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ABSTRACT

Abstract

Many tasks in Music Information Retrieval use audio samples (short fragments taken from larger

musical pieces) to organize, extract or search for music information. In order to find these

samples within a collection that contains them, a technique called audio fingerprinting is often

used. The main goal of this thesis is to obtain a better understanding of the various components

and parameters of a fingerprinting-based sample identification system. In this context, electronic

music constitutes an interesting test scenario, but the application of the techniques studied is

not limited to this genre. The main assumption made in this thesis is that musically meaningful

sections in audio recordings can often be characterized by the presence or absence of certain

sound events or patterns (such as samples), which, however, may be superimposed with other

sound sources and/or appear in modified forms. We use a collection of electronic music samples

within the genres: dance, deep house, dubstep, hip-hop, techno, and trap. We apply sample

combinations, audio degradation, and time shift differences on these samples and match the

resulting fingerprints to their original versions. Furthermore, we applied audio matching with

shifted queries. Evaluation is made with a variant of precision, recall, and F-measure. The

obtained results guide us to identify particular behaviors of the information captured by the

fingerprinting process which can lead to interesting research approaches in music structure

analysis.

v Master Thesis, Pedro Solórzano
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1. INTRODUCTION

Chapter 1

Introduction

1.1 General Background

In many cultures, music is an important part of people’s lives and it spans a wide range of forms

and styles such as folk songs, electronic music, symphonies, etc. With the technological advances

of music production, researchers are becoming more interested in developing computational

methods not only for storage, distribution, and production of music but also for the field of music

information retrieval (MIR) which aims to organize, extract, and search musical information,

e.g., browsing personal collections, automatically categorizing music, copyright monitoring [14].

One important task in MIR is music structure analysis. As mentioned in [14], one main goal of

music structure analysis is to divide a given music representation into temporal segments that

have some musical meaning and to group these segments into appropriate categories. Music

structure analysis tasks involve complex and generally ill-defined problems since the concept

of structure is ambiguous. The musical structure of one piece of music may be explained by

repeating melodies, musical sections while in other pieces may be characterized by a certain

instrumentation or tempo [14].

Musical information is usually described through a small number of examples, e.g., given in the

form of audio segments. These examples may specify a rhythmic pattern, a harmonic progression,

a certain timbre, or some other type of audio event. In MIR, audio recordings are often analyzed

or structured by means of such examples using content-based retrieval techniques related to audio

identification, audio matching [10], and version identification [5]. In the audio identification

process, it is often used audio fingerprinting techniques since they can give a compact and

descriptive feature representation [7] [20]. A common application of this technique is searching

an audio recording within a large database using a small sample (query). Typical applications of

audio fingerprinting are: automatic playlist recognition, automatic music library organization,
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1. INTRODUCTION

and digital rights management (DRM) monitoring for file sharing [7]. One important issue in the

retrieval process is the question of how to deal with acoustic and musical variations. In particular,

the identification of specific sound events becomes challenging when they are superimposed with

other sound sources.

An interesting scenario for applying content-based techniques is the family of genres of electronic

music (EM). The devices and/or software commonly used to produce EM, such as sequencers,

digital audio workstations (Ableton Live, MAGIX Music Maker Premium, Reason) [1] [12] [16],

impose a musical structure in which musical patterns are repeatedly triggered and overlaid.

According to [11], these patterns or audio samples, whose length can span several seconds, may

be superimposed with other sound sources and/or appear in modified forms. This particular

musical structure has increasingly received attention in research since it allows new approaches

on important tasks in MIR. For example, there are studies on modeling and decomposing EM

(music structure analysis) [11], sample identification in hip-hop music [19], segmentation and

timbre similarity [17], and downbeat detection [8].

