ 1.5

⌋
(2.10)

with ωref ∈ R (reference frequency, assigned to bin index 1) and R ∈ R (resolution of frequency

axis).

Using Equation 2.10, sets of frequency indices that are assigned to the same bin are defined

(cf. [9, Section 8.2.2.1]):

P (b) := {k : Bin(Fcoef(k)) = b} (2.11)

for bin indices b ∈ [1 : B]. Now, we can define the refined log-frequency spectrogram by summing

over all frequency indices belonging to the same set:

YLF(n, b) :=
∑

k∈P (b)

|X (n, k)| (2.12)

This refined log-frequency spectrogram can be further processed. First, in Section 2.2.2.1, a

technique called “Instantaneous Frequency” will be explained which leads to a higher frequency

resolution. Then, in Section 2.2.2.2, a salience representation is derived using harmonic summation.

These sections follow the explanations in [9].

12 Master Thesis, Judith Bauer

2.2 FUNDAMENTAL FREQUENCY ESTIMATION

2.2.2.1 Instantaneous Frequency

Using the center frequencies Fcoef(k) as defined in Equation 2.4 often results in a blurry spec-

trogram. The reason for this is that the frequency resolution is too low. A higher frequency

resolution is possible by increasing the window length N of the STFT. However, this also results

in a decreased time resolution which might not be desired. This can be improved using the

instantaneous frequency. It takes the phase information of the spectrogram into account to

increase the frequency resolution without changing the time resolution. This section follows [9,

Section 8.2.1 and Section 8.2.2.2].

The components of the Fourier representation of a signal are described by a frequency parameter

ω ∈ R and a phase parameter ϕ ∈ [0, 1). When measuring the phase ϕ1 at time t1 and the phase

ϕ2 at time t2, the phase ϕPred can be predicted for time t2

ϕPred := ϕ1 + ω · (t2 − t1), (2.13)

if there is a frequency ω present in the signal. The prediction error is then defined by the

difference between the correct phase and the predicted phase:

ϕErr := Ψ(ϕ2 − ϕPred) (2.14)

with a function Ψ that maps the phase difference into the range [-0.5, 0.5]. Based on this, an

improved frequency estimate can be computed:

IF(ω) := ω +
ϕErr

t2 − t1
. (2.15)

IF(ω) is the instantaneous frequency at ω. This concept can be transferred to the STFT, leading

to an instantaneous frequency F IF
coef(k, n). From this, bins of frequency indices can be computed

and a refined log-frequency spectrogram YIF
LF is obtained.

2.2.2.2 Harmonic Summation

Depending on the instrument, each tone produces not only a signal of the fundamental frequency

but also harmonic partials. The first partial is the fundamental frequency. The other partials are

integer multiples of the first partial. This can be used to improve a spectrogram. So instead

of directly using the frequencies estimated by the STFT, for each entry in the spectrogram a

harmonic summation is performed.

13 Master Thesis, Judith Bauer

2. FUNDAMENTALS

For a spectrogram as defined in Equation 2.7, the harmonic-sum spectrogram is computed as

follows (cf. [9, Section 8.2.2.3]):

Ỹ(n, k) :=
H∑
h=1

Y(n, k · h) (2.16)

for n, k ∈ Z. The parameter H ∈ N determines the amount of harmonics that are used for the

harmonic summation. When applying harmonic summation to a log-frequency spectrogram,

the product turns into a sum. This is because in the original spectrogram, the partials are

integer multiples. For log-frequency spectrograms, the partials have always the same distance,

independent of the fundamental frequency. So a slightly modified formula has to be used.

When applying instantaneous frequency (see Section 2.2.2.1) to improve the frequency resolution

and harmonic summation to further improve the spectrogram, the result is a spectrogram

ỸIFLF . This spectrogram is the salience representation of an audio recording. From the salience

representation, the fundamental frequencies can be estimated.

2.3 Datasets

For the evaluation of pitch estimation approaches and the training of DNN-based approaches,

some audio files are necessary. The data used for this work can be divided into three groups. First,

some artificial data like chirps and tones with harmonics were created. Then the MDB-stem-synth

dataset [8] is used for training and evaluation. Additionally, a dataset of Georgian Vocal Music

[12, 13] is used for evaluation on a more complex dataset.

2.3.1 Artificial Data

For the examination of a pitch estimation approach, we created some artificial signals. The three

presented signals also serve as running artificial examples for the following chapters.

The first signal consists of sinusoids. It starts with a C2 (65.406 Hz), continues with an A5

(880.0 Hz), then there is a break and finally an E5 (659.255 Hz). The voiced parts have a duration

of three seconds each, the break has a duration of two seconds. The magnitude spectrogram of

this signal is shown in Figure 2.3a.

The second example is a signal with an additional harmonic partial. With this signal, the

influence of partials for the estimation of fundamental frequencies can be examined. The duration

is ten seconds. The signal has a frequency of 130.813 Hz (C3), which is the first harmonic. The

amplitude of this frequency decreases from 1.0 to 0.0. Additionally, a frequency of 261.626 Hz (C4,

second harmonic) is present, for which the amplitude increases from 0.0 to 1.0. The amplitudes

14 Master Thesis, Judith Bauer

2.3 DATASETS

of both tones change linearly over the length of the signal. For the magnitude spectrogram see

Figure 2.3b.

The third example is a chirp signal. It is useful in order to examine the pitch estimations for a

larger range of frequencies. Here, we use a chirp which has a duration of 60 seconds. It starts with

30 Hz (between B0 flat and B0) and reaches to 2000 Hz (between B6 and C7). The fundamental

frequency estimator CREPE is supposed to be applicable to frequencies between 31.70 Hz and

2005.50 Hz, so its range is similar to the range covered by the chirp. The magnitude spectrogram

of the chirp signal is shown in Figure 2.3c.

All three signals (pure sinusoids, signal with harmonics, chirp signal) are created with a sampling

rate of 16000 Hz.

2.3.2 MDB-stem-synth

Another dataset that will be used in this thesis is the MDB-stem-synth dataset [8]. It contains

several annotated monophonic audio files and is therefore useful for larger evaluations and

training of neural networks. In this section, we start with a description of the dataset and then

introduce the running examples from this dataset.

2.3.2.1 Dataset Description

The MDB-stem-synth dataset [8] is useful for evaluating pitch estimation approaches. It consists

of multiple audio files which are more realistic than the artificial signals presented in Section 2.3.1.

So this dataset can also be used for training DNN-based pitch estimation approaches.

The MDB-stem-synth dataset is based on the MedleyDB dataset developed by Bittner et al. [14].

MedleyDB consists of royalty-free recordings from 122 songs including 108 melody-annotated

songs. For each song, the stems (monophonic tracks) are also contained in the database.

MedleyDB offers melody annotations for the stems. These annotations were created using pYIN

[4] (a model-based approach for fundamental frequency estimation which will be discussed in

Section 3.2) and were corrected manually.

This database was used as a basis for the MDB-stem-synth dataset. Salamon et al. [8] first

applied a monophonic pitch tracker (Spectrum AutoCorrelation, SAC [15]) to some stems of the

MedleyDB dataset. For the next step “Sinusoidal Modeling”, an algorithm developed by Bonada

[16] is used. It segments the signal according to the periods estimated by SAC in the previous

step and then computes harmonic parameters like frequency, amplitude and phase for each

segment. Next, in the synthesis step, the harmonic parameters are used to create synthesized

stems. For this, an oscillator is created (with the appropriate frequency and amplitude) for each

15 Master Thesis, Judith Bauer

2. FUNDAMENTALS

Figure 2.3: Magnitude spectrograms of running examples (artificial data). (a) Sinusoids.
(b) Signal with harmonics. (c) Chirp signal.

16 Master Thesis, Judith Bauer

2.3 DATASETS

partial. From the result of the synthesis step, a final mix of the created stems can be produced

(Remixing). In this step, it is important to weight the stems according to the volume of the

stems in the original mix. The resulting stems and the final mix maintain the original timbre

and dynamics because of the consideration of partials.

Using the described method, Salamon et al. [8] created five datasets: MDB-melody-synth (for

melody tracks), MDB-bass-synth (for bass tracks), MDB-mf0-synth (for monophonic pitched

instruments), MDB-stem-synth (for solo stems) and Bach10-mf0-synth (for 10 Bach chorales)

available at [17]. Here, we focus on monophonic pitch tracking. So the MDB-stem-synth dataset

is appropriate for this task. MDB-stem-synth is published under the terms of the Creative

Commons Attribution-NonCommercial 4.0 International License. It can be downloaded without

charges after filling a download form.

MDB-stem-synth consists of 230 solo stems (tracks) from different instruments and voices. These

stems belong to 85 musical pieces for which between 1 and 17 stems are included. The database

consists of audio and annotation files:

• Audio stems: The audio stems are created using the methodology of Salamon et al.

[8]. They are published with a sampling rate of 44100 Hz. The shortest stems (from

MusicDelta Rock) have a duration of 13 seconds, the longest stems (from

MatthewEntwistle AnEveningWithOliver) have a duration of 1061 seconds (approx.

17.7 minutes). The timbre of the stems is similar to the original stems.

• Annotation stems: There is an annotation file for each stem with perfect F0-annotations.

The first row of an annotation file contains the time stamps in seconds and the second

row contains the F0-value in Hertz. For the annotation files, frames with a hop size of

128 samples (sampling rate of audio: 44100 Hz) were used. This hop size corresponds to

approximately 2.902 milliseconds. Unvoiced frames have a frequency value of 0 Hz. From

the complete dataset, approximately 44.8 % of the frames are voiced.

The total duration of the audio files in MDB-stem-synth is approximately 15.56 hours. The

dataset contains frequencies approximately between 30 Hz and 1220 Hz with more frequencies in

the lower range. For the distribution of the frequencies see Figure 2.4.

2.3.2.2 Running Examples

As running examples for the following chapters, two stems are selected: MusicDelta Rock STEM 02

and MusicDelta InTheHalloftheMountainKing STEM 03. They are both from MusicDelta.

MusicDelta was a platform for interactive music experience, but is not online anymore (was

available at http://musicdelta.com). It offered information about the fundamentals of music

17 Master Thesis, Judith Bauer

2. FUNDAMENTALS

Figure 2.4: Distribution of frequencies present in the MDB-stem-synth dataset.

theory and about music history. Additionally it had an area (“the stage”) with 40 musical pieces

from classic to pop where some instruments could be selected and listened to separately [18].

The running examples are (metadata from [19]):

• MusicDelta Rock STEM 02: This is the second stem from a rock song played by an

electric bass. Its duration is 13.10 seconds. The annotated frequencies are between 40 Hz

and 160 Hz.

• MusicDelta InTheHalloftheMountainKing STEM 03: This is the third stem of an

excerpt of “In The Hall Of The Mountain King” of Peer Gynt composed by Edvard Grieg.

The duration of this stem is 17.44 seconds. It is played by a viola. The annotated frequencies

are between 180 Hz and 480 Hz.

For plots of the annotated frequencies of both stems, see Figure 2.5. These two examples were

chosen, because they are rather short, they are played by different instruments and have different

frequency ranges.

2.3.3 Georgian Vocal Music (GVM Scherbaum)

Georgia is a country at the border of Europe and Asia to the east of the Black Sea and has about

four million inhabitants [20]. The traditional chants in Georgia differ from Western music in

their tonal structure [21]. Scherbaum et al. recorded five Georgian chants which were performed

18 Master Thesis, Judith Bauer

2.3 DATASETS

Figure 2.5: Annotated frequencies for running examples from MDB-stem-synth.
(a) MusicDelta Rock STEM 02. (b) MusicDelta InTheHalloftheMountainKing STEM 03.

by three singers [12, 13]. For the recordings, a camera microphone and a room microphone

(audio recorder) were used. Additionally, each singer was recorded with a throat microphone

and a headset microphone. Throat microphones (also referred to as larynx microphones) are

microphones that record vibrations of the larynx. For this purpose, they are directly attached to

the singers throat skin. This increases the quality of the resulting recordings, because the signal

contains less noise from the environment, e.g. from other singers. Therefore, the recordings from

the larynx microphones can be used as ground truth for pitch tracking or voicing estimation.

The example that will be used here is GVM009 BatonebisNanina Tbilisi Mzetamze which was

recorded on September 18, 2016. The audio files were published under the Creative Commons

19 Master Thesis, Judith Bauer

2. FUNDAMENTALS

Attribution-NonCommercial-NoDerivatives 4.0 International License. The singers are Nana

Valishvili, Nino Shvelidze and Nino Makharadze. Each recording has a duration of 120.5 seconds.

The single singer recordings (headset and larynx microphone for each of the three singers) have

a sampling rate of 48000 Hz and the recordings of the room and the camera microphone have a

sampling rate of 44100 Hz. There are no F0-annotations available, but F0-estimations from the

larynx microphones can be considered as very accurate.

2.4 Evaluation Measures

For the evaluation of pitch estimation approaches, evaluation measures are necessary. In this

chapter, we present measures for evaluating pitch estimations and measures for evaluating voicing

estimations.

2.4.1 Pitch Estimation Measures

When performing fundamental frequency estimation, the result is a F0-trajectory. If frequency

annotations exist, the estimated frequencies can be compared to the annotated frequencies. For

comparing frequencies, we often use the difference in cents. Cent is a unit that is logarithmic in

the frequencies. One semitone corresponds to 100 cents and one octave consists of 1200 cents

(12 semitones). The difference between two frequencies ω1 and ω2 is computed as follows (cf. [9,

Section 1.3.2]):

log2

(
ω1

ω2

)
· 1200. (2.17)

Using the difference between frequencies, we can define evaluation metrics for pitch estimation

tasks. Often, the raw pitch accuracy (RPA) and the raw chroma accuracy (RCA) are computed.

These metrics were first introduced in [22] and were used in the melody competition of the

Music Information Retrieval Evaluation Exchange (MIREX) [23] in 2005. For the computation

of the raw pitch/chroma accuracy, a threshold can be passed as parameter. This threshold is the

tolerance in cents. If the difference between the frequency of the reference and the frequency of

the estimate is lower than this threshold, the estimated frequency is considered as correct. The

number of correct frames is then divided by the number of frames that are voiced according to

the reference.

20 Master Thesis, Judith Bauer

2.4 EVALUATION MEASURES

2.4.1.1 Raw Pitch Accuracy (RPA)

The raw pitch accuracy (RPA) computes the proportion of frames for which the pitch estimate

is correct (depending on a threshold ε) compared to the total number of voiced frames in the

annotation.

We assume that an estimated frequency trajectory η : [1 : N] → R ∪ {∗} and an annotated

(ground truth) frequency trajectory η∗ : [1 : N]→ R ∪ {∗} are given for a discrete signal x. It

should be noted that the sampling rate of the signal x is not necessary equal to the sampling

rate for the frequency trajectory. E.g. if a signal x with a sampling rate of 16000 Hz is given, the

time instances of x have a distance of 0.0625 milliseconds. Although, the frequency trajectory

can map time frames with a distance of 10 milliseconds (hop size) to frequency values. In the

following, we use the time index n for the frames of the frequency trajectory. So for time instance

n, we can compute the difference between the estimated and the annotated frequencies:

∆cents(n) :=

∣∣∣∣∣log2

(
η(n)

η∗(n)

)
· 1200

∣∣∣∣∣ . (2.18)

For the computation of the raw pitch accuracy, a threshold ε has to be fixed. This threshold

determines how large the difference in cents can be between the estimation and the annotation

so that the estimation is still considered as correct. For example if the annotated frequency is

440 Hz and the estimated frequency is 445 Hz, the difference in cents between the frequencies is

approximately 19.56 cents. If a threshold of 10 cents is fixed, the pitch for this frame is considered

to be wrong. With a threshold of 25 cents, the frame would be counted as correct. Depending

on the threshold ε ∈ N in cents, a threshold function Tpitch can be defined:

Tpitch(n) :=

1 if ∆cents(n) < ε and η(n) 6= ∗ and η∗(n) 6= ∗

0 else
. (2.19)

The threshold function Tpitch returns 1 if the pitch estimation is correct for time instance n

depending on the threshold ε. Since only the frames that are voiced in the annotation are

considered for the raw pitch accuracy, we define a voicing function:

vη(n) :=

1 if η(n) 6= ∗

0 else
. (2.20)

21 Master Thesis, Judith Bauer

2. FUNDAMENTALS

Using the definition of the threshold function and the voicing function, we define the raw

pitch accuracy Accpitch for the trajectories η (estimation) and η∗ (annotation):

Accpitch :=

∑
n vη∗(n) · Tpitch(n)∑

n vη∗(n)
. (2.21)

So we sum over all time instances n and count the frames that are voiced and for which the

estimation is correct. This number is divided by the number of voiced frames in the annotation.

A small example for the computation of the raw pitch accuracy is shown in Table 2.1.

time index n1 n2 n3 n4
η∗(n) 440 Hz 300 Hz 220 Hz ∗ (unvoiced)
η(n) 446 Hz 296 Hz 442 Hz 300 Hz

∆cents(n) 23.4 cents 23.2 cents 1207.9 cents -
Tpitch(n) with ε = 25 cents 1 1 0 0

Table 2.1: Example for the computation of the raw pitch accuracy. If the difference between the
annotated and the estimated frequency is below 25 cents, the estimation is considered as correct.
Here, 2 of 3 voiced frames are correct, hence the raw pitch accuracy is 2/3.