As mentioned above, EM is often based on sampling, where existing recorded sounds or audio

samples are reused and they may appear in different forms. Furthermore, many iterative

information retrieval tasks such as automatic music identification extract and analyze musical

information with the help of small samples. Motivated by this scenario, we want to investigate

a fingerprint-based retrieval approach to sound event detection in complex mixtures. More

specifically, we want to use EM audio samples in order to analyze the components and parameters

of a fingerprint-based sample identification system under the scenarios of complex mixtures,

audio degradation, and time shift differences. The fingerprinting process used in this thesis

involves choosing relevant frequency components (with maximum intensity values) along an EM

sample (usually with length of 4 to 15 seconds). In this context, electronic music also constitutes

an interesting test scenario, but the application of the techniques studied here are not limited

to this genre. A general outline of the scenario in which this thesis is developed is shown in

Figure 1.1.

1.2 Main Contributions

The main contributions of this thesis are as follows.

First, we use an fingerprint retrieval matrix in order to compare audio samples with each other

and investigate their performance under specific combinations.

Then, we study the behavior of the features of these audio samples under 3 general scenarios:

complex combination, time shift differences, and audio degradation such as white noise, adding

external sounds, and adding effects. In addition, we applied fingerprint-based sample identification
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1.3 THESIS ORGANIZATION

Electronic Music scenario Content‐based information retrieval

Audio 
Samples EM 

Production
Feature 

Extraction Analysis Evaluation

Figure 1.1: Outline scenario in which this thesis is developed.

approach with time-shifted queries.

Finally, we identify important components and parameters of the fingerprinting process which

significantly affect the behavior of features.

1.3 Thesis Organization

This thesis is organized in 4 chapters.

In Chapter 2, we introduce the electronic music scenario based on audio samples. Also, we give a

brief description of basic techniques and concepts that are going to be used through the following

chapters. We review concepts of music processing analysis such as audio feature representations,

content-based retrieval techniques and evaluation.

In Chapter 3, we describe our processing pipeline. We use a small data-set of audio samples in

order to explain the fingerprint-based feature extraction system, the methods, and experiments

applied.

In Chapter 4, we use a data-set of 111 EM audio samples in our processing pipeline and discuss

the obtained results.

In Chapter 5, we make conclusions about our main results and discuss about recommendations

and future work.
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Chapter 2

Background and Fundamentals

In this chapter, we elaborate on theoretical background and fundamental concepts that are being

used in this thesis. The main idea is to give a general description and mathematical notations

rather than technical details. First, we describe the electronic music scenario, then we review

important concepts related to music processing such as audio representation, short time Fourier

transform, spectrogram representations, fingerprinting, audio matching, and evaluation.

2.1 Electronic Music Scenario

Electronic Music (EM) is a general term that covers genres like techno, trance, dance, house

music, hip-hop, etc. which are often produced by a combination of several musical patterns. In

many production examples, the hook or the main musical sequence of an EM track results in 20

second or so [18]. Several musical patterns are added or removed along the musical composition

in order to shape a musical tension and to keep interest on the listener throughout the track.

A common characteristic among different genres of EM is the loop-based music production

technique. A loop is a piece of audio that represents a sound event, e.g., an instrument sound,

piece of music, an audio sample. It is often found with a duration of one or few bars 1 and in some

cases it can suggest a predetermined music structure [18], [3]. Digital audio workstations (DAWs),

multi-track layout sequencers, and music production softwares allow to compose loop-based EM,

e.g., Ableton [1], Magix Music Maker [12], and Reason [16]. Loop-based EM tracks are produced

by the combination of different channels that activate or deactivate these audio samples with a

musical relationship. Besides, such samples may appear in a modified form by an addition of

audio effects, e.g., delay, reverberation, volume changes, etc.

1In music theory, the term bar refers to the period of time corresponding to a specific number of beats or onset
notes. It is used to mark the metrical units of a piece of music [4].

7 Master Thesis, Pedro Solórzano
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As said at the beginning of this section, the core or the hook last a few seconds when it is

compared to the total duration of the track [18]. Thus, EM producers shape the musical tension

structure in order to maintain the listener’s attention. Butler in [3] and Snoman in [18] gave a

general structure of an EM track that leads the listener to the core of the composition and then

to an end. This structure is not a rule to create an EM, but it can be identified or perceived in

the majority of EM instances.