2.4.1.2 Raw Chroma Accuracy (RCA)

For the raw chroma accuracy, only the chroma of a pitch value is taken into account. A chroma

is an attribute of a pitch value without consideration of the octave. There are twelve chroma

values corresponding to the twelve note names “C”, “C sharp”, ..., “B” [9]. So e.g. a tone with a

frequency of 440 Hz (A4) and a tone with a frequency of 880 Hz (A5) have the same chroma

value. The raw chroma accuracy only focuses on the chroma and therefore does not recognize

octave errors (right chroma predicted, but wrong octave). So the difference between the RCA

and the RPA is an indication for the amount of octave errors.

As for the raw pitch accuracy, we assume that there is an estimated frequency trajectory

η : [1 : N]→ R∪{∗} and an annotated (ground truth) frequency trajectory η∗ : [1 : N]→ R∪{∗}
for the signal x.

We use the function ∆cents(n) for computing the difference between the estimated frequency

and the annotated frequency at time instance n from Equation 2.18. With this formula, we can

define a modified threshold function Tchroma(n):

Tchroma(n) =

1 if (∆cents(n) mod 1200) < ε and η(n) 6= ∗ and η∗(n) 6= ∗

1 if 1200− (∆cents(n) mod 1200) < ε and η(n) 6= ∗ and η∗(n) 6= ∗

0 else

(2.22)

22 Master Thesis, Judith Bauer

2.4 EVALUATION MEASURES

with mod being the modulo operation. With the modulo operation, the difference in cents is

mapped to values between 0 and 1199 (one octave). Using for example a threshold of 25 cents,

the first case of the equation applies if the frequencies have a difference of e.g. 1220 cents (1220

mod 1200 = 20). The second case is necessary if the difference is e.g. 1180 cents (1180 mod 1200

= 1180 > ε, but 1200 - (1180 mod 1200) = 20 < ε). With this, we can define the raw chroma

accuracy similar to the raw pitch accuracy

Accchroma :=

∑
n vη∗(n) · Tchroma(n)∑

n vη∗(n)
. (2.23)

for frequency trajectories η (estimation) and η∗ (annotation).

For the same example as before, the computation of the raw chroma accuracy is shown in

Table 2.2. The raw chroma accuracy for this example is higher than the raw pitch accuracy,

because the estimation of 442 Hz instead of 220 Hz is considered as correct for the raw chroma

accuracy.

time index n1 n2 n3 n4
η∗(n) 440 Hz 300 Hz 220 Hz ∗ (unvoiced)
η(n) 446 Hz 296 Hz 442 Hz 300 Hz

∆cents(n) 23.4 cents 23.2 cents 1207.9 cents -
Tchroma(n) with ε = 25 cents 1 1 1 0

Table 2.2: Example for the computation of the raw chroma accuracy. If the difference between
the chroma of the annotated and the estimated frequency is below 25 cents, the estimation is
considered as correct. Here, 3 of 3 voiced frames are correct, hence the raw chroma accuracy is 1.

2.4.2 Voicing Estimation Measures

Many pitch estimation algorithms also have the possibility to predict that a frame is unvoiced.

This is the case, when there is no melody present in this frame. There are different common

methods for dealing with unvoiced frames:

• 0 Hertz: If a frame is recognized to be unvoiced by the algorithm, it returns a frequency

value of 0 Hz.

• Negative Frequency: If it is recognized that a frame is likely to be unvoiced, a frequency

value is computed which would be the output if the frame is nevertheless voiced. The

negative of the value is the output. So if the frame is predicted to be unvoiced, but if it

was still voiced, the estimation would be 440 Hz, the output would be −440 Hz.

23 Master Thesis, Judith Bauer

2. FUNDAMENTALS

• Confidence: For each frame, an estimated frequency value is returned. Additionally, for

each estimation, a confidence value is computed. The confidence value indicates how likely

it is that the frame is voiced.

When predicting whether a frame is voiced or unvoiced, the estimated result can be compared

to a voicing annotation. For this, voicing estimation measures have to be defined. Therefore,

the true positives (TP, estimated as voiced and voiced in the annotation), true negatives (TN,

estimated as unvoiced and unvoiced in the annotation), false positives (FP, estimated as voiced

but unvoiced in the annotation) and the false negatives (FN, estimated as unvoiced but voiced in

the annotation) can be counted. From those values, two commonly used metrics can be derived:

recall and precision. The recall describes how many frames are estimated correctly from those

that were voiced in the annotation:

Recall :=
TP

TP + FN
. (2.24)

The precision describes how many frames are estimated correctly from those that were estimated

as voiced:

Precision :=
TP

TP + FP
. (2.25)

Recall and precision can be summarized as F-measure:

F-measure := 2 · Precision · Recall

Precision + Recall
. (2.26)

The F-measure can be used as evaluation metric for voicing estimation. Its values range between

0 (worst estimation) and 1 (perfect estimation).

24 Master Thesis, Judith Bauer

3. MODEL-BASED FUNDAMENTAL FREQUENCY ESTIMATION

Chapter 3

Model-Based Fundamental

Frequency Estimation

In this chapter, we present four model-based approaches for fundamental frequency estimation.

In Section 3.1, we start with YIN, an approach for F0-estimation which uses the autocorrelation

method. Based on YIN, pYIN was developed as a probabilistic version of YIN. It is explained

in Section 3.2. This approach computes multiple pitch candidates which are input to a hidden

Markov model to compute the final pitch estimates. Another approach is SWIPE, presented

in Section 3.3. It uses the distance between peaks and valleys of a signal. SWIPE as well as

YIN and pYIN are developed for F0-estimation for monophonic audio. For polyphonic audio,

Melodia was developed. It is explained in Section 3.4. Melodia is based on the computation of a

salience function.

3.1 YIN

One approach for fundamental frequency estimation is YIN [3], which is based on the autocor-

relation method. We first give some general information about YIN, then present the voicing

estimation of YIN and finally apply YIN to the running examples.

3.1.1 General Information

YIN [3] is a fundamental frequency estimator which can be used for speech and music. It

was developed by de Cheveigné and Kawahara in 2001/2002. The name YIN comes from the

interconnected forces “yin” and “yang” in Chinese philosophy. It is an approach for pitch

estimation in the time-domain and is based on the autocorrelation method. The autocorrelation

25 Master Thesis, Judith Bauer

3. MODEL-BASED FUNDAMENTAL FREQUENCY ESTIMATION

function computes the similarity of a signal x : Z→ R to itself at a time instance n with a lag τ

and a window size N :

rn(τ) =

n+N∑
j=n

x(j)x(j + τ) (3.1)

If the similarity is high, the signal is likely to have a period τ . This function has high error rates,

because the search range for lags has to be fixed and the method is prone to picking a lag of zero

or a multiple of the correct lag. If the amplitude increases in the signal, this equation is prone to

picking integer multiples of the correct lag, because they lead to a higher rn value. This can be

avoided by using a difference function dn instead:

dn(τ) = rn(0) + rn+τ (0)− 2rn(τ) (3.2)

The result of this function can be improved by applying the following error-reduction steps

(cf. [3]):

• Cumulative mean normalized difference function d′n: With this function, a lower limit for

the search range is no longer necessary. It improves the difference function 3.2 by returning

1 for a lag of zero and the average over shorter-lag values for all other lags.

• Absolute threshold: By setting an absolute threshold s for the difference function and

picking the smallest lag value below the threshold, subharmonic errors can be reduced.

• Parabolic interpolation: A parabola is fit to a local minimum of the cumulative mean nor-

malized difference function. This can prevent errors caused by an unfavorable combination

of the sampling period and the signal period (if the signal period is not a multiple of the

sampling period).

• Best local estimate: When searching for a good lag estimate at time index t, a rather broad

search range is selected first. After finding a good estimate for the lag, lags in the direct

neighborhood are explored to possibly identify an even more accurate lag.

These steps result in an estimation for a lag. From the lag τ the estimated fundamental frequency

can be computed: ω = 1
τ .

3.1.2 Voicing in YIN

Furthermore, voicing estimates can be computed using YIN. A voicing estimate indicates how

likely it is according to YIN that a frame is voiced (contains a pitch). YIN computes multiple

values related to voicing: the fundamental power (energy estimate of the estimated fundamental),

the aperiodic power and the total power. Additionally, there is the aperiodic measure, which is

26 Master Thesis, Judith Bauer

3.1 YIN

proportional to the ratio of the aperiodic power to the total power. For voicing estimation, the

fundamental power or the aperiodic measure can be used. The aperiodic power and the total

power alone are not usable for voicing estimation. Here, we decide to use the aperiodic measure.

If the aperiodic measure is low, this indicates that there is not much aperiodicity present and

therefore the frame is likely to be voiced. In contrast, if the aperiodic measure is high, the frame

is likely to be unvoiced. So the aperiodic measure can be used as indication for a voicing estimate.

However, the aperiodic measure is not normalized to values between 0 and 1. This makes a clear

decision whether a frame is voiced or not more complicated, since it is unclear which value of

the aperiodic measure to use as boundary for the decision for voiced/unvoiced. Using an audio

example from the Georgian vocal music dataset [12, 13] (see Section 2.3.3), we examined different

methods for fixing a threshold experimentally. Three possible methods for fixing a threshold are:

(1) The mean of the aperiodic measure, (2) the median of the aperiodic measure and (3) the value

in the middle between the maximum and the minimum of the aperiodic measure max−min
2 . We

examined the three methods using the recording of Batonebis Nanina (larynx microphone, singer

1) of the Georgian vocal music dataset (see Section 2.3.3). They lead to thresholds of 0.1467

(method 1), 0.0034 (method 2) and 0.8559 (method 3). By looking at the plots and listening to

the recording, we selected method 1 using the mean of the aperiodic measure. According to this

result, we assume frames with an aperiodic measure below 0.1467 to be voiced and frames with

an aperiodic measure above or equal to 0.1467 as unvoiced. For a plot of the recording with the

fundamental power, the aperiodic measure and the selected threshold, see Figure 3.1.

Figure 3.1: Fundamental power and aperiodic measure of YIN for a recording from the Georgian
vocal music dataset [12, 13] (larynx microphone, singer 1). As threshold for the voicing estimation,
we use the mean of the aperiodic measure (0.1467).

27 Master Thesis, Judith Bauer

3. MODEL-BASED FUNDAMENTAL FREQUENCY ESTIMATION

3.1.3 Application of YIN to Running Examples

A MATLAB implementation of YIN was provided by Sebastian Rosenzweig (July 2018) and Peter

Grosche (February 2009). We applied YIN to the artificial running examples from Section 2.3.1

and to the examples from the MDB-stem-synth dataset [8] introduced in Section 2.3.2.2. For

the different datasets, we used different configurations for YIN. For the examples from the

MDB-stem-synth dataset (sampling rate 44100 Hz), we used a hop size of 512 samples and a

window size of 2048 samples. The sampling rate of the artificial examples is only 16000 Hz,

therefore, we use a hop size of 256 samples and a window size of 1024 samples. The minimum

F0-frequency that can be detected is set to 30 Hz and the maximum F0-frequency is 2000 Hz

for all running examples. The results of applying YIN to the running examples are shown in

Figure 3.2. There the estimated frequencies of YIN and the annotated frequencies are plotted.

For the first artificial signal consisting of sinusoids, it is remarkable that YIN predicts a frequency

of 1777.78 Hz during the pause. This can be explained by the algorithm of YIN. At YIN, different

lags are examined and the optimal lag is chosen. These lags are determined by the minimum

and the maximum frequency (parameter set by the user, here 30 Hz and 2000 Hz). The smallest

possible lag with these settings is 9. If the smallest lag was 8, the signal would be examined

for oscillations which repeat after 8 samples. Such a signal would oscillate with approximately

2000 Hz (16000/8) leading to a frequency that is not below the maximum frequency. In contrast,

if YIN starts with a lag of 9, this results in possible output frequencies below or equal 1777.78 Hz

(16000/9). So the lowest possible lag is 9 and the highest frequency that can be detected is

1777.78 Hz. Since the lowest lag is chosen, in this case the output is a frequency of 1777.78 Hz.

For the second artificial example consisting of a signal with a second partial, YIN outputs the

lower frequency for more than 8 seconds and then switches to the higher frequency.

Next, YIN is applied to the chirp signal. The signal stops at a frequency of 2000 Hz and YIN is

configured to examine frequencies until an upper bound of 2000 Hz. However, YIN correctly

predicts the frequencies until 1880 Hz, but some errors occur for higher frequencies.

For the examples from the MDB-stem-synth dataset, the estimations are almost similar to the

annotations. At the second example, MusicDelta InTheHalloftheMountainKing STEM 03, there

is an octave error at seconds 6.4 to 6.5 (one octave too high, see Figure 3.3 for details). At the

beginning and the end of all recordings, there are some estimates of 0 Hz. This is also the case

at the beginning and the end of the pause in the first artificial example.

28 Master Thesis, Judith Bauer

3.1 YIN

Figure 3.2: Frequencies estimated by YIN (blue) and frequency annotations (red) for running
examples. (a) Sinusoids. (b) Signal with Harmonics. (c) Chirp signal.
(d) MusicDelta Rock STEM 02. (e) MusicDelta InTheHalloftheMountainKing STEM 03.

29 Master Thesis, Judith Bauer

3. MODEL-BASED FUNDAMENTAL FREQUENCY ESTIMATION

Figure 3.3: Annotated frequencies and frequencies estimated using YIN for
MusicDelta InTheHalloftheMountainKing STEM 03 with an octave error.

3.2 pYIN

In this section, we present pYIN [4], a pitch estimation approach based on YIN [3]. We start

with some general information about pYIN, explain how pYIN generates F0-Candidates and

how a pitch trajectory is derived using a hidden Markov model. Then, we apply pYIN to the

running examples.

3.2.1 General Information

In this section, we present pYIN [4] (Probabilistic YIN), a time-based approach for fundamental

frequency estimation developed by Mauch and Dixon in 2014. It is based on YIN [3] (Section 3.1)

and extends the previous algorithm by providing multiple pitch estimates per frame. From these

pitch candidates, the estimated fundamental frequencies can be derived using a hidden Markov

model.

The first steps of pYIN are the same as of YIN. The algorithm starts with the difference function

defined in Equation 3.2. This function is then replaced by the cumulative mean normalized

difference function d′n. The next step in YIN would be to set an absolute threshold s and picking

the smallest lag value τ below the threshold s: d′n(τ) < s. The estimated period of the original

YIN after this step is referred to as Y (x(n), s) where x : Z→ R is the signal. For the next steps,

pYIN differs from YIN. In pYIN, first some F0-candidates are generated and from those, a pitch

trajectory is computed using HMM-based pitch tracking.

30 Master Thesis, Judith Bauer

3.2 PYIN

3.2.2 F0-Candidates

The threshold s affects the result of YIN, though its value is variable and difficult to choose

correctly. Instead of using a fixed threshold, pYIN uses a beta distribution of parameters S

given by P (s(i)) with possible thresholds s(1), s(2)..., s(N). If d′n(τ) is above the threshold for

all lags τ , YIN would use the smallest d′n(τ). The probability of YIN choosing the absolute

minimum is estimated using a prior probability pa (can be set to 0.01). With this, a formula

can be constructed to compute for each possible period τ how likely it is that τ is the estimated

fundamental period τ0 when using YIN. This is computed by looping over all possible thresholds

s(i). For each possible threshold, the probability is increased, if YIN would pick this lag given

the threshold s(i). In this case, the probability increases by the probability of the threshold

P (s(i)), if the difference function is below the threshold and otherwise the probability increases

by pa · P (s(i)):

P (τ = τ0|S, x(n)) =
N∑
i=1

a(s(i), τ)P (s(i))[Y (x(n), s(i)) = τ] (3.3)

where [·] is one if the expression is true and 0 otherwise and

a(s(i), τ) =

1 if d′n(τ) < s(i)

pa otherwise
. (3.4)

The pitch candidates are the frequencies belonging to the periods τ which have a positive

probability. Among these candidates, there is also the output of the original YIN, so no

information is lost using pYIN compared to YIN. All pitch candidates are used for a HMM-based

pitch tracking.

3.2.3 HMM-based Pitch Tracking

In order to derive a pitch trajectory from the F0-Candidates, a hidden Markov model (HMM) is

used. For this, vectors are derived from the frequency candidates and their probabilities from

the previous step. Each vector describes the probabilities of the pitch candidates in one frame.

In the vectors, each entry describes the probability of a pitch value corresponding to the index of

the entry (55 Hz to 880 Hz, 10 cents intervals). The dimension of each vector is then doubled

to also reflect a voicing/no voicing indication. The probability that a frame is unvoiced can be

computed using Equation 3.3. From this, the observation probabilities can be computed using

the results of the previous step. The transition probabilities should then lead to pitch trajectories

with small pitch changes and few voicing changes. Compared to YIN, pYIN is found to have a

higher precision and recall due to the generation of pitch candidates.