A musical energy structure of an EM track can be divided in 4 parts: intro, build-up, break-down,

core and the outro. The intro is composed with one or two loops and usually gives the main

beat tempo of the piece of music. Then, a build-up part comes increasing the energy or musical

tension with a combination of more loops. The break-down follows to create an expectation to

the listener of what is coming, usually musical sequences with a lower musical energy are played.

After the breakdown, the core appears where the main hook of the track is present and a climax

is reached (usually most of the loops are activated). As a final state, the outro decrease the

musical energy after the climax and defines the coming end of the track. Figure 2.1 shows a

block structure using 3 loops with same length (8 seconds) and a synchronized activation time.

The general structure of this figure shows that the intro last 16 second, the build-up follows with

a duration of 32 seconds, the brake down continues with a duretion of 16 seconds, the core last

16 seconds, and the outro follows with a duration of 448 seconds. In Figure 2.2, we show the

block structure of an EM track which I produced using the software and data set of Magix [12].

2.2 Audio Signal Representation

Music can be represented as an audio signal that encodes certain aspect of a piece of music such

as temporal, dynamic and specific tonal micro-deviations. The encoded information is modeled

as a continuous-time signal (CT-signal) or analog signal that reflect infinitesimally small changes

in both the amplitude and the time. However, in the digital signal processing field, analog signals

must be converted into digital signals through a digitization process. Following the definitions in

[14], in most cases, an analog-to-digital conversion consists of two steps called sampling2 and

quantization. Given a CT-signal defined to be a function f : R → R, a discrete-time signal

(DT-Signal) is defined to be a function x : Z→ R and is obtained by

x (n) := f (n · T ) (2.1)

where, the value x (n) is called sample. The positive and real value T > 0 is referred as the

sampling period and its inverse as the sampling frequency Fs := 1/T .

2In the context of audio digitalization, the term sampling refers to the process of converting continuous-time
signals into discrete-time signals.
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2.2 AUDIO SIGNAL REPRESENTATION

Lo
op

s

Time (seconds)
20 40 60 80 100 1200

1

2

3

Figure 2.1: Block Structure of an EM track produced with 3 loops. These audio samples have
a duration of 8 seconds and represent a particular sound event. Blue, green and red blocks
represent the activation of a drum, a melody and a chord composition respectively.

Figure 2.2: Example of an EM track produced with 9 loops. Each row represents an audio
sample, where colored blocks indicate their presence in the track. Each audio sample has different
bar duration and represents a particular sound event. This example is a piece of music that I
mixed using the software and loop data-set of Magix [12].

Quantization allows to restrict the amplitude of the signal to a limited set of values. However,

this step is omitted in the above definition of DT-Signals for the sake of simplicity. In addition,

the definition does not take into account a finite representation of samples that is required

for digital signal processing. For music processing, the signal x (n) consist of a set of samples

x (1), x (2), ..., x (N ) where N ∈ N is the audio’s length. Also, along this thesis, the terms audio

signal, audio recording, track signal and loop signal refer to DT-Signal. Figure 2.3 shows an

audio representation of an audio signal; the sampling rate is Fs = 22050Hz and the duration of

the signal is 8 seconds.
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Figure 2.3: Audio representation of an audio signal of an EM with a sampling rate of 22050Hz
and duration of 8sec (N = 176400 samples). Vertical axes represent the amplitude o the signal.
Horizontal axes correspond to the time (in seconds). Figure (a) represents the waveform of the
complete signal whilst figure (b) shows a zoomed version of 1000 samples (45.4 ms of the signal).

2.3 Fourier Transform (FT)

A music signal is the superposition of sound components over time. The audio representation in

time can show some explicit information and it can have other hidden elements. The Fourier

transform is the most important tool in audio signal processing. It maps a time-dependent signal

into a frequency dependent function allowing to obtain additional information for further audio

processing. The content of this thesis deals with Discrete Fourier Transform (DFT) since we

compute audio signals using the fast Fourier transform algorithm (FFT). Thus, we omitted other

definitions of Fourier transform.

Given a DT-Signal x of length N , the discrete Fourier transform X of x is defined by

X(k) =
N−1∑
n=0

x (n) · e−2πikn/N (2.2)

for k ∈ [0 : N − 1]. The index k of X(k) corresponds to the physical frequency

Fcoef(k) =
k · Fs

N
[Hz] (2.3)

The inverse discrete Fourier transform (IDFT) is defined as

x (n) =
1

N

N−1∑
k=0

X(k) · e2πikn/N (2.4)

for n ∈ [0 : N − 1].
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2.3 FOURIER TRANSFORM (FT)
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Figure 2.4: Discrete Fourier transform (DFT) (b) of the audio signal in (a).

For a visual understanding, Figure 2.4 shows the magnitude of the DFT (b) of the waveform in

(a). The Fourier transform gives the frequency components that are present in the audio signal,

however, the time information is hidden.

2.3.1 Short Time Fourier Transform (STFT) and Spectrogram Representa-

tions

For audio analysis, the short time Fourier transform (STFT) is used to know where the time-

frequency components of an audio music appears. The main idea of this technique is to compute

the FT of small sections or frames of the entire signal instead of computing the FT of the

complete signal. The STFT is a compromise between a time- and frequency-based representation

and allows to obtain the frequencies occurred on each computed frame. The mathematical

definition of the discrete STFT X (m, k) is

X (m, k) :=
N−1∑
n=0

w(n) · x (n + mH ) · e−2πikn/N (2.5)

where k ∈ [0 : N − 1] is the frequency index, m ∈ Z is the frame index, w is the window function,

H the distance between each frame (usually called hop size), and N is the window’s length. The

index m corresponds to the physical time

Tcoef (m) =
m ·H

Fs
[sec] (2.6)

and the index k to the physical frequency

Fcoef(k) =
k · Fs

N
[Hz] (2.7)
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Figure 2.5: Spectrogram representations of the audio signal described in Figure 2.4. The STFT
was computed using a Hann window with length of 4096 samples and a hop size of 2048 samples.
(a) Spectrogram defined by Equation (2.8), (b) Log-frequency spectrogram with a resolution of
36 bins per octave.

2.3.2 Spectrogram Representation

The STFT can be visualized by a two-dimensional (time-frequency) feature representation called

spectrograms. A STFT’s magnitude spectrogram is defined by

Y(m, k) =| X (m, k) |2 (2.8)

Figure 2.5 (a) shows the Spectrogram of audio signal in Figure 2.4. The horizontal axis represents

time frames, the vertical axis the frequency coefficients, and the color (see color bar) refers to

the intensity of a particular frequency at a particular time.

From the equation 2.7 we can see that the spectral coefficients in the frequency dimension are

equally separated. Motivated by the natural perception of the human, it is often computed

spectrograms with the frequency axis logarithmic spaced. The log-frequency spectrogram allows

to emphasize musical or tonal relationships of an audio signal. Figure 2.5(b) shows the log-

frequency spectrogram of the audio signal in Figure 2.4. When comparing both spectrogram

representations, the log-frequency gives a new resolution on the vertical axis where the relevant

frequency components of the human auditory system are emphasized.

2.4 Content-Based Audio Retrieval

As said in Section 1.1, audio samples are used to describe an audio recording information. The

topic of this thesis deals with an important content-based audio retrieval task known as audio

identification. Thus, in this section, we focus on the concepts of related techniques such as

12 Master Thesis, Pedro Solórzano



2.4 CONTENT-BASED AUDIO RETRIEVAL

fingerprinting with peak maps, similarity measures and audio matching.