31 Master Thesis, Judith Bauer

3. MODEL-BASED FUNDAMENTAL FREQUENCY ESTIMATION

3.2.4 Application of pYIN to Running Examples

For the evaluation of pYIN, we used the pYIN Vamp plugin for Sonic Annotator developed by

Mauch et al. [4]. As distribution S(i), the Beta distribution with a mean of 0.15 is used. See

Figure 3.4 for an application of pYIN to the running examples. The result of the application

of pYIN to the example consisting of sinusoidals shows that the estimations are similar to the

annotated frequencies. It is remarkable that pYIN has the possibility to predict that a frame is

unvoiced. So during the pause, there are no pitch estimates. The application of pYIN to the

example consisting of a signal with the second partial shows different results compared to YIN.

YIN predicted the lower frequency for more than 8 seconds whereas pYIN predicts the lower

frequency for less than 6 seconds. During the second half of the audio (seconds 5 to 10), the

amplitude of the second harmonic is higher than the amplitude of the fundamental frequency.

The estimations for the chirp signal are very accurate.

For the first example from the MDB-stem-synth dataset [8], MusicDelta Rock STEM 02, the

estimates are similar to the annotated frequencies, except for some frames where too high fre-

quencies are predicted. The estimations for MusicDelta InTheHalloftheMountainKing STEM 03

are not very accurate. For some frames, the estimations are similar to the annotations, but there

are many octave errors and also errors with different distances. Most of the wrong estimates

are due to too high estimates. One possible explanation is that this recording was performed

by a viola. So the special timbre of a stringed instrument could lead to the wrong (too high)

estimates.

3.3 SWIPE

Another approach for fundamental frequency estimation is SWIPE [5, 6] which is based on a

sawtooth waveform. In this section, we give some general information about SWIPE and then

apply an improved version of SWIPE, SWIPE′ to the running examples.

3.3.1 General Information

SWIPE [5, 6] is short for “sawtooth waveform inspired pitch estimator” and was developed by

Arturo Camacho and John G. Harris in 2008. The idea is that the fundamental frequency can be

defined as a frequency whose harmonics are strongly represented in the signal compared to the

frequencies between the harmonics. This can be examined by using the Fourier transform X of a

signal x. So e.g. |X(k)|, |X(2k)|, |X(3k)| are high, but the valleys |X(0.5k)|, |X(1.5k)|, |X(2.5k)|
are low if the frequency Fcoef(k) is a good estimate for the fundamental frequency. Using this

idea, the average peak-to-valley distance (APVD) for a frequency can be computed by examining

32 Master Thesis, Judith Bauer

3.3 SWIPE

Figure 3.4: Frequencies estimated by pYIN (blue) and frequency annotations (red) for running
examples. (a) Sinusoids. (b) Signal with Harmonics. (c) Chirp signal.
(d) MusicDelta Rock STEM 02. (e) MusicDelta InTheHalloftheMountainKing STEM 03.

33 Master Thesis, Judith Bauer

3. MODEL-BASED FUNDAMENTAL FREQUENCY ESTIMATION

the difference between the Fourier transform of a possible peak and the Fourier transform of the

neighboring valleys. To extend this for the first n harmonics, the global APVD can be computed

by averaging over the APVD for the n harmonics. The pitch estimation is then the frequency

with the highest average peak-to-valley distance.

This approach is then further improved by the following steps (names from the original paper

[5]):

• Warping of the spectrum: Instead of the raw spectrum of the signal, the square root

of the spectrum is used.

• Weighting the amplitude of the harmonics: In the original formula, all harmonics

have the same influence to the APVD. The idea is to use decaying weights instead. The

best results are achieved for a decay of 1√
k

for a harmonic k.

• Blurring of the harmonics: Instead of considering only exact multiples of the frequency

(exact harmonics), also the neighborhood of the harmonics was examined.

Next to SWIPE, the authors also developed SWIPE′, a further improved version of SWIPE. It

prevents the estimation of subharmonics instead of the expected fundamental frequency.

3.3.2 Application of SWIPE′ to Running Examples

An implementation of SWIPE′ is available on github [24]. It was implemented by Kyle Gorman

and written in C. Here, we used version 1.5. As frequency range, we selected a minimum

frequency of 20 Hz and a maximum frequency of 2500 Hz. The hop size is set to 0.01 seconds.

We applied SWIPE′ to the artificial running examples and the examples from MDB-stem-synth

[8]. For the resulting pitch estimations, see Figure 3.5. The estimations for all examples are

very accurate and similar to the annotations. For the first example consisting of pure sinusoids,

SWIPE′ predicts an undefined number (nan) during the pause. So no values are included in

the plot for the pause. For the second artificial example (signal with second harmonic), it is

remarkable that SWIPE′ predicts the lower frequency for more than 9 seconds, although the

amplitude of the second harmonic is higher. For the remaining examples, the estimations of

SWIPE′ are similar to the annotations.

3.4 Melodia

In this section, we present Melodia [7]. This is an approach for F0-estimation which can be used

for polyphonic music. We start with some general information about Melodia and then apply

Melodia to the running examples.

34 Master Thesis, Judith Bauer

3.4 MELODIA

Figure 3.5: Frequencies estimated by SWIPE′ (blue) and frequency annotations (red) for running
examples. (a) Sinusoids. (b) Signal with Harmonics. (c) Chirp signal.
(d) MusicDelta Rock STEM 02. (e) MusicDelta InTheHalloftheMountainKing STEM 03.

35 Master Thesis, Judith Bauer

3. MODEL-BASED FUNDAMENTAL FREQUENCY ESTIMATION

3.4.1 General Information

Melodia [7] was developed by Salamon and Gómez in 2010. It is a pitch estimation approach

for polyphonic music. The objective is to identify the fundamental frequencies belonging to the

main melody. For music with multiple simultaneously occurring pitches, the main melody is “the

‘essence’ of that music when heard in comparison” [22]. Salamon and Gómez propose a system

that first identifies melody pitch candidates and then groups them into pitch contours. The

algorithm consists of the four steps “Sinusoid extraction”, “Salience function”, “Pitch contour

creation” and “Melody selection”:

• Sinusoid Extraction: First, a filter is applied in order to enhance frequencies which are

common for melody pitches (mid-band frequencies). Then, a short-time Fourier transform

is applied. Next, the peaks of the magnitude spectrum are identified for all frames. To

improve the frequency resolution for low frequencies, the instantaneous frequency (see

Section 2.2.2.1) is computed.

• Salience Function Computation: In order to compute a salience function, the frequen-

cies are assigned to bins. The bins cover frequencies between 55 Hertz and 1760 Hertz

with a 10 cent frequency resolution. For each frame, harmonic summation is applied to the

spectral peaks.

• Creating Pitch Contours: First, the peaks are further examined and peak filtering is

applied. For this, peaks are compared to the highest peak in the same frame. If the salience

of a peak is too low compared to the salience of the highest peak, the peak is discarded.

Also peaks with a salience that is too low compared to all other peaks are filtered out in

order to remove peaks at possibly unvoiced frames.

For peak streaming, the highest peak is selected. The pitch contour is then created by

repeatedly searching for a neighboring peak at the next time frame with a distance of at

most 80 cents. For short time intervals, also the choice of previously removed peaks is

possible (masked salience). The same strategy is used to extend the salience to frames

before the initial maximum peak. The complete peak streaming stops, if all peaks are

processed.

For the created pitch contours, some characteristics are computed (e.g. pitch mean, contour

mean salience, length, vibrato presence,...).

36 Master Thesis, Judith Bauer

3.4 MELODIA

• Melody Selection: The first step of melody selection is the voicing detection. This is

done using the average contour mean salience. Then octave errors and pitch outliers should

be avoided by comparing the distance of contours. If two contours are equal (with octave

distance), characteristics from the previous step are used to choose one contour. Contours

that have a distance of more than one octave to the melody pitch mean are also filtered

out (pitch outliers). To retrieve a final melody output, only one pitch can be selected per

time frame. If contours overlap, the contour with the highest total salience is selected.

3.4.2 Application of Melodia to Running Examples

We evaluated the running examples using Melodia [7]. As implementation we used the MELODIA

- Melody Extraction Vamp plugin for Sonic Annotator developed by Salamon and Gómez. As

output type, we chose “Melody”. This returns the fundamental frequencies of the main melody

in Hertz. Melodia also performs voicing detection. If a frame is estimated to be unvoiced, a

negative frequency is predicted (negative of the frequency that would be predicted if the frame

is nevertheless voiced). The estimated fundamental frequencies are shown in Figure 3.7. For

the first artificial example (sinusoids), Melodia correctly predicts the second and the third tone,

which have frequencies of 880 Hz and 659.255 Hz. For the first part (65.406 Hz), Melodia predicts

a frequency of -880 Hz. This could be due to the enhancement of mid-band frequencies, so this

frequency could be too low.

For the second artificial example consisting of a tone with an additional second harmonic, Melodia

predicts the first 1.472 seconds to be unvoiced. If there is a melody, a frequency of 110 Hz is

predicted. The annotated frequency is 130.81 Hz. Then, until second 8.49, the correct frequency

(lower frequency) of 130.81 Hz is predicted. At the end of the signal, Melodia predicts the frames

to be unvoiced. However, the estimated frequency of -130.81 is correct. There is no frame for

which the frequency of the second harmonic (261.62 Hz) is predicted.

Figure 3.6: Frequencies estimated by Melodia (blue) and frequency annotations (red) for an
excerpt of the chirp signal. Melodia assigns the frequencies to bins with a 10 cent frequency
resolution.

37 Master Thesis, Judith Bauer

3. MODEL-BASED FUNDAMENTAL FREQUENCY ESTIMATION

The third artificial example is the chirp signal (30 Hz to 2000 Hz). At the beginning, Melodia

predicts 0 Hz and then -220 Hz. For the annotated frequencies above approximately 171.6 Hz,

the frequency estimates are correct. Melodia assigns the frequencies to bins for the computation

of a salience function. These bins cover frequencies between 55 Hz and 1760 Hz. So Melodia can

only predict frequencies in this range. For the chirp signal, we observed that Melodia predicts

subharmonics for frequencies above approximately 1729.5 Hz. The bins for the salience function

have a frequency resolution of 10 cents. So the frequencies that can be predicted by Melodia

have a resolution of 10 cents. This can be observed when examining the estimated frequencies of

the chirp signal in more detail. See Figure 3.6 for an excerpt from the chirp signal.

For MusicDelta Rock STEM 02, the estimated frequencies are not very accurate. There are some

octave errors (estimation is one octave too high). This is probably due to the frequency range

of Melodia. There are some frequencies below 55 Hz in the annotation of this audio example,

however Melodia can only predict frequencies above 55 Hz. Furthermore, Melodia enhances

mid-band frequencies. This leads to errors for audio examples which contain low frequencies.

The F0-estimations of Melodia for MusicDelta InTheHalloftheMountainKing STEM 03 are similar

to the annotations with only few wrong predictions.

38 Master Thesis, Judith Bauer

3.4 MELODIA

Figure 3.7: Frequencies estimated by Melodia (blue) and frequency annotations (red) for running
examples. (a) Sinusoids. (b) Signal with Harmonics. (c) Chirp signal.
(d) MusicDelta Rock STEM 02. (e) MusicDelta InTheHalloftheMountainKing STEM 03.

39 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

Chapter 4

DNN-Based Approach

For fundamental frequency estimation, there exist model-based approaches and DNN-based

approaches. In this chapter, we discuss approaches based on deep neural networks (DNNs). First,

CREPE is introduced in Section 4.1. CREPE is a convolutional neural network developed by

Kim et al. [1]. We give some general information about CREPE and its network architecture

and evaluate it on the running examples. Then, in Section 4.2, own approaches based on CREPE

are introduced. This includes data augmentation, a modified resolution for the output vector,

layer freezing and a modified network structure.

4.1 CREPE

CREPE is a data-driven approach for monophonic fundamental frequency estimation using a deep

convolutional neural network (Deep CNN). The acronym CREPE is short for “A Convolutional

Representation for Pitch Estimation”. This network was developed by Jong Wook Kim, Justin

Salamon, Peter Li and Joan Pablo Bello in 2018 [1]. In contrast to previous approaches such

as e.g. SWIPE [5, 6] (Section 3.3), it computes the F0-trajectory directly from the audio data

using a neural network without the application of signal processing steps.

An implementation of the neural network with trained weights is available online on github [25].

This version of CREPE is trained on six datasets of monophonic audio (vocal and instrumental).

The following datasets were used: MIR-1K [26], Bach10 [27], RWC-Synth [4, 28], MedleyDB [14],

MDB-STEM-Synth [8] and NSynth [29].

41 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

4.1.1 General Information

When pitch estimation is performed using CREPE [1], audio recordings are necessary as input.

For this, the audio recordings can have an arbitrary sampling rate, but should be given in the

.wav file format. CREPE can process one or multiple audio files simultaneously. When evaluating

an audio file, it is first resampled by CREPE using the python module “resampy” [30]. The

network is trained for audio files with a sampling rate of 16000 Hz, so each file is resampled to

this sampling rate. The resampled audio files are then splitted into short excerpts also referred to

as frames. This is done using a window length of 1024 samples (corresponding to 64 milliseconds).

The excerpts have a distance of 10 milliseconds (corresponding to 160 samples). This distance

is referred to as the hop size. The hop size can also be adjusted via a parameter of CREPE.

Each excerpt is evaluated by the neural network of CREPE separately. The output of the neural

network is a 360-dimensional vector for each audio excerpt. From this vector, the estimated

fundamental frequency and a confidence value can be derived. For the relation between the input

and the output of CREPE, see also Figure 4.1.

Figure 4.1: Input and output of the convolutional neural network of CREPE: Input is a batch of
.wav files which are split into excerpts of 1024 samples. Using a neural network, a 360-dimensional
vector is computed from which a pitch value can be derived.

The output of the network for an audio excerpt is a vector

ŷ := (ŷ(1), ŷ(2), ..., ŷ(360)) ∈ [0, 1]360 (4.1)

with values between 0 and 1. A sequence of output vectors for all excerpts of an audio recording

42 Master Thesis, Judith Bauer

4.1 CREPE

is also referred to as the activation of CREPE. The values in a vector ŷ are used as weights for a

fixed 360-dimensional vector of cent values

ω¢ = (ω¢(1), ω¢(2), ..., ω¢(360)) ∈ R360. (4.2)

All cent values in the vector are given as distance in cents to a reference frequency of 10 Hz. The

values in ω¢ have a difference of 20 cents. They range over six octaves with twelve semitones

per octave. In combination with a 20 cents resolution (five entries per semitone) this results

in 6 · 12 · 5 = 360 values. The vector ω¢ starts with a cent value ω¢(1) = 1997.3794084376191.

This corresponds to 31.70 Hz (between B0 and C1). The last value ω¢(360) in the vector is

9177.3794084376191. This cent value corresponds to approximately 2005.50 Hz (between B6 and

C7). For the values of the vector ω¢ and the corresponding frequency values, see also Figure 4.2.

Figure 4.2: Values of the cent vector ω¢. CREPE returns a vector ŷ which consists of weights for

the vector ω¢. The 360-dimensional vector ω¢ contains fixed cent values (distances to a reference

frequency of 10 Hz) with a difference of 20 cents.

To derive the estimated result in cents for a given audio excerpt, the vector ω¢ is multiplied with

the weight vector ŷ (output vector of the network):

ω¢,result :=
〈ŷ|ω¢〉∑360
i=1 ŷ(i)

∈ R. (4.3)

The value ω¢,result is the estimated result for an audio excerpt given in cents. This value can be

converted into a frequency value given in Hertz using the following formula:

ωresult := 10 Hz · 2
ω¢,result

/1200
. (4.4)

In the formula for ω¢,result, all values from the output vector ŷ have an influence on the result.

Though, it is questionable, whether values with a larger difference to the peak of the estimated

vector should have an influence on the result. For example, if there are high weights for cent

values of approximately 7000 cent, there might still be small weights for lower cent values.

However, all weights are considered in the formula. This can be especially problematic for a

43 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

weight vector ŷ with a peak at a very low or very high index and small weights (> 0) in other

entries. In those cases, the formula can lead to a cent value that is pulled towards a more

centered result. Another problem can occur, if the weight vector contains two peaks at different

positions. In this case, both peaks influence the result. This leads to a resulting frequency value

between the frequencies of the peaks. So the result is a frequency that is not present in the

audio excerpt. These problems are addressed by modifying the formula for ω¢,result. Instead of

all weights from the output vector of the network, only selected weights influence the pitch result.

For this purpose, the index of the maximum value of the output vector is determined. For the

pitch result, we only consider values at indices around this maximum index. This formula for

the estimated result given in cents is also used in the code published on github:

ω¢,result :=

∑m+4
i=m−4 ŷ(i) · ω¢(i)∑m+4

i=m−4 ŷ(i)
m = argmax

i
ŷ(i). (4.5)

The estimated cent value can then be converted into a fundamental frequency estimate in Hertz

using Equation 4.4. An illustration of both methods for the computation of the resulting estimate

ω¢,result in cents is shown in Figure 4.3. Figure 4.3a depicts the method using Equation 4.3. It

Figure 4.3: Different methods for the computation of a cent value from the output vector of
CREPE. (a) Method using the complete vector ŷ (left) and the complete vector ω¢ (right).