2.4.1 Fingerprinting with Peak Map

Fingerprinting has become a powerful technique since they are a compacted and descriptive

feature representation that follow the important properties of robustness, reliability, fingerprint

size, ganularity, search speed and scalability [7]. The way of designing and computing a fingerprint

varies depending of the requirements imposed by the application in hand. Philips and Shazam

system developed two of the most important audio fingerprint techniques; they are still in use

nowadays. The Philips system was developed by Haitsma and Kalker in 2002 [7] and is based

on energy differences of neighboring frequency bins in a time frame, called sub-fingerprint. A

fingerprint block is a sequence of 256 sub-fingerprints and it can be used to identify an audio

music. On the order hand, the Shazam system, developed by Wang in 2003 [20], was motivated

by smartphone-based applications and it is based on spectral peaks constellation and hashing

techniques.

The main idea of fingerprinting with peak maps is to select maximum values (peaks) in the

spectrogram. An analysis window is used to define regions in the spectrogram in which a peak

may be selected. An amplitude limitation for choosing a peak in the spectrogram can be defined

in order to avoid noisy or irrelevant results. The overall selected peaks yield to a peak map

representation. Figure 2.6 shows an example of how a peak selection is done with an analysis

windows size of 4x4 (4 frequency indexes and 4 time frames). Maximum values below 1 are not

chosen. In Figure 2.7, we show a peak map PM (a) and a log-frequency peak map LPM (b)

using the spectrograms in Figure 2.5.

2.4.2 Similarity measure and Matching Curve

In the context of this thesis, two audio samples are similar if all information of the query is

contained in the other audio. Thus, a similarity measure s ∈ [0, 1] aims to quantify how much

information of a query is contained in the other audio signal. For example, in [11], it was used

such similarity definition and the similarity measures applied for the audio identification tasks

were:Cosine, Inclusion and Jaccard measure.

The comparison between a query (audio sample) and an audio recording results in a matching

curve. Peaks in the matching curve indicate activation time positions of the sample within the

recording. One of the most common matching techniques is the diagonal matching DM. The

main idea of DM is to shift the query over the audio recording and locally compare the feature

representation of the musical pattern by means of the similarity measure.

Following the diagonal matching definition in [14]. Given the feature representation Q and V of

13 Master Thesis, Pedro Solórzano
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Figure 2.6: Selection of peaks from the spectrogram. The analysis windows has a size of 4
frequency indexes (16.15 Hz) and 4 time frames (0.372 ms). Red points indicate selected peaks.
Maximum values in the Spectrogram which are less than 1 are not chosen.
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Figure 2.7: Peak Map PM (a) and log-frequency peak map LPM (b) of the magnitude- and
log-frequency- spectrogram described in 2.3.2.

a loop pattern and the audio recording respectively. Let be similarity measure s(Q,Vm) ∈ [0, 1],

where Vm is the feature representation section starting at the frame m and with the same size of

Q. The local comparison ∆Diag(m) is defined by,

∆Diag(m) = s(Q,Vm) (2.9)

where ∆Diag(m) ∈ [0, 1]. Figure 2.8 shows an example of the comparison procedure. Red points

represent the peak map of the query described in Figure 2.7(a) and black points the peak map

of the track described in Figure 2.1. The PM of the query is shifted over the time frames of
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Figure 2.8: Audio Matching. Red points denotes the peaks of our query described in Figure 2.7(a).
Black points indicates the peaks of the track described in Figure 2.1. The matching curve is
made by shifting the PM of the query over the time frames of the PM of the audio recording. A
local similarity measure is computed for every shift. Red rectangles shows 3 different comparisons
within the track.
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Figure 2.9: Matching curve results of Figure 2.8. The curves (a), (b), and (c) correspond to the
matching curves using the cosine, inclusion and jaccard measure respectively.

the PM of the track. For each shift, a similarity measure is computed. Red rectangles denote

3 different time-frames m positions where a comparison is made. In Figure 2.9 is shown the

resulting matching curve of Figure 2.8. The peaks of the matching curves reveal the instances

where the audio sample is present. Also, these instances are indicated by green triangles on the

top of each matching curve.