(b) Method using only selected values from the vector ŷ (left) and the vector ω¢ (right).

uses the complete vector ŷ (left) and the complete vector ω¢ (right). At each position, the values

44 Master Thesis, Judith Bauer

4.1 CREPE

from the both vectors are multiplied: 0.0 · 1997.3 + 0.1 · 2017.3 + ...+ 0.2 · 9157.3 + 0.0 · 91773.

This value is then divided by the sum over all values in vector ŷ: 0.0 + 0.1 + ...+ 0.2 + 0.1. The

result of the division is the resulting cent value for an audio excerpt.

Figure 4.3b shows the method from Equation 4.5. It uses only selected values from the vector

ŷ (left) and the vector ω¢ (right). The maximum of the vector ŷ is determined (here: 0.99,

orange entry). For the computation, only the values at indices with a distance of at most 4 are

considered (yellow entries). The scalar product of these values is computed: 0.5 · 4167.3 + 0.6 ·
4187.3 + ...+ 0.3 · 4307.3 + 0.2 · 4327.3. This value is then divided by the sum over the 9 marked

values in vector ŷ: 0.5 + 0.6 + ...+ 0.3 + 0.2, resulting in the estimated cent value of CREPE.

So Equation 4.5 only focuses on an area around a high weight. This method can be considered

as more reasonable, since weights with a higher distance to the peak do not influence the result.

In the presence of e.g. two peaks, the previous Equation 4.3, which uses the complete vectors,

results in a pitch estimate between the pitches belonging to the peaks. With the method of

Equation 4.5, one peak is selected and the resulting frequency value is only influenced by this

peak (and the neighboring values). So if there are two pitches in an audio excerpt, one is chosen

for the pitch estimate. However, exactly four values before and after the peak are considered.

Also different values for the size of the neighborhood are possible and the selection of this number

can not be justified. Another open problem is the choice of an appropriate cent resolution. In

CREPE, the values in ω¢ have a difference of 20 cents. Also different values would be possible.

However, this resolution also allows the estimation of pitches with a finer resolution than 20 cents.

E.g. if a vector has high weights at ŷ(200) and ŷ(201), both weights are multiplied with the

corresponding cent values at ω¢(200) and ω¢(201). This leads to a frequency estimate between

ω¢(200) and ω¢(201).

In summary, there exist two methods for the interpretation of the output vector ŷ. One possibility

is to consider the complete vector for the computation of a pitch estimate, another possibility is to

focus on an area around the peak of the vector. The second method as described in Equation 4.5

can be considered as more accurate. However, the number of neighboring values around the peak

and the resolution of the output vector could be selected differently.

In addition to an estimate for the fundamental frequency, a confidence value can be derived.

This is done using the output vector of the network ŷ. The confidence value is the maximum

value in the vector ŷ. Since all values in this vector are between 0 and 1, the confidence is also

in this range. A higher confidence value corresponds to a higher predicted probability that the

audio frame is voiced. In the implementation of CREPE, a threshold of 0.5 was fixed. If the

confidence is below 0.5, the corresponding frame is predicted to be unvoiced. This threshold

could also be evaluated and set to another value. The voicing estimate in combination with the

pitch estimate for a sequence of time instances is the result of CREPE evaluated on an audio file.

45 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

These results are summarized in one .csv file for each audio input file with the following columns:

• timestamp: Time at which a frequency value was estimated in seconds.

• frequency: Estimated frequency value in Hertz.

• confidence: Confidence value describing how likely it is that the given frame is voiced.

For the evaluation of audio files with CREPE, there are some further parameters that can be set

by the user:

• Step size: When splitting the audio files into processed sections, a hop size is necessary.

The default hop size is 10 milliseconds.

• Model capacity: There are five different model sizes for the neural network: tiny, small,

medium, large and full. The models differ in their number of filters. The default model

capacity is “full”.

• Viterbi: Viterbi allows to temporal smooth the resulting pitch curve. There are no further

parameters for Viterbi, it can be set to true or false (default: set to false).

• Parameters for plotting/storage:

– Save Activation: Saves the output activation matrix (result of the last layer of

CREPE).

– Save Plot: Saves the plot of the activation matrix (a colored plot of the activation

values can be stored).

– Plot Voicing: This option is only available, if the activation matrix plot is saved. Then

this parameter can be used to include a plot for the voicing activity detection.

Each of the five different models consists of its network architecture (defined by the layers, filter

sizes and number of filters) and the trained weights for the layers. In the following we refer to

the models as Mtiny, Msmall, Mmedium, Mlarge and Mfull. Here, we define a model to be a tuple

of the architecture and the weights, e.g.

Mtiny := (Mtiny,architecture,Mtiny,weights). (4.6)

The differences between the models is explained in more detail in Section 4.1.2.

46 Master Thesis, Judith Bauer

4.1 CREPE

4.1.2 Network Architecture

CREPE consists of five different models with different capacities: Mtiny,Msmall,Mmedium,Mlarge

and Mfull. However, the general structure of the architecture is similar for all models.

CREPE receives audio files as input, which are resampled to a sampling frequency of 16000 Hz.

Excerpts of 1024 samples from the audio recordings are used as input for the neural network.

Therefore, the neural network of CREPE starts with an input layer with a shape of 1024. Then

(after a reshaping layer), a convolutional block is repeated six times. Each convolutional block

consists of a Convolution (Conv2D) layer, a Batch Normalization layer [31], a Max Pooling

(MaxPooling2D) layer and a Dropout layer [32]. The result of the last convolutional block (after

Permution to switch some dimensions) is flattened. The last layer is then a Fully Connected layer

(Dense) which leads to a 360-dimensional output. All models, independent of the model capacity,

use the same filter sizes for the convolutional layers. The filter sizes are shown in Table 4.1. The

number of filters of the convolutional layers depend on the position of the layer in the network

and on the chosen model capacity. Though, the ratio of the number of the filters is the same for

each model capacity. For the number of filters, see Table 4.2. The structure of the full model

Mfull and its layers is shown in Figure 4.4 (figure similar to [1]). To get an overview of the

dimensions and the number of parameters for each layer in Mfull, see Figure 4.5. The number of

parameters for a convolutional layer depends on the number of filters, the filter sizes (including

number of channels of the filter) and the number of filter biases (each filter has a bias value). So

it can be computed as

#filters · filtersize ·#channels + #biases. (4.7)

For example the number of parameters of the third convolutional layer (conv3) of Mfull is

128 · 64 · 128 + 128 = 1048704. The total number of trainable parameters of the full model is

22 239 976 (from Figure 4.5).

index of convolutional layer filter size

1 512
2 64
3 64
4 64
5 64
6 64

Table 4.1: Filter sizes of the convolutional layers depending on the index of the convolutional
block.

As activation functions, Kim et al. used the Rectified Linear Unit (ReLU) for the convolution

layers and a sigmoid for the fully connected layer. The authors implemented the model architecture

in Keras [33]. The neural networks are trained using annotated audio excerpts. So the input for the

47 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

index of convolutional layer Mtiny Msmall Mmedium Mlarge Mfull

1 128 256 512 768 1024
2 16 32 64 96 128
3 16 32 64 96 128
4 16 32 64 96 128
5 32 64 128 192 256
6 64 128 256 384 512

Table 4.2: Number of filters depending on the index of the convolutional block and the chosen
model capacity.

Figure 4.4: Architecture of the original CREPE model Mfull (model capacity “full”).

training are audio excerpts with 1024 samples. Additionally, for each audio excerpt the expected

frequency result in cents ω¢,correct ∈ R is known. From this, the expected 360-dimensional output

vector

ycorrect = (ycorrect(1), ycorrect(2), ..., ycorrect(360)) ∈ [0, 1]360 (4.8)

can be derived. This vector is necessary for the training process. It consists of high values at

positions that are near to weights for the correct cent values (gaussian-blurred with a standard

deviation of 25 cents):

ycorrect(i) = exp

−(ω¢(i)− ω¢,correct)
2

2 · 252

 . (4.9)

So if the correct frequency has only a small distance to the frequency corresponding to index i of

the vector ycorrect, the value is near to exp(0) = 1. For indices corresponding to a frequency with

a large distance to the correct frequency, this value is near to 0.

48 Master Thesis, Judith Bauer

4.1 CREPE

Figure 4.5: Model summary of Keras for the full model Mfull.

49 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

In order to train the network, the output of the network ŷ (Equation 4.1) is compared to the

correct output vector ycorrect (Equation 4.8). For this, the authors used the binary cross entropy

loss:

L(ycorrect, ŷ) =
360∑
i=1

(−ycorrect(i) log ŷ(i)− (1− ycorrect(i)) log(1− ŷ(i))). (4.10)

This loss function is optimized using the ADAM optimizer [34] with a learning rate of 0.0002.

4.1.3 Evaluation on Running Examples

For the evaluation of pitch estimation approaches, some artificial signals were introduced in

Section 2.3.1. In Section 2.3.2.2, we introduced some further audio examples from the MDB-

stem-synth dataset [8]. In this section, we evaluate CREPE [1] on these audio examples. For all

evaluations in this section, we use the tiny model of CREPE Mtiny.

4.1.3.1 Sinusoids

The first artificial signal consists of pure sinusoids. It starts with a C2 (65.4064 Hz), then

continues with an A5 (880.0 Hz), then a pause and finally an E5 (659.255 Hz). All tones last for

3 seconds each and the pause takes 2 seconds. We created the signal with a sampling frequency

of 16000 Hz so that no resampling for CREPE is necessary. On this signal, we applied CREPE

(with model Mtiny) with the standard hop size of 10 milliseconds. The estimated fundamental

frequency values are shown in Figure 4.6a. The estimations of CREPE are similar to the frequency

annotations. Only at second 8, at the end of the pause, some too high frequencies are predicted.

The reason can be that at this time instance CREPE receives an audio excerpt which consists

of the pause and the new tone. During the pause, CREPE predicts a frequency of 0 Hz. If the

convolutional neural network of CREPE gets a zero vector as input, the output is a vector of

undefined numbers (not a number, nan). In cases where such values are part of the frequency

predictions, instead a frequency of 0 Hz is returned. So CREPE returns 0 Hz during the pause.

4.1.3.2 Signal with Harmonics

Music recordings that are not artificially created consist of fundamental frequencies and harmonics.

In order to examine the estimations of CREPE in the presence of harmonics, we applied CREPE

to a signal with one overtone. The amplitude of the fundamental frequency (C3) increases linearly

from 0 to 1 whereas the amplitude of the second partial (C4) decreases from 1 to 0. As CREPE

was trained with data including overtones, it is expected to correctly predict the fundamental

50 Master Thesis, Judith Bauer

4.1 CREPE

Figure 4.6: Frequencies estimated by the tiny model Mtiny of CREPE (blue) and frequency
annotations (red) for running examples. (a) Sinusoids. (b) Signal with Harmonics. (c) Chirp
signal. (d) MusicDelta Rock STEM 02.
(e) MusicDelta InTheHalloftheMountainKing STEM 03.

51 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

frequency in spite of the presence of overtones. So the objective was to examine, how high the

amplitude of the second partial can be compared to the amplitude of the first partial so that

the correct fundamental frequency is predicted by CREPE. First, we applied CREPE (Mtiny)

with a hop size of 10 milliseconds to the signal (sampling rate of 16000 Hz). Figure 4.6b shows

the estimated frequencies of CREPE and the annotated frequencies. It can be recognized that

CREPE predicted the lower frequency (C3) for more than 8 seconds and then predicted the

higher frequency. Starting with the fifth second, the amplitude of the C4 is higher than the

amplitude fo the C3. However, the lower frequency was predicted. To further examine this, we

analyzed the output vectors of CREPE (activations) and the confidence values. Figure 4.7a

shows the vectors returned by the neural network. Each column in the figure corresponds to one

360-dimensional output vector ŷ. The colors in a column indicate the values of the entries in

the vector. Since the entries of the output vector correspond to frequencies, they are shown in

Hertz. It is remarkable that in the first half, there were not only high values for a frequency of

130.81 Hz corresponding to a C3, but also for the subharmonic of 65.406 Hz corresponding to a

C2. This indicates that CREPE learned to recognize a certain frequency by also searching for

the second partials. So the presence of the C3 increased the probability for the presence of a C2.

The derived frequency estimates are shown in Figure 4.7b. The prediction of the lower frequency

at seconds 5 to 8 (fundamental frequency has lower amplitude than overtone) also indicates

that CREPE learned to predict the fundamental frequency in the presence of harmonics. For

a higher amplitude of the second partial, the estimations switched to the higher frequency. At

these time instances, CREPE predicted lower confidence values. For a plot of the confidence

values of CREPE see Figure 4.7c. As the amplitude of the second partial converges to 1, the

confidence values increased.

So CREPE also uses the second partial of a signal for the prediction of the fundamental frequency

and the estimated frequency does not always correspond to the frequency with the highest

amplitude if this is the second partial.

4.1.3.3 Chirp Signal

The last artificial example is a chirp signal. CREPE is designed to correctly predict frequencies

between 31.70 Hz and 2005.50 Hz. The chirp signal covers frequencies between 30 Hz and 2000 Hz.

The estimated fundamental frequencies of CREPE are shown in Figure 4.6b. The predictions of

CREPE are similar to the expected frequencies. At the beginning of the signal, there are small

deviations, because the frequency range of CREPE starts at a frequency of 31.70 Hz instead of

30 Hz.

Additionally, we examined the pitch estimations for CREPE for frequencies above the upper

limit of CREPE. So another chirp signal is created that starts with 30 Hz and ends with 2500 Hz

52 Master Thesis, Judith Bauer

4.1 CREPE

Figure 4.7: Output of CREPE (Mtiny) applied to a signal with 130.81 Hz (C3, amplitude linearly
decreasing) and 261.63 Hz (C4, amplitude linearly increasing). (a) Activation (output of network
of CREPE). (b) Predicted fundamental frequencies of CREPE. (c) Predicted confidence of
CREPE.

(> 2005.50 Hz) with frequencies increasing linearly. The duration of the signal is 60 seconds. We

created the signal with a sampling frequency of 16000 Hz. For the resulting pitch estimates of

CREPE see Figure 4.8. We applied CREPE using the tiny model Mtiny and a hop size of 10

milliseconds. The figure shows that the estimated and the expected frequencies are similar until

a frequency around 2000 Hz. For higher frequencies, CREPE predicted the subharmonics of

the correct frequency instead (subharmonics plotted in gray). This is also reasonable, because

the vector ω¢ does not contain values for higher frequencies, so the upper limit for possible

frequencies is fixed due to this vector.

Furthermore, we created a chirp with a smaller frequency range. The purpose was to examine

the similarity of the predicted and the estimated frequencies in detail. Here, we use a chirp signal

with frequencies between 220 Hz (A3) and 440 Hz (A4). The signal has a duration of 10 seconds

and a sampling frequency of 16000 Hz. We applied CREPE to this signal using Mtiny and a hop

size of 10 milliseconds to obtain frequency estimations. These estimations were then compared

to the expected frequencies. The differences are plotted in Figure 4.9. The vertical lines in the

plot show the position of the natural tones between A3 and A4. The difference function indicates

53 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

Figure 4.8: Linear chirp signal (30 Hz to 2500 Hz, duration: 60 seconds) estimated with CREPE
(Mtiny). The annotated frequencies are shown in red, the frequencies estimated by CREPE in
blue and the subharmonics of the annotated frequencies in gray.

that the estimations are more exact for musical notes compared to frequencies that can not be

assigned to a musical note. Since CREPE was not trained on frequency values but on music

recordings, it can be assumed that frequencies belonging to musical notes occurred more often

than frequencies between musical notes. So the distribution of frequencies in the training dataset

can be the reason for a higher similarity of the estimations and the annotations at frequencies

belonging to musical notes.

4.1.3.4 Examples from MDB-stem-synth Dataset

For the two running examples from the MDB-stem-synth dataset [8], MusicDelta Rock STEM 02

and MusicDelta InTheHalloftheMountainKing STEM 03, we applied CREPE using the tiny

model Mtiny and a hop size of 10 milliseconds. For the estimated fundamental frequency

values see Figure 4.6d and Figure 4.6e. In summary, it can be said that the estimations

are similar to the annotated frequencies. For MusicDelta Rock STEM 02, there are two out-

liers at seconds 4.34 and 4.35 (too low frequencies), one outlier at second 9.26 (too high

frequency) and one wrong estimate at the end of the recording (too low frequency). For

MusicDelta InTheHalloftheMountainKing STEM 03, the estimations are also close to the anno-

tated frequencies. At the beginning of the audio example, there is one wrong estimation (too

54 Master Thesis, Judith Bauer

4.2 OWN APPROACHES

Figure 4.9: CREPE was applied to a chirp signal (220 Hz to 440 Hz, duration: 10 seconds). The
resulting estimation was compared to the correct frequencies and the distance in cents is plotted
over the time. The vertical green lines indicate tones: A3, B3, C4, D4, E4, F4, G4, A4.

high frequency) and at second 6.31 to second 6.49, there is an octave error (estimated frequencies

one octave above annotated frequencies).

Summing up, the estimations of CREPE using the tiny model structure have a high similarity to

the annotated frequencies.

4.2 Own Approaches

In the following, we present some own approaches for modifications of the neural network. They

can help to improve the training of the network. Also the network can be further examined.

First, we used data augmentation in order to increase the amount of available training data.

Then, the influence of the dimension of the last layer of the network was examined. Next, we

discuss the influence of the first layer of the network and fixed suitable weights. Finally, we

propose a modified network structure with different filter sizes and a lower number of filters.

4.2.1 Data Augmentation

When training a network, a representative dataset is necessary. This is in some cases difficult to

obtain. For pitch estimation tasks, the music recordings should be representative concerning

55 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

instruments, music genre and pitch distribution. When using the MDB-stem-synth dataset [8],

some variety regarding instruments and genre is ensured. Although, there are no frequencies

above 1200 Hz present in this dataset and even frequencies above 800 Hz are rather rare. The

neural network of CREPE should be trained for frequencies until 2005.50 Hz. So using the

MDB-stem-synth dataset for a training starting with random weights is not a promising approach.

In order to include also higher frequencies in the dataset, data augmentation can be used.

Here, instead of using the original dataset for training the network, the pitch of some audio files

was shifted. For this, a random shift between 0 cents (no shift) and 800 cents was chosen for

each audio file. The lower limit of 0 cents was chosen to preserve the low frequencies in the

dataset. We set the upper limit to 800 cents, because it should be prevented that frequencies

above the maximal frequency of CREPE occur in the dataset. If a frequency of 1200 Hz

(approximately maximal frequency in original dataset) is shifted by the maximal shift of 800

cents, this leads to a frequency of approximately 1905 Hz which is still in the frequency range

covered by CREPE. The pitch shifting was performed using the python package LibROSA

[35, 36, 37] (librosa.effects.pitch shift). The distribution of the pitches of the annotation frames

is shown in Figure 4.10. Compared to the original distribution, the proportion of low frequencies

decreased and the proportion of high frequencies increased due to pitch shifting. Though, there

are still more frames for low pitches than for high pitches. A similar pitch shifting was also

applied to the validation set. We then retrained the network (architecture of Mtiny) starting

with random weights using the pitch shifted training and validation set. This is expected to lead

to a better performance of the network for higher pitches compared to a network trained on the

original dataset. The model trained using pitch shifting is referred to as Mshift.

4.2.2 Output Vector Resolution

The last layer of CREPE is a Fully Connected layer. The output of this layer is a 360-dimensional

vector ŷ with values between 0 and 1 which are used as weights for a fixed 360-dimensional

vector ω¢. The vector ω¢ contains cent values with a difference of 20 cents, see Section 4.1.1 for

more details. When training a network and evaluating it, we found out that especially the raw

pitch accuracies for a threshold of 10 cents are lower than the results reported by Kim et al. [1].

The idea was to start with the architecture of the tiny model Mtiny of CREPE , but change the

size of the output layer. So the last fully connected layer with an output dimension of 360 was

replaced by a fully connected layer with an output dimension of 720. This change also entails a

modification of the vector ω¢ defined in Section 4.1.1. This is now a vector

ω¢,720 = (ω¢,720(1), ω¢,720(2), ..., ω¢,720(720)) ∈ R720. (4.11)

56 Master Thesis, Judith Bauer

4.2 OWN APPROACHES

Figure 4.10: Distribution of frequency annotations in the training set. (a) Before pitch shift.
(b) After pitch shift.

The lowest and the highest value are the same as in the previous version:

ω¢,720(1) = ω¢(1) and ω¢,720(720) = ω¢(360). (4.12)

But with a range of 6 octaves (same as before), twelve semitones per octave and 10 values per

semitone (6 · 12 · 10 = 720), we obtain a frequency resolution of 10 cents instead of 20 cents.

For the computation of the final frequency estimate, we use the same formula as defined in

57 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

Equation 4.5. So we identify the index of the maximum value in the output vector ω¢,720 and

only consider values in a neighborhood of 4 before and after this index for the computation.

However, these values correspond to frequencies ±(4 · 10) cents due to the increased resolution.

Using the original resolution, they corresponded to frequencies ±(4 · 20) cents. The trained

network with an increased dimension of the last layer is referred to as Mdim720.

4.2.3 Layer Freezing

A pretrained version of CREPE is published with the filter weights for all model capacities. To

investigate how the input data is processed through the network, we examined the weights of

the filters. Here, the focus is on the weights of the first convolutional layer, because this gives

insights in how the input is transformed before it is further evaluated in the network. The first

layer of the tiny model structure has 128 layers each with a dimension of 512. Some typical

filters are shown in Figure 4.11. It can be recognized that some of the layers have a periodic

Figure 4.11: Example filters from the first convolutional layer of the pretrained version of CREPE
(Mtiny).

structure, e.g. Figure 4.11a, Figure 4.11b and Figure 4.11c (with increasing frequency). This

means that the filters produce high values if they are applied to an array which has high values

with the same distance as the peaks of the layer. So a periodic filter measures the similarity

between the periodic structure of the signal and its own periodic structure. This indicates that

the functionality of the first layer is similar to a Fourier analysis which also compares a signal

with sinusoids of different frequencies. In addition to the periodic filters, there are also filters

with one peak (e.g. filter shown in Figure 4.11d) or multiple not periodic peaks (e.g. filter shown

in Figure 4.11e). Furthermore, there are filters that have another structure, e.g. the filter shown

in Figure 4.11f. The role of these filters for the network is still open.

Since the filters show some periodicity, we further examined them by applying fast Fourier

transformation (fast algorithm for the computation of the DFT) to each filter. Next, the absolute

value of each transformed filter was computed. The resulting vectors were then sorted ascendingly

according to the index of their maximal value. The result is shown in Figure 4.12. In this

figure, there is an exponential curve visible starting at 0 Hertz and ending at approximately

2000 Hertz. The maximal value for each filter (each column) indicates on which frequencies the

58 Master Thesis, Judith Bauer

4.2 OWN APPROACHES

Figure 4.12: To the filters of the first layer of the original network Mtiny, Fourier transform was
applied. Each column corresponds to one filter. The columns are sorted ascendingly according
to the indices of the maximum values. The orange arrows indicate the positions of the filters
shown in Figure 4.11.

filter focuses. There are more filters focusing on lower frequencies. This result is reasonable,

because the perception of pitch is logarithmic in frequencies. The difference in Hertz is smaller

for lower pitches. So in a lower frequency range, more pitches are present and more filters are

necessary to distinguish the pitch values.

The idea of layer freezing was now to precompute weights for a layer and use these for training.

Here, we examined the functionality of the filters of the first convolutional layer and used the

results to fix weights for these filters. As already discussed, the Fourier transformations of the

filters form an exponential curve between 0 Hertz and 2000 Hertz. So the filter with the highest

frequency contains 64 oscillations in one filter length (512 samples, 32 milliseconds). This filter

can be created by a sinus from 0 to 128 π. Since e
128

26.3807 = 128 the filters can be created as follows:

For each filter create an array with linear values between 0 and π · e
filter index

26.3807 , then compute the

sinus of each value. The Fourier transform of the computed filters is shown in Figure 4.13. These

filters are then fixed before training the neural network. The weights of the first convolutional

layer are set to be not trainable. The bias of the layer (128 dimensional) is set to 0. We refer to

the network trained with precomputed weights for the first convolutional layer as Mfreezed.

59 Master Thesis, Judith Bauer

4. DNN-BASED APPROACH

Figure 4.13: Spectrogram of the filters fixed for the first convolutional layer. These filters are
used for Mfreezed.

Mreduced Mtiny Msmall Mmedium Mlarge Mfull

trainable parameters 119,672 486,552 1,628,104 5,877,288 12,747,912 22,239,976

Table 4.3: Number of trainable parameters for the models provided by CREPE and the new
model.

4.2.4 Modify Network Structure

The tiny model of CREPE Mtiny still has over 486000 trainable parameters (486552). In order to

decrease the number of trainable parameters, we developed a new model which has only 24.6 % of

trainable parameters compared to the tiny model. The objective was to examine the performance

of a smaller model. Training this model was expected to be faster, since less parameters need to

be trained. For a comparison of the number of trainable parameters depending on the model

sizes, see Table 4.3.

The number of filters in the original tiny network Mtiny is high for the first convolutional layer.

So instead of 128 filters, we use only 64 filters. The last convolutional layer of the tiny model

uses 64 filters. For the new model, this was decreased to 32 layers. We also reduced the filter

sizes. Before, the sizes were 512 (convolution layer 1) or 64 (all other convolutional layers). For

the new model, we use filter sizes of 32 (convolution layer 1) or 8 (all other convolutional layers).

Especially using filters of size 32 instead of 512 in the first convolutional layer is a remarkable

60 Master Thesis, Judith Bauer

4.2 OWN APPROACHES

modification. Each filter of the new model uses only 32 neighboring samples (corresponds to

2 milliseconds) of the input audio for one application of the filter.

In the last convolutional block, no MaxPooling is applied, because the output dimension of the

convolutional layer is (8,32), so it contains 256 values. With MaxPooling with stride 2, the

number of output values would be reduced to 128. The output vector of the neural network has a

dimension of 360, so the number of dimensions before the fully connected layer can be increased

by omitting the MaxPooling layer. For the architecture of the new model, see Figure 4.14.

Figure 4.14: Architecture of new model structure Mreduced with less trainable parameters.

We refer to the trained version of the model with reduced trainable parameters as Mreduced.

61 Master Thesis, Judith Bauer

5. EVALUATION ON MDB-STEM-SYNTH

Chapter 5

Evaluation on MDB-stem-synth

In this chapter, the MDB-stem-synth dataset [8] (see Section 2.3.2 for details) is used for

evaluation of DNN-based pitch estimation approaches. Here, in comparison to previous chapters,

the results over the complete dataset are analyzed instead of single audio recordings. This leads

to a less detailed view, but more generalizable results. First, we evaluated the original network

of CREPE [1] in Section 5.1, then we retrained the network from scratch and developed some

own approaches in Section 5.2.

The developers of CREPE published the network structure and the model weights for the five

different model capacities. Also the code which is necessary to apply CREPE to music recordings

is published. The code for the training procedures is not available and was implemented by us.

For the evaluation, we computed raw pitch accuracies (RPA) and raw chroma accuracies (RCA)

using the python library mir eval [38].

5.1 CREPE

Salamon et al. trained the network on multiple datasets (see Section 4.1) among them the

MDB-stem-synth dataset [8]. The weights of the trained filters are published online (e.g.

https://github.com/marl/crepe/raw/models/model-tiny.h5.bz2 for the tiny model).

For evaluating the raw pitch accuracy and the raw chroma accuracy of a batch of audio recordings,

there are three possibilities:

• Eval1 (same weight for all files):

Compute a RPA value for each file, get the mean RPA value by averaging over the values.

63 Master Thesis, Judith Bauer

https://github.com/marl/crepe/raw/models/model-tiny.h5.bz2

5. EVALUATION ON MDB-STEM-SYNTH

• Eval2 (weight depending on file length):

Compute a RPA value for each file, get the mean RPA value by weighting the single values

by the file length and taking the average.

• Eval3 (weight depending on number of voiced frames in reference):

Compute a RPA value for each file, get the mean RPA value by weighting the single values

by the number of voiced frames in the reference and taking the average.

We evaluated the complete MDB-stem-synth dataset using the version of CREPE published

by the authors. For this, we used the full model (Mfull, highest number of filters in each layer)

with a stepsize of 10 milliseconds (160 samples). For the results of the raw pitch accuracies

using the three different evaluation methods and thresholds of 10/25/50 cents, see Table 5.1.

The comparison of the evaluation methods shows that the resulting values for the raw pitch

tolerance Eval1 Eval2 Eval3 Kim et al. [1]

10 cents 0.839 0.878 0.868 0.909
25 cents 0.926 0.949 0.946 0.953
50 cents 0.952 0.969 0.970 0.967

Table 5.1: We computed the RPA values for the complete MDB-stem-synth dataset using the
original network (full model Mfull, step size 10 milliseconds) with different aggregation methods.
The last column shows the results reported by Kim et al. [1] (evaluation method unknown).

accuracies differ by up to 0.039 (0.839 for a tolerance of 10 cents and Eval1 and 0.878 for a

tolerance of 10 cents and Eval2). In this case, evaluation method Eval2 leads to higher accuracies

then Eval1. This indicates that there are for example long files with high accuracies (higher

weight in evaluation method Eval2) or there are short files with low accuracies (lower weight in

evaluation method Eval2). Also evaluation method Eval3 returns higher pitch accuracies than

Eval1. So there are either files with a low number of voiced frames and low accuracies or files

with a high number of voiced frames and high accuracies. The accuracies reported by Kim et

al. [1] are higher for thresholds of 10 and 25 cents than our results. When compared to the

evaluation method that returns the highest accuracies, the differences are 0.031 (10 cents) and

0.004 (25 cents). For a threshold of 50 cents, we obtained a higher accuracy than reported by

Kim et al. using evaluation method Eval2.

So the results of evaluating a system on a dataset with multiple files vary depending on the type

of weighting which is used for aggregating the results of the single files.

In the following we use the evaluation method Eval1 (same weight for all files).

64 Master Thesis, Judith Bauer

5.2 OWN APPROACHES

5.2 Own Approaches

First, we retrained the network structure from scratch to examine the training process of the

network. Then, to avoid a bias induced by the choice of the test set, 5-fold cross-validation

was used. Afterwards, in order to further investigate the network, we evaluated the approaches

presented in Section 4.2 using the MDB-stem-synth dataset [8]. We started with data augmen-

tation in order to improve training results when training with a biased or too small dataset.

Then, we examined the influence of the first layer of the network and replaced it by a filter with

precomputed weights. Furthermore, we investigated a modified network with an adjusted output

dimension. Finally, we evaluated a network with modified layers.

When presenting the training of a neural network in the following sections, we used for most

cases a fixed training/validation/test split of the MDB-stem-synth dataset. We created this split

by hand and it is designed so that all solo stems (tracks) of one musical piece are in the same

set. The training set consists of 60% of the available stems, the other two sets consist of 20% of

the stems each. Training was performed on the voiced frames only, because the network needs

audio excerpts with annotation vectors. If a frame is unvoiced, no expected annotation vector

can be computed. Therefore, training is only possible with voiced frames. In MDB-stem-synth,

approximately 44.8% of the annotated frames are voiced.

5.2.1 Retrained Network

To get a first understanding of the network, we retrained the network from scratch. For this, we

used the network structure as proposed by Kim et al. [1], but instead of the pretrained weights,

we started with random weights. For the training, we used the architecture of the tiny model

Mtiny. The training/validation/test split was created by hand as described above. We trained

the network for 800 epochs. Each epoch consists of 30 training batches and 20 validation batches.

One batch includes 32 samples. As suggested by the authors, we used the Adam optimizer

[34] with a learning rate of 0.0002 and the binary cross entropy loss defined in Equation 4.10.

Retraining the network took approximately 161 minutes (approximately 2.69 hours).

During training, the raw pitch accuracies for the training and validation were computed after

each epoch. This was done by computing the raw pitch accuracy for each training and each

validation batch and averaging the results of all batches in one epoch. For the resulting curves

see Figure 5.1. As expected, the raw pitch accuracy generally increased over the epochs. For a

lower threshold of 10 cents, the accuracy increased slowlier than for a high threshold of 50 cents.

A high increase in accuracy can be observed in the first 200 epochs, afterwards, the accuracies

increased slowlier. For later epochs (epoch 200 to 800), the increase of accuracy is higher for a

threshold of 10 cents than for a threshold of 50 cents. So it can be assumed that the network

65 Master Thesis, Judith Bauer

5. EVALUATION ON MDB-STEM-SYNTH

Figure 5.1: During the retraining of the original version of CREPE (architecture of Mtiny, starting
with random weights), the raw pitch accuracies for different thresholds were measured after each
training/validation batch. These results were averaged over all training/valiation batches in one
epoch.

identified a solution which approximately estimates the pitches correctly at the beginning of the

training (epoch 0 to approximately 150). However, later epochs were necessary to refine the

estimations and thereby increase the raw pitch accuracy for low thresholds.

It can also be observed that generally the validation accuracy is higher than the training accuracy.

For this, there are multiple possible explanations. The training/validation set could be biased

(samples in validation loss were easier to estimate). Also when using regularization, a lower

training accuracy is reasonable, because dropout layers [32] are only activated during training

and can increase the error.

After the network was trained, it was applied to the test set. The test set only contains audio

files that are not used for training or validation. So the evaluation on the test set is not biased

due to the training process. As for the original version of CREPE, all files were resampled to a

66 Master Thesis, Judith Bauer

5.2 OWN APPROACHES

sampling rate of 16000 Hz before the network was applied. The network was configured to use

a window size of 1024 samples and a step size of 10 milliseconds. We computed the raw pitch

accuracy for each file in the test set with thresholds of 10, 25 and 50 cents. These values were

summarized using method Eval1 (see Section 5.1). For the resulting raw pitch accuracies and

raw chroma accuracies see Table 5.2. The table shows that high accuracies can be achieved when

tolerance
measure

RPA RCA

10 cents 0.826 ± 0.136 0.826 ± 0.136
25 cents 0.955 ± 0.042 0.956 ± 0.042
50 cents 0.982 ± 0.019 0.982 ± 0.019

Table 5.2: We trained a model with the same architecture as Mtiny starting with random weights.
The trained network was then applied to the files in the test set. Using evaluation method Eval1
these results were aggregated in order to obtain RPA and RCA values.

using a threshold of 50 cents (or 25 cents). For a threshold of 10 cents, the accuracies are lower.

It is also remarkable that there are no significant differences between the raw pitch accuracies

and the raw chroma accuracies. This indicates that the retrained model does not predict wrong

pitches because of octave errors.

For comparison, we evaluated the original version of CREPE as published by Kim et al. on

the test set (resampled by CREPE to 16000 Hz) using the tiny model Mtiny and a step size of

10 milliseconds (same as for the retrained network). Furthermore, YIN was evaluated on the test

set. YIN used the original files with a sampling rate of 44100 Hertz. The evaluation was performed

with a hop size of 512 samples (approximately 11.6 milliseconds, CREPE: 10 milliseconds) and a

window length of 4096 samples (approximately 92.9 milliseconds, CREPE: 64 milliseconds). The

minimum frequency is set to 30 Hertz and the maximum frequency is set to 1760 Hertz.

Table 5.3 shows the raw pitch accuracies of the retrained network, the original network and

YIN. It is notable that compared to the original version of CREPE, the retrained network

tolerance RPA (Mtiny) RPA (retrained CREPE) RPA (YIN)

10 cents 0.837 ± 0.091 0.826 ± 0.136 0.630 ± 0.154
25 cents 0.942 ± 0.043 0.955 ± 0.042 0.797 ± 0.104
50 cents 0.969 ± 0.027 0.982 ± 0.019 0.881 ± 0.069

Table 5.3: RPA values for the test set evaluated using method Eval1. The first column shows
the results of the original version of CREPE (Mtiny). The second column shows the results of
the retrained model (same architecture as Mtiny). The third column shows the result of YIN.

achieves a higher RPA for a tolerance of 25 and 50 cents, but a lower RPA for a tolerance of 10

cents. This shows that the retrained network performs worse for exact estimations, but better

for approximate estimations. The results for tolerances of 25 and 50 cents can be due to the

restriction to only one dataset. So the training and testing is performed on sets of the same

67 Master Thesis, Judith Bauer

5. EVALUATION ON MDB-STEM-SYNTH

dataset and the model can overfit on characteristics of this dataset. The low RPA for a tolerance

of 10 cents can be explained by involving the RPA curves. The RPA values during training were

still increasing for epochs 700 to 800, so further improvements for this tolerance are possible

when training for more than 800 epochs.

In summary, we showed that a retraining of the network is possible in comparatively short time

and achieves raw pitch accuracies similar to the original network.

5.2.2 Cross-Validation

The results in Section 5.2.1 highly depend on the train/validation/test split. If for example, the

test set contains examples that are comparatively easy to evaluate, this leads to higher raw pitch

accuracies.

So in order to obtain a less biased result, we applied cross-validation. Here, 5-fold cross-validation

is used. So the complete dataset was split into five groups. Each of the groups consists of the

same number of stems and each stem can only be part of one group. Then we performed training,

validation and testing in five independent iterations. Each time, one of the five groups (20% of

the stems) served as test set. The stems that are not in the test set were split into a validation set

(20% of all stems) and a training set (60% of all stems). We created the training/validation/test

sets so that all stems of one musical piece are assigned to the same set. This is necessary in

order to avoid training and testing on the same musical piece, because this would lead to too

high RPA results for the test set.

For creating the five groups and for splitting the rest of the stems into a validation/training

set, we used backtracking. So the splitting algorithm starts with one file and adds more files

as long as all conditions are fulfilled. If a suitable set is created, the algorithm returns this set

as suggested split. Otherwise, the algorithm recursively removes files from the set and replaces

them by other files.

We used the model architecture from the tiny model of CREPE (Mtiny) with random weights

as starting point. Training was performed with each group for 800 epochs (5 · 800 epochs in

total). Each epoch consists of 30 batches for training and 20 batches for evaluation. The batch

size is 32. The training process for all five groups took approximately 933 minutes (15.55 hours).

Divided by 5 (5 folds), this results in approximately 3.11 hours per fold. This duration is longer

than the duration of the retraining in Section 5.2.1 (2.69 hours). The reason is that here we

included the evaluation on the test set in the process. The test set for 5-fold cross-validation is

determined during the process, so the additional time is necessary to evaluate the files in the test

set. As suggested by the authors, we used the Adam optimizer [34], a learning rate of 0.0002

and the binary cross-entropy loss (Equation 4.10). In each iteration, we trained a network and

then evaluated it on the test set with a step size of 10 milliseconds and the evaluation method

68 Master Thesis, Judith Bauer

5.2 OWN APPROACHES

Eval1. The results of the RPA values of the five folds are shown in Table 5.4. The accuracies

tolerance fold1 fold2 fold3 fold4 fold5 mean of folds Mtiny

10 cents 0.770 0.829 0.768 0.791 0.815 0.795 0.837
25 cents 0.899 0.947 0.912 0.928 0.953 0.928 0.942
50 cents 0.932 0.971 0.947 0.961 0.978 0.958 0.969

Table 5.4: Using 5-fold cross-validation, we trained a network with the same architecture as
Mtiny five times. Each model was then applied to the test set with a step size of 10 milliseconds.
The raw pitch accuracy for each file in the test set was computed and the results of the files were
aggregated using method Eval1. The table shows the raw pitch accuracies for the five training
iterations. For comparison, we added the results of the original version of CREPE (Mtiny, Eval1)
applied to the test set.

for fold1 and fold3 are lower than the mean accuracy. This can indicate that the test sets used

for these folds are more challenging than the test sets of the other folds. With fold2 and fold5,

accuracies above the mean accuracy are obtained and fold 4 leads to results similar to the mean

accuracy. The mean accuracies are lower than the accuracies achieved by applying the original

version of CREPE to the test set. This is possibly due to the short training time.

The mean accuracy achieved using 5-fold cross-validation is a more general result since it does

not depend on the train/validation/test split.

5.2.3 Data Augmentation

As explained in Section 4.2.1, we used data augmentation in order to improve the training

results. The MDB-stem-synth dataset [8] contains more examples for low frequencies than for

high frequencies. Therefore, we applied pitch shifting to the audio files in the training and the

validation set, so that these sets cover a larger frequency range. This is expected to improve the

performance of the network for high frequencies.

For the training, we used the architecture of the tiny network Mtiny. The network was initialized

with random weights. For the training process, we used the Adam optimizer [34], a learning rate

of 0.0002 and the binary cross-entropy loss defined in Equation 4.10. The training was performed

for 800 epochs where each epoch consisted of 30 batches for training and 20 batches for validation.

The batch size was 32, so per batch, 32 samples were used. We refer to the trained network as

Mshift. The complete training took 156 minutes (approximately 2.61 hours). This duration is

similar to the duration for retraining the network without data augmentation (see Section 5.2.1,

training duration was 2.69 h). During training, we computed the raw pitch accuracies. This was

done after each epoch for the training and the validation batches. We measured the raw pitch

accuracy for thresholds of 10, 25 and 50 cents. As expected, the raw pitch accuracies increased

over the epochs. For higher thresholds (e.g. 50 cents), the raw pitch accuracy increased faster

69 Master Thesis, Judith Bauer

5. EVALUATION ON MDB-STEM-SYNTH

then for lower thresholds, since the network gets more accurate over training time. However, it is

remarkable that especially for a threshold of 10 cents, the raw pitch accuracies are rather small.

For the raw pitch accuracies over the epochs, see Figure 5.2. The new trained network Mshift

Figure 5.2: We trained a model with the same architecture as the architecture of the tiny model
Mtiny using pitch shifting. The resulting model is referred to as Mshift. The figure shows the
raw pitch accuracy (RPA) for the training and validation batches after each epoch for different
thresholds.

was then applied to the test set consisting of 20% of the audio files of MDB-stem-synth. These

audio files were not used during training. No pitch shifting is applied to the test set to ensure

comparability to other approaches (same test set). The evaluation of the new trained network on

the test set lead to the RPA/RCA values shown in Table 5.5 (evaluated with method Eval1).

The accuracies are lower then the accuracies achieved with the original version of CREPE (Mtiny).

However, we applied pitch shifting in order to improve the performance for high frequencies. To

examine the frequency range, the network trained with pitch shifting was applied to the chirp

signal with frequencies between 30 and 2000 Hertz. For comparison, also the retrained network

70 Master Thesis, Judith Bauer

5.2 OWN APPROACHES

tolerance
measure

RPA (Mshift) RCA (Mshift) RPA (Mtiny)

10 cents 0.649 ± 0.118 0.667 ± 0.106 0.837 ± 0.091
25 cents 0.871 ± 0.105 0.894 ± 0.082 0.942 ± 0.043
50 cents 0.927 ± 0.081 0.953 ± 0.043 0.969 ± 0.027

Table 5.5: To the training and the validation set, pitch shifting was applied. After training a
model with the architecture of Mtiny using pitch shifting, we evaluated the test set using the new
network Mshift and computed RPA and RCA values (aggregated using Eval1). The raw pitch
accuracies and raw chroma accuracies are shown in the first and second column. For comparison,
we added the results of the original version of CREPE (Mtiny, Eval1) evaluated on the test set.

from Section 5.2.1 was applied to the same signal. The estimations of the retrained network and

the network trained with data augmentation are shown in Figure 5.3. This figure shows that the

network without data augmentation estimates frequencies below 1200 Hertz correctly. For higher

frequencies, the network predicts the pitches of the subharmonics. Using data augmentation, the

network recognizes frequencies until approximately 1600 Hz with a high accuracy. Also for higher

frequencies, subharmonics are predicted. So the learned frequency range increased compared to a

network trained on the original MDB-stem-synth dataset by approximately 400 cents. However,

not the complete frequency range until 2000 Hz is learned. This is probably due to the still not

completely balanced frequency distribution.

5.2.4 Output Vector Resolution

Another approach was to modify the output vector. The original version of CREPE outputs a

360-dimensional vector from which the final pitch estimate is computed. The values in the vector

have a resolution of 20 cents. Here, we replaced this vector by a 720 dimensional vector which

covers the same frequency range, but has a resolution of 10 cents. For training, we used the same

train/validation/test set that was created by hand as before. The network was trained using the

Adam optimizer [34] and a learning rate of 0.0002. For the loss function, we used the binary

cross-entropy loss defined in Equation 4.10. We trained for 800 epochs (30 training batches/20

validation batches per epoch, batch size 32). The complete training process took approximately

220 minutes (3.66 hours). We then applied the trained network (referred to as Mdim720) to the

audio files of the test set and computed the raw pitch accuracy for each file. From these values,

the resulting raw pitch accuracies were derived using evaluation method Eval1, see Table 5.6

for the results. The raw pitch accuracy obtained with the new network Mdim720 is lower than

the RPA obtained with the original for a threshold of 10 cents. For thresholds of 25 cents and

50 cents, the raw pitch accuracy of Mdim720 is higher. However, all raw pitch accuracies are

lower compared to the retrained version of CREPE from Section 5.2.1. This indicates that the

increased output dimension of the network does not improve the accuracy for low thresholds.

71 Master Thesis, Judith Bauer

5. EVALUATION ON MDB-STEM-SYNTH

Figure 5.3: F0-estimations of a chirp signal from 30 Hertz to 2000 Hertz. (a) Estimations
using the retrained network from Section 5.2.1. Frequencies until approximately 1200 Hertz
are predicted correctly. (b) Estimations using a new network Mshift trained with a pitch
shifted dataset. Frequencies until approximately 1600 Hertz are predicted correctly. For higher
frequencies, the subharmonics are predicted.

72 Master Thesis, Judith Bauer

5.2 OWN APPROACHES

tolerance
measure

RPA (Mdim720) RCA (Mdim720) RPA (Mtiny)

10 cents 0.778 ± 0.152 0.778 ± 0.152 0.837 ± 0.091
25 cents 0.945 ± 0.052 0.945 ± 0.052 0.942 ± 0.043
50 cents 0.978 ± 0.023 0.979 ± 0.023 0.969 ± 0.027

Table 5.6: We trained a new network based on the architecture of the tiny model of CREPE
(Mtiny). The new network Mdim720 has an increased output resolution. After training, the test
set was evaluated using the new network and evaluation method Eval1. The resulting raw pitch
accuracies and raw chroma accuracies are shown in the first and second column. For comparison,
we added the results of the original version of CREPE (Mtiny, Eval1) evaluated on the test set.

One possible explanation is that the training of the network is slower due to the higher number

of parameters. It is also possible that the number of potential outputs represented by the values

in the last layer is too high compared to the available training data.

5.2.5 Layer Freezing

In Chapter 4.2.3, we examined the filters of the first convolutional neural network of CREPE

(Mtiny). The weights of some filters have a periodic structure. So we developed filters for the

first convolutinal layer so that the Fourier transformation of the filters form an exponential curve

when sorted for the maximum index. The tiny model Mtiny of CREPE has 128 filters with a filter

size of 512 in the first convolutional layer. We used the original network structure of CREPE

(Mtiny) but replaced the weights with random weights. For the first convolutional layer, we fixed

the precomputed weights. This network was trained using the fixed train/validation/test set. As

optimizer, we used the Adam optimizer [34] and the learning rate was set to 0.0002. The loss

function was the binary cross-entropy loss (defined in Equation 4.10). For the training, we used a

batch size of 32 samples. In each epoch, we trained with 30 batches and evaluated using 20 batches.

Training was performed for 800 epochs and the complete training took 152 minutes (2.54 hours).

In comparison to a retraining of the network without a fixed first layer (Section 5.2.1), this

duration is 9 minutes shorter. It is expected that the training is faster, since no training of the

first layer is necessary.

After training the network (referred to as Mfreezed), we applied it to the files in the test set. For

each file, we computed a raw pitch accuracy and a raw chroma accuracy. These values were

summarized using method Eval1. For the results, see Table 5.7. The table indicates that the raw

pitch accuracies are smaller for a threshold of 10 cents and 25 cents and similar for a threshold

of 50 cents compared to the original version of CREPE (Mtiny). There are mainly two possible

reasons for this result. One explanation is that the Fourier transform of the filters from the

original network do not form a perfect exponential curve. Rather the curve ascends faster at the

beginning. A large number of filters focus on medium frequencies of approximately 300 Hz to

73 Master Thesis, Judith Bauer

5. EVALUATION ON MDB-STEM-SYNTH

tolerance
measure

RPA (Mfreezed) RCA (Mfreezed) RPA (Mtiny)

10 cents 0.746 ± 0.129 0.749 ± 0.130 0.837 ± 0.091
25 cents 0.928 ± 0.058 0.934 ± 0.056 0.942 ± 0.043
50 cents 0.966 ± 0.035 0.972 ± 0.029 0.969 ± 0.027

Table 5.7: We trained a new network based on the architecture of the tiny model of CREPE
(Mtiny). The weights of the first convolutional layer were precomputed and not trained. After
training, the test set was evaluated using the new network Mfreezed and evaluation method Eval1.
The resulting raw pitch accuracies and raw chroma accuracies are shown in the first and second
column. For comparison, we added the results of the original version of CREPE (Mtiny, Eval1)
evaluated on the test set.

1000 Hz. The exponential curve in contrast ascends slowlier at the beginning. So the number

of precomputed filters for a low frequency range could be too high which corresponds to a too

small number of filters focusing on medium frequencies that occur frequently in most datasets.

Another possible explanation for the low raw pitch accuracies is the concentration on the

maximum of the Fourier transform of each filter. It might be that each filter focuses on more

than one frequency and additionally measures the presence of higher frequencies in an audio

excerpt. This can be necessary in order to use overtones for the estimation of the fundamental

frequency. By generating filters which consist of only one frequency, the noise in the Fourier

transform is avoided. This possibly leads to lower accuracies.

For this experiment, we generated the filters using sine waves with the same phase for all filters.

Additionally, we experimented with the usage of sine waves and cosine waves. For this purpose,

we generated filters with ascending frequencies similar to the first experiment. But the filters

were generated alternating as sine wave or cosine wave. The training was performed similar to the

training for Mfreezed on the training set and the validation set and the duration was 162 minutes

(2.35 hours). We refer to the trained model as Mfreezed2. The resulting raw pitch accuracies for

the test set (computed with Eval1) are shown in Table 5.8. The second model results in only

slightly better raw pitch accuracies for thresholds of 10 and 25 cents.

tolerance
measure

RPA (Mfreezed) RPA (Mfreezed2)

10 cents 0.746 ± 0.129 0.790 ± 0.120
25 cents 0.928 ± 0.058 0.935 ± 0.061
50 cents 0.966 ± 0.035 0.965 ± 0.044

Table 5.8: We trained two networks with a fixed first layer. For the first network Mfreezed, the
filters were generated using sine waves. For the filters of the second network Mfreezed2 we used
sine waves and cosine waves. Both networks were evaluated on the test set using evaluation
method Eval1.

74 Master Thesis, Judith Bauer

5.2 OWN APPROACHES

5.2.6 Modify Network Structure

As presented in Section 4.2.4, we developed a new network with a lower number of filters and

smaller filters. This leads to a reduced number of trainable parameters. Compared to the tiny

model of CREPE Mtiny, this network has only 24.6% of the trainable parameters. The new

network Mreduced was trained using the fixed train/validation/test split that was created by

hand. For training, we used the Adam optimizer [34], a learning rate of 0.0002 and the binary

cross-entropy loss (defined in Equation 4.10). We trained for 800 epochs with 30 training batches

and 20 evaluation batches per epoch and a batch size of 32. The training process took 149

minutes (2.48 hours). So the training is faster than the training of the tiny model structure

of CREPE (duration: 161 minutes). Additionally, the training of this model is faster than the

training of a model with precomputed filters for the first layer (duration: 152 minutes). After

the training, the network was evaluated on the test set. For the results of the raw pitch accuracy

and the raw chroma accuracy see Table 5.9. It is remarkable that the raw pitch accuracy is

significantly lower for a threshold of 10 cents compared to the raw pitch accuracy of the original

version of CREPE. However, the raw pitch accuracy for a threshold of 50 cents is only slightly

lower for Mreduced compared to the original version of CREPE (Mtiny).

tolerance
measure

RPA (Mreduced) RCA (Mreduced) RPA (Mtiny)

10 cents 0.590 ± 0.119 0.591 ± 0.119 0.837 ± 0.091
25 cents 0.893 ± 0.086 0.894 ± 0.085 0.942 ± 0.043
50 cents 0.958 ± 0.051 0.959 ± 0.050 0.969 ± 0.027

Table 5.9: Raw pitch accuracies and raw chroma accuracies for the test set evaluated with a
network with less parameters Mreduced and evaluation method Eval1. For comparison, we added
the results of the original version of CREPE (Mtiny, Eval1) evaluated on the test set.

We applied the new trained network Mreduced to a chirp signal (30 Hz to 2000 Hz). For the

estimated frequencies see Figure 5.4. Similar to the retrained network based on the tiny model

structure of CREPE, subharmonics are predicted for frequencies above approximately 1200 Hz.

For frequencies below 1200 Hz, the estimations of Mreduced are rather inaccurate. This is probably

due to the small network that is not capable of learning a detailed F0-estimation.

The new network Mreduced has only 64 filters instead of 128 filters (Mtiny) for the first convolutional

layer. Each filter has a dimension of 32 (Mreduced) instead of 512 (Mtiny). To the learned filters

of Mreduced, we applied the Fourier transform and sorted the result ascendingly according to

the index of the maximum value. For the result, see Figure 5.5. The figure still slightly shows

a curve similar to the Fourier transform of the filters from the original network Mtiny. So the

network Mreduced has a lower number of trainable parameters and training can be performed

faster. However, this also leads to a lower raw pitch accuracy for a threshold of 10 cents.

75 Master Thesis, Judith Bauer

5. EVALUATION ON MDB-STEM-SYNTH

Figure 5.4: We trained a model with a reduced number of parameters. The figure shows the
F0-estimations of this model Mreduced for a chirp signal from 30 Hertz to 2000 Hertz.

Figure 5.5: We trained a model with a lower number of filters and smaller filters Mreduced. To the
filters of the first convolutional layer, Fourier transform was applied. Each column corresponds
to one filter. We sorted the columns for ascending indices of the maximum value.

76 Master Thesis, Judith Bauer

5.2 OWN APPROACHES

5.2.7 Summary

In the previous sections, we described the training of four different approaches. We started with

a model (referred to as Mshift) trained using a pitch shifted dataset. Next, we presented a model

with an increased output vector with a resolution of 10 cents instead of 20 cents. We refer to

the trained model as Mdim720. Then, the weights of the first convolutional layer were fixed and

this layer was excluded from training. For the computation of the weights, we used two different

approaches. For Mfreezed, we used only sine waves and for Mfreezed2, we used sine waves and

cosine waves. Furthermore, we trained a network with a lower number of filters and smaller

filters. The trained network is referred to as Mreduced.

We performed all trainings using a fixed train/validation/test split of the MDB-stem-synth

dataset [8]. So all approaches were tested on the same test set. We evaluated the audio files in the

test set with the models and summarized the results of the files using evaluation method Eval1.

An overview of the resulting raw pitch accuracies is given in Table 5.10. The best/worst RPA in

each row is indicated with a green/red font. The table shows that for a threshold of 10 cents,

Mshift Mdim720 Mfreezed2 Mreduced Mtiny

RPA 10 cents 0.649 ± 0.118 0.778 ± 0.152 0.790 ± 0.120 0.590 ± 0.119 0.837 ± 0.091
RPA 25 cents 0.871 ± 0.105 0.945 ± 0.052 0.935 ± 0.061 0.893 ± 0.086 0.942 ± 0.043
RPA 50 cents 0.927 ± 0.081 0.978 ± 0.023 0.965 ± 0.044 0.958 ± 0.051 0.969 ± 0.027

training 156 min 220 min 162 min 149 min -

Table 5.10: Summary of raw pitch accuracies and training durations of different approaches.

none of the approaches leads to a higher raw pitch accuracy then the original model of CREPE

Mtiny. For a threshold of 25 cents, the RPA obtained with Mdim720 is comparable (slightly higher)

to the RPA obtained with Mtiny. This model (Mdim720) and Mfreezed2 also achieve raw pitch

accuracies similar to the raw pitch accuracy of Mtiny for a threshold of 50 cents. The model

Mdim720 leads to the highest accuracy compared to the other approaches. However, this model

also had a training duration of 220 minutes which is higher than the durations for the remaining

models. In order to save training time, we developed the architecture of Mreduced. Although all

models were trained for 800 epochs, the training for this model had the shortest duration.

So using Mshift we were able to extend the range of frequencies that can be estimated. Through

the experiments with Mfreezed2, we received new insights in the role of the first convolutional

layer. And by training Mreduced, we developed a faster and smaller model for F0-estimation.

77 Master Thesis, Judith Bauer

6. EVALUATION ON GEORGIAN RECORDINGS

Chapter 6

Evaluation on Georgian Recordings

In this chapter, we evaluate CREPE on a more complex and realistic dataset. For this, we use

the dataset consisting of Georgian vocal music that was introduced in Section 2.3.3. It consists

of five Georgian songs performed by three singers. Here, only the chant Batonebis Nanina is used

as running example. For this chant, each singer was recorded with a headset microphone (HDS)

and a larynx microphone (LRX). The difference between these microphone types is that the

larynx microphone is directly attached to the throat skin of the singer. Thereby, it only records

the pitches, but not the words of the singer. The larynx microphone is also less influenced by

the other singers. So if the singer has a pause, the voices of the other singers are more audible

in the recording of the headset microphone than in the recording of the larynx microphone.

Additionally, a recording from the camera microphone and a recording from the room microphone

are available. These contain the voices of all singers. Using this example, we will examine the

pitch estimations of CREPE in Section 6.1 and the voicing estimations of CREPE in Section 6.2.

6.1 Pitch Estimation

To examine the pitch estimations of CREPE for a more complex example, we first applied

CREPE to the larynx and the headset recordings of the singers and compared the results. Then,

the estimations of CREPE are compared to the estimations of YIN for the larynx microphones.

Finally, we apply CREPE and Melodia to the recording of the room microphone (polyphonic

recording).

79 Master Thesis, Judith Bauer

6. EVALUATION ON GEORGIAN RECORDINGS

6.1.1 Evaluation with CREPE

For each singer, CREPE is applied to both recordings (larynx and headset). For this, we use the

full model structure Mfull and a hop size of 10 milliseconds (from audio resampled to 16000 Hz).

In Figure 6.1, the results for the first singer are shown. In Figure 6.1a, the pitch trajectories

for the larynx microphone and the headset microphone evaluated with CREPE are plotted. For

some time ranges, the estimates are similar, and for some time ranges, they differ much more.

The differences are computed in cents and a threshold of 25 cents is applied. If both estimates

for the larynx recording and the headset recording are almost similar (difference ≤ 25 cents), we

assume that both predictions are correct. The frames for which the pitch estimates differ by

more than 25 cents (estimate assumed to be wrong) are marked in gray in Figure 6.1b. CREPE

also computes a confidence value (voicing estimate). A confidence between 0.0 and 0.5 indicates

that a frame is predicted to be unvoiced (no melody) and a confidence between 0.5 and 1.0

indicates that a frame is predicted as voiced. The voicing estimate of CREPE for the larynx

recording is shown in Figure 6.1c. In the figure, it is visible that frames with a high difference in

the estimated pitches for the two microphones highly coincide with frames that are predicted as

unvoiced. So for the unvoiced frames (pauses), the pitch estimation is often incorrect. It is also

notable that the pitch estimations for the larynx recording vary more than the pitch estimations

for the headset microphone. This is probably due to the stronger presence of other voices in the

headset recording. So during the pauses, pitches of other singers are predicted.

Figure 6.1: Evaluation using CREPE (Mfull) for the first singer. (a) Pitch estimations of CREPE
for larynx recording and for headset recording. (b) Frames with a pitch difference of more than
25 cents (marked in gray). (c) Confidence evaluated with CREPE on larynx recording (frames
that are predicted as unvoiced marked in green).

80 Master Thesis, Judith Bauer

6.1 PITCH ESTIMATION

The pitch estimations for the larynx recordings can be considered as more reliable than the

estimations for the headset recordings, because less noise from other singers is present. Therefore

the estimations from the larynx recordings can be used as ground truth fundamental frequency

values. Thereby, the raw pitch accuracy can be computed without other annotations. The raw

pitch accuracies for the three singers and different thresholds are shown in Table 6.1. Especially

for the first and the second singer, we achieved high accuracies.

threshold Singer 1 Singer 2 Singer 3

10 cents 0.901 0.900 0.863
25 cents 0.967 0.956 0.932
50 cents 0.978 0.978 0.955

Table 6.1: Raw pitch accuracies for the headset recordings of the three singers evaluated with
CREPE (Mfull, 10 milliseconds hop size for audio resampled to 16000 Hz). As ground truth, the
fundamental frequency estimations of CREPE applied to the larynx microphones are used.

6.1.2 Comparison to YIN

In the following, we compare the fundamental frequency estimates of CREPE to the frequencies

obtained with YIN [3]. For more details on YIN see Section 3.1.

For the comparison to YIN, the audio files were resampled to 16000 Hz before applying YIN.

CREPE also resamples audio files to 16000 Hz, so this ensures that both pitch estimation

approaches use exactly the same input and increases the comparability of the results. The hop

size for the evaluation with YIN is set to 160 samples and the window length is 1024 samples.

These values are equal to the values used for the evaluation with CREPE: The window length of

CREPE is fixed to 1024 samples and the hop size is set to 10 milliseconds (corresponds to 160

samples). For YIN, a minimum frequency and a maximum frequency have to be fixed. We use

30 Hz (minimum) and 1760 Hz (maximum). For the comparison of CREPE (Mfull) and YIN,

we only use the recordings from the larynx microphones, because they contain less noise from

the other singers. Therefore, pitch estimations on the larynx microphones are more accurate.

The pitch estimations from CREPE and YIN for the first singer are shown in Figure 6.2a. The

difference between the estimates is computed in cents. Here, we consider frequencies that differ

by more than 25 cents as wrong. If the difference is small (≤ 25 cents), we assume that CREPE

and YIN both predicted the correct fundamental frequency. Figure 6.2b shows areas with wrong

predictions (difference > 25 cents) in gray. A voicing confidence is obtained by applying CREPE

to the larynx recording. It is added in Figure 6.2c. For the confidence values, a threshold of 0.5

is used and frames with a confidence below this threshold (predicted as unvoiced) are marked

in green. It is notable that frames which are predicted as unvoiced by CREPE are often also

frames with a high difference between the frequency estimates. So probably, these are the time

ranges where singer 1 is not singing.

81 Master Thesis, Judith Bauer

6. EVALUATION ON GEORGIAN RECORDINGS

In order to further investigate the pitch results, the raw pitch accuracy is computed. As ground

truth, we use the fundamental frequencies obtained by applying CREPE to the larynx recordings.

For CREPE, we choose the full model Mfull and a hop size of 10 milliseconds of the audio

resampled to 16000 Hz. The evaluated estimations are the fundamental frequency values obtained

using YIN with the same settings as described above. We compute the raw pitch accuracy for the

larynx recording of each singer. For the results, see Table 6.2. The highest accuracies are achieved

for singer 1. However, the raw pitch accuracies for YIN evaluated on the larynx recordings are

significantly lower than the raw pitch accuracies for CREPE evaluated on the headset recordings

(cf. Table 6.1). This indicates that the estimations of CREPE for the two microphone types are

more similar than the estimations of CREPE and YIN on the same microphone type (larynx

microphone). One possible explanation for this result is that in the larynx recordings, the voices

of the other singers are still slightly audible during pauses of the recorded singer. So it could be

the case that CREPE evaluated on a larynx recording predicts the pitches of the other singers

during pauses for some time instances.

Figure 6.2: Evaluation using CREPE (Mfull) and YIN for the first singer (larynx recording).
(a) Pitch estimations for larynx recording with CREPE and YIN. (b) Frames with a pitch
difference of more than 25 cents (marked in gray). (c) Confidence evaluated with CREPE on
larynx recording (frames that are predicted as unvoiced marked in green).

6.1.3 Polyphonic Music

CREPE is developed to estimate the fundamental frequencies of monophonic audio recordings. So

in contrast to other approaches, CREPE is not trained to recognize the main melody of a recording

(predominant melody estimation). Furthermore, CREPE only predicts one frequency value for

82 Master Thesis, Judith Bauer

6.1 PITCH ESTIMATION

threshold Singer 1 Singer 2 Singer 3

10 cents 0.767 0.655 0.669
25 cents 0.882 0.788 0.803
50 cents 0.908 0.837 0.860

Table 6.2: Raw pitch accuracies for the larynx recordings of the three singers evaluated with
YIN. As ground truth, the fundamental frequency estimations of CREPE (Mfull) applied to the
larynx microphones are used.

each time instance and does not have the possibility to investigate multiple simultaneously

occurring pitches (multipitch estimation).

However, we apply CREPE to a polyphonic audio recording in order to investigate its results.

For the evaluation with CREPE, we use the full model structure Mfull and a hop size of 10

milliseconds (audios are resampled to 16000 Hz by CREPE). As example, we use the recording

from the room microphone for Batonebis Nanina. It contains the voices of all three singers.

The fundamental frequency estimates of CREPE are shown in Figure 6.3a. In order to provide

some context, we also applied CREPE (same settings as for the room microphone) to the larynx

recordings and added the resulting values to the figure. It is notable that the trajectory of the

estimations from the room microphone is not very stable. Instead, the estimations jump between

the estimations for the other recordings. This can be explained by the architecture of CREPE.

The neural network of CREPE returns a 360-dimensional output vector ŷ. The pitch estimation

is derived from this vector by searching for the peak in the vector and considering only entries

at a certain neighborhood around the peak. These values serve as weights for cent values. For

polyphonic music, the output vectors of CREPE probably contain multiple peaks. Still, only the

maximum is considered. So if there are e.g. two peaks, the maximum of both peaks is selected.

This is a rather random choice and leads to the jumps in the pitch trajectory.

In Section 3.4, we presented Melodia. Melodia is an approach for pitch estimation developed by

Salamon et al. [7]. Since it is an approach for polyphonic music, we use it here for evaluation

of the room microphone recording. For the resulting fundamental frequencies see Figure 6.3b.

The objective of Melodia is to identify the fundamental frequency values of the main melody.

However, the recording of Batonebis Nanina has no clearly determined main melody. Although,

the estimations of Melodia are more stable and are less frequently jumping between the estimates

for the singers. Also Melodia focuses more on the pitches belonging to singer 3. This is the

singer with the highest pitches in general. Melodia only rarely predicts the frequencies belonging

to singer 1 (lowest voice).

So in summary it can be said that CREPE predicts frequencies belonging to one of the voices,

but the pitch trajectory is jumping frequently. Melodia instead rather focuses on higher voices

and produces a more stable pitch trajectory.

83 Master Thesis, Judith Bauer

6. EVALUATION ON GEORGIAN RECORDINGS

Figure 6.3: Pitch estimation for the larynx recordings of all singers and the recording from the
room microphone. (a) Estimated with CREPE. (b) Estimated with YIN.

6.2 Voicing Estimation

In the previous section, we discussed the estimation of fundamental frequencies for Georgian

vocal music. Besides F0-estimation, there is also the task of voicing estimation. The objective of

voicing estimation is to predict for a given time instance, whether the corresponding frame is

voiced or not. If a frame is unvoiced, this implies that there is no melody present at this time

instance.

84 Master Thesis, Judith Bauer

6.2 VOICING ESTIMATION

CREPE outputs a confidence value for each time instance which can be interpreted as voicing

estimate. So the voicing function for CREPE maps each time instance n to a confidence value

between 0 and 1:

VCrepe(n) ∈ [0, 1]. (6.1)

For CREPE, confidence values above 0.5 indicate that a frame is voiced. So from the voicing

function VCrepe(n), an activity function ACrepe : Z→ {0, 1} for CREPE can be derived which is

1 if a frame is predicted as voiced and 0 otherwise:

ACrepe(n) =

1 if VCrepe(n) > 0.5

0 else
. (6.2)

YIN computes multiple values related to voicing. We use the aperiodic measure which is the ratio

of the aperiodic power to the total power. For more details on voicing in YIN, see Section 3.1.2.

So a voicing function for YIN can be defined as a function that maps each time instance n to a

voicing value:

VYin(n) ∈ R≥0. (6.3)

In Section 3.1.2, we deduced a threshold of 0.1467 for the aperiodic measure. If the aperiodic

measure is above this threshold, this indicates that a high aperiodicity is present and therefore

the frame is considered as unvoiced. Otherwise, a frame is considered as voiced. This leads to

the following activation function AYin : Z→ {0, 1} for YIN:

AYin(n) =

1 if VYin(n) < 0.1467

0 else
. (6.4)

As example, we examined the voicing functions and the activation functions of CREPE and YIN

on the recording of Batonebis Nanina (singer 1). For CREPE, we use the full model structure

Mfull and a hop size of 10 milliseconds. For YIN, we first resampled the audio files to 16000 Hz,

in order to use the same input as for CREPE. YIN was then evaluated with a hop size of 160

samples and a window length of 1024 samples (same as CREPE). The minimum frequency was

set to 30 Hz and the maximum frequency was set to 1760 Hz. See Figure 6.4 for the results.

For the plot, the result of the voicing function of YIN is multiplied by (-1). The reason is that

YIN has low voicing values at frames that are estimated as unvoiced whereas CREPE has high

voicing values at frames that are estimated as unvoiced. In order to receive a standardized plot,

the multiplication by (-1) is necessary. The plot shows that the voicing values are higher for

the headset recordings (Figure 6.4a) than for the larynx recordings (Figure 6.4b). This can be

explained by the pauses in the larynx recordings. The activity function of CREPE and YIN for

85 Master Thesis, Judith Bauer

6. EVALUATION ON GEORGIAN RECORDINGS

the larynx recordings is shown in Figure 6.4c. Here, we also added the union and the intersection

of the activity functions:

(ACrepe ∪AYin)(n) =

1 if ACrepe(n) == 1 or AYin(n) == 1

0 else
(6.5)

and

(ACrepe ∩AYin)(n) =

1 if ACrepe(n) == 1 and AYin(n) == 1

0 else
. (6.6)

Through listening to the recording, especially the intersection of the activity functions of CREPE

and YIN ACrepe ∩AYin was found to be a good estimate for voicing.

Figure 6.4: Voicing of CREPE and YIN applied to Batonebis Nanina. (a) Voicing estimates
from CREPE and YIN for the headset recording of singer 1. (b) Voicing estimates from CREPE
and YIN for the larynx recording of singer 1. (c) Activities for the larynx recording of singer 1.

Using the intersection of the activity functions of CREPE and YIN, we compare the voicing

activities of the three singers. So CREPE and YIN are applied to the larynx recordings of the

singers. For CREPE and YIN, we use the same settings as described above. The resulting

activities are shown in Figure 6.5. When listening to the recording, it can be recognized that

there are certain seconds where only one singer is singing. By listening, these solo parts were

found to occur at seconds 0, 28, 43, 57, 71, 87 and 101. These time instances are marked in

orange in the plot. The voicing activity in the figure also shows that there is only the second

person singing.

86 Master Thesis, Judith Bauer

6.2 VOICING ESTIMATION

So a very accurate voicing estimation can be obtained by using the voicing estimation of CREPE

and YIN and combine those using intersection.

Figure 6.5: Voicing activation using the intersection of the activities of CREPE and YIN. Parts
where only singer 2 is singing are marked in orange. (a) ACrepe ∩ AYin for larynx recording
of singer 1. (b) ACrepe ∩ AYin for larynx recording of singer 2. (c) ACrepe ∩ AYin for larynx
recording of singer 3.

87 Master Thesis, Judith Bauer

7. CONCLUSIONS

Chapter 7

Conclusions

In this thesis, we analyzed an approach for fundamental frequency estimation based on a deep

neural network and developed further approaches to improve the network performance and the

training process.

We started with an evaluation of model-based approaches for fundamental frequency estimation

in Chapter 3. For the evaluation, we used YIN [3], pYIN [4], SWIPE′ [5, 6] and Melodia [7].

These approaches for F0-estimation were evaluated on five examples consisting of three artificial

examples and two examples from the MDB-stem-synth dataset [8]. With YIN, we obtained good

frequency estimations, although the frequency range has to be restricted. The second approach,

pYIN resulted in inaccurate estimations for one of the examples of the MDB-stem-synth, possibly

due to the instrument (viola). Using SWIPE′, we obtained estimations with a high similarity

to the annotated frequencies. Also Melodia was found to produce accurate estimations, though

there are some errors due to the assignment of frequencies to bins with a fixed frequency range.

Next, in Chapter 4, we presented CREPE, a convolutional neural network developed by Kim et

al. [1]. This is an approach for fundamental frequency estimation based on a deep convolutional

neural network. We evaluated this approach on some audio examples and obtained accurate

frequency estimations. However, the frequency range of CREPE is limited, so only frequencies in

this range can be estimated correctly. For higher frequencies, CREPE predicts the subharmonic

instead according to our experiments.

Additionally, we developed further approaches for modifications of CREPE in Chapter 4. Since

only a limited dataset was available for training, we used data augmentation. For this, pitch

shifting was applied to the dataset. Another approach was to increase the dimension of the

output layer of the network. This leads to a higher frequency resolution of the output vector.

Furthermore, we evaluated the weights of the first convolutional layer of the network. The Fourier

transform of the filters was found to form a curve similar to an exponential curve when sorted

89 Master Thesis, Judith Bauer

7. CONCLUSIONS

for the maximum index. We used this result to precompute weights for the filters in order to

exclude the first layer from the training process. Finally, we developed a new network with a

reduced number of filters and smaller filters.

We then evaluated these modifications in Chapter 5. For this purpose we retrained the network

including the new approaches. Especially data augmentation (pitch shifting) was found to be a

useful technique. A trained network only learns to predict frequencies correctly in ranges for

which it was trained. So using pitch shifting, we were able to increase this frequency range.

Finally, we applied CREPE to a more complex dataset consisting of traditional Georgian vocal

music in Chapter 6. For one recording, we compared the F0-estimations obtained from different

microphones and compared the estimations of CREPE and YIN. We found out that the difference

of the estimations of CREPE and YIN is a good indication for unvoiced segments. If there is

no voice present, the difference between the estimations is higher. Furthermore, we applied

CREPE to a polyphonic recording (three singers). The F0-estimations of CREPE are equal

to the frequency of one of the singers at most time instances. This can be explained by the

architecture of CREPE. Additionally, we examined the voicing estimation of CREPE and YIN

on different microphones. The result is that the best binary voicing detection is obtained using

the intersection of the estimations of CREPE and YIN applied to the recording of a larynx

microphone. Using this voicing estimation, we were also able to detect segments where only one

singer is active in a recording.

Future research concerning the training process of CREPE could evaluate the influence of more

training epochs on the results. The approach using data augmentation could also be extended

by adding reverberation and a different pitch shifting method. Furthermore, CREPE could

be retrained for Georgian Vocal Music [12, 13] in order to improve the F0-estimations on this

dataset.

Also concerning the architecture of CREPE, further research is possible. This could address the

examination of the parameters of CREPE. This includes the choice of the sampling rate for the

audio input for CREPE, the window size for the evaluation and the formula for the computation

of an output in Hertz (size of neighborhood around peak). Also the network structure could

be further modified. The derivation of the confidence determined by CREPE uses a threshold

that is not theoretically justified. Instead, it could be trained along with the F0-estimation.

Theoretically, also multipitch estimation or predominant melody estimation could be possible

with CREPE. This would require a modified interpretation of the output vector and further

postprocessing steps.

90 Master Thesis, Judith Bauer

BIBLIOGRAPHY

Bibliography

[1] Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. CREPE: A convolutional

representation for pitch estimation. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 161–165, 2018.

[2] Brian C. J. Moore. An introduction to the psychology of hearing, 5th ed. Academic Press, 2003.

[3] Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency estimator for speech and

music. Journal of the Acoustical Society of America (JASA), 111(4):1917–1930, 2002.

[4] Matthias Mauch and Simon Dixon. pYIN: A fundamental frequency estimator using probabilistic

threshold distributions. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 659–663, Florence, Italy, 2014.

[5] Arturo Camacho and John G. Harris. A sawtooth waveform inspired pitch estimator for speech and

music. The Journal of the Acoustical Society of America, 124(3):1638–1652, 2008.

[6] Arturoa Camacho. Swipe: A Sawtooth Waveform Inspired Pitch Estimator for Speech and Music.

2007. PhD thesis, University of Florida.

[7] Justin Salamon and Emilia Gómez. Melody extraction from polyphonic music signals using pitch

contour characteristics. IEEE Transactions on Audio, Speech, and Language Processing, 20(6):1759–

1770, 2012.

[8] Justin Salamon, Rachel M Bittner, Jordi Bonada, Juan J Bosch, Emilia Gómez, and Juan Pablo Bello.

An analysis/synthesis framework for automatic f0 annotation of multitrack datasets. In Proceedings

of the International Conference on Music Information Retrieval (ISMIR), 2017.

[9] Meinard Müller. Fundamentals of Music Processing. Springer Verlag, 2015.

[10] C-major scale piano. https://upload.wikimedia.org/wikipedia/commons/7/72/C_major.ogg.

Accessed: 2019-10-22.

[11] Justin Salamon, Emilia Gómez, Daniel P. W. Ellis, and Gaël Richard. Melody extraction from

polyphonic music signals: Approaches, applications, and challenges. IEEE Signal Processing Magazine,

31(2):118–134, 2014.

[12] Frank Scherbaum, Nana Mzhavanadze, and Elguja Dadunashvili. A web-based, long-term archive of

audio, video, and larynx-microphone field recordings of traditional Georgian singing, praying and

lamenting with special emphasis on Svaneti. International Symposium on Traditional Polyphony,

2018.

91 Master Thesis, Judith Bauer

https://upload.wikimedia.org/wikipedia/commons/7/72/C_major.ogg

BIBLIOGRAPHY

[13] Frank Scherbaum, Sebastian Rosenzweig, Meinard Müller, Daniel Vollmer, and Nana Mzhavanadze.

Throat microphones for vocal music analysis. In Demos and Late Breaking News of the International

Society for Music Information Retrieval Conference (ISMIR), Paris, France, 2018.

[14] Rachel M. Bittner, Justin Salamon, Mike Tierney, Matthias Mauch, Chris Cannam, and Juan Pablo

Bello. MedleyDB: A multitrack dataset for annotation-intensive MIR research. In Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR), pages 155–160, Taipei,

Taiwan, 2014.

[15] Emilia Gómez and Jordi Bonada. Towards computer-assisted flamenco transcription: An experimental

comparison of automatic transcription algorithms as applied to a cappella singing. Computer Music

Journal, 37(2):73–90, 2013.

[16] Jordi Bonada. Wide-band harmonic sinusoidal modeling. In 11th International Conference on Digital

Audio Effects DAFx, volume 8, pages 265–272, Espoo, Finland, 2008.

[17] Synth datasets. http://synthdatasets.weebly.com/. Accessed: 2019-10-22.

[18] Musik aktiv lernen mit music delta. https://www.lerneo.de/lernwelten/music-delta/. Accessed:

2019-10-22.

[19] Medleydb annotations. https://github.com/marl/medleydb/tree/master/medleydb/data/

Metadata. Accessed: 2019-10-22.

[20] Georgia population worldometers. https://www.worldometers.info/world-population/

georgia-population/. Accessed: 2019-10-22.

[21] Meinard Müller, Sebastian Rosenzweig, Jonathan Driedger, and Frank Scherbaum. Interactive

fundamental frequency estimation with applications to ethnomusicological research. In Proceedings

of the AES International Conference on Semantic Audio, pages 186–193, Erlangen, Germany, 2017.

[22] Graham E. Poliner, Daniel P.W. Ellis, Andreas F. Ehmann, Emilia Gómez, Sebastian Streich, and

Beesuan Ong. Melody transcription from music audio: Approaches and evaluation. IEEE Transactions

on Audio, Speech, and Language Processing, 15(4):1247–1256, 2007.

[23] J Stephen Downie, Kris West, Andreas Ehmann, and Emmanuel Vincent. The 2005 music information

retrieval evaluation exchange (mirex 2005): Preliminary overview. In Proceedings of the International

Conference on Music Information Retrieval (ISMIR), pages 320–323, London, U.K., 2005.

[24] Swipe’ implementation. https://github.com/kylebgorman/swipe. Accessed: 2019-11-15.

[25] Crepe pitch tracker. https://github.com/marl/crepe. Accessed: 2019-11-15.

[26] Chao-Ling Hsu and Jyh-Shing Roger Jang. On the improvement of singing voice separation for

monaural recordings using the MIR-1K dataset. IEEE Transactions on Audio, Speech, and Language

Processing, 18(2):310–319, February 2010.

[27] Zhiyao Duan, Bryan Pardo, and Changshui Zhang. Multiple fundamental frequency estimation by

modeling spectral peaks and non-peak regions. IEEE Transactions on Audio, Speech, and Language

Processing, 18(8):2121–2133, 2010.

92 Master Thesis, Judith Bauer

http://synthdatasets.weebly.com/
https://www.lerneo.de/lernwelten/music-delta/
https://github.com/marl/medleydb/tree/master/medleydb/data/Metadata
https://github.com/marl/medleydb/tree/master/medleydb/data/Metadata
https://www.worldometers.info/world-population/georgia-population/
https://www.worldometers.info/world-population/georgia-population/
https://github.com/kylebgorman/swipe
https://github.com/marl/crepe

BIBLIOGRAPHY

[28] Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and Ryuichi Oka. RWC music database:

Popular, classical and jazz music databases. In Proceedings of the International Conference on Music

Information Retrieval (ISMIR), volume 2, pages 287–288, 2002.

[29] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad Norouzi, Douglas Eck,

and Karen Simonyan. Neural audio synthesis of musical notes with wavenet autoencoders. In

Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 1068–1077.

JMLR.org, 2017.

[30] Resampy documentation. https://resampy.readthedocs.io. Accessed: 2019-10-22.

[31] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning

(ICML), pages 448–456, 2015.

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research, 15(1):1929–1958, June 2014.

[33] Keras: The python deep learning library. https://keras.io/. Accessed: 2019-10-22.

[34] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of

the International Conference for Learning Representations (ICLR), San Diego, California, USA, 2015.

[35] Librosa. https://librosa.github.io/librosa/. Accessed: 2019-10-22.

[36] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and

Oriol Nieto. librosa: Audio and music signal analysis in python. In Proceedings of the 14th python in

science conference, volume 8, 2015.

[37] Brian McFee, Matt McVicar, Oriol Nieto, Stefan Balke, Carl Thome, Dawen iang, Eric Battenberg,

Josh Moore, Rachel Bittner, Ryuichi Yamamoto, Dan Ellis, Fabian-Robert Stöter, Douglas Repetto,

Simon Waloschek, CJ Carr, Seth Kranzler, Keunwoo Choi, Petr Viktorin, Joao Felipe Santos, Adrian

Holovaty, Waldir Pimenta, and Hojin Lee. librosa 0.5.0, February 2017.

[38] Colin Raffel, Brian McFee, Eric J. Humphrey, Justin Salamon, Oriol Nieto, Dawen Liang, and Daniel

P. W. Ellis. MIR EVAL: A transparent implementation of common MIR metrics. In Proceedings

of the International Conference on Music Information Retrieval (ISMIR), pages 367–372, Taipei,

Taiwan, 2014.

93 Master Thesis, Judith Bauer

https://resampy.readthedocs.io
https://keras.io/
https://librosa.github.io/librosa/

	Erklärung
	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Structure of Thesis
	Main Contributions

	Fundamentals
	Signal Processing
	Fundamental Frequency Estimation
	Datasets
	Evaluation Measures

	Model-Based Fundamental Frequency Estimation
	YIN
	pYIN
	SWIPE
	Melodia

	DNN-Based Approach
	CREPE
	Own Approaches

	Evaluation on MDB-stem-synth
	CREPE
	Own Approaches

	Evaluation on Georgian Recordings
	Pitch Estimation
	Voicing Estimation

	Conclusions
	Bibliography