2.5 Evaluation

Now that we have described various matching techniques, we need to deal measures which can

help us to determine how well a given procedure performs the task in hand or how reliable is

the result of a process in specific tasks. In this section, we addressed the gain and Pearson

correlation coefficients used in [11] and the precision, recall, F-measure definitions.
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2. BACKGROUND AND FUNDAMENTALS

Similarity Measure Gain Ratio Pearson Correlation

Cosine 4.529 0.305
Inclusion 9.174 0.645
Jaccard 30.084 0.776

Table 2.1: Gain Ratio and Pearson Correlation of the matching curves in Figure 2.9.

2.5.1 Gain Ratio and Pearson correlation coefficient

The gain ratio is a measure of the relation between the average gain of the relevant values

(results in loop activation times) and the average of the curve. Thus, in this thesis, the gain ratio

GainRatio is define by

GainRatio =
Average of values in activation times

Average of the matching curve
(2.10)

where high GainRatio indicates that peaks in the matching curve are noticeable. If GainRatio is

low, the values in the activation times are hard to find in the matching curve, which means that

the similarity measure does not performs well for the comparison in hand. Table 2.1 shows the

gain ratios from Figure 2.9. The Jaccard measure shows a better performance comparing with

the others.

In this thesis, the Pearson Correlation Pcorrcoef ∈ [0, 1] is computed by the Pearson correlation

coefficient between the matching curve and the corresponding ideal matching curve. This ideal

curve consist of ones in the activation times and zeros in the remaining time. A Pcorrcoef close

to 1 indicates that the matching curve is highly correlated to the ideal matching curve and there

is a clear identification of peaks in the curve. If Pcorrcoef is close to zero, peaks in the activation

times are difficult to identify in the matching curve, which means that the similarity measure does

not performs well for the task in hand. In Table 2.1 we show the Pearson correlation coefficients

of Figure 2.9. The Jaccard similarity measure shows the highest performance and the cosine

measure having the lowest.

2.5.2 Precision, Recall, F-Measure

Precision, recall, and F-measure are concepts from the field of information retrieval and pattern

recognition. Given a classification type as in Figure 2.10, where the estimation and reference is

compared, the precision P of the estimation is defined as the number of true positives divided by

the total number of items estimated as positive:

P =
#TP

#TP + #FP
(2.11)
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Reference

Positive Negative

Estimation
Positive True Positive

(TP)
False Positive

(FP)

Negative False Negative
(FN)

True Negative
(TN)

Figure 2.10: Classification parameters when 2 events are compared [14].

The recall R is defined as the number of true positives divided by the total number of positive

items in the reference:

R =
#TP

#TP + #FN
(2.12)

Both precision and recall are bounded to the values [0, 1]. Precision P = 1 means that there is no

false positive and all items estimated as positives are indeed positives. In contrast, a perfect recall

R = 1 means that there is no false negative but there may be false positives. When P = 1 and

R = 1, it means that the estimation values are exactly classified as to the references annotation.

The F-measure F is defined as the harmonic mean between precision and recall:

F =
2 · P · R
P + R

(2.13)

where F ∈ [0, 1] with F = 1 if and only if P = 1 and R = 1.

During this thesis, we applied this concepts to compare audio sample features. In this case,

the reference is the query and the estimation is a track. A positive is defined as a peak in the

fingerprint representation whereas a negative absence. Thus, true positives refer to common

peaks between the reference and the estimation, false positives refer to peaks in the estimation

that are not in the reference, and false negative are peaks in the reference that are not in the

estimation. Furthermore, the precision P shows a relation between common peaks and the total

peaks in the estimation. The recall shows a relation between the common peaks and the peaks

in the reference. The F-measure can be seen as a measure that tell us if the true positives are

significant in both reference and estimation.

At this moment, we reviewed some background and basic concepts such as audio representation,

audio feature representation, audio matching and evaluation. Now, the following chapter aims

to explain the methods applied, and the analysis of results. For detailed description of this

fundamental concepts, we recommend [14] for the fundamentals of music processing. For electronic

music theory, one can find interesting information in[18] and [3].
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Chapter 3

Processing Pipeline

As we said, in this thesis, we apply fingerprinting techniques to structure and analyze electronic

music. In this context, we use electronic music samples (loops) to obtain a better understanding

of the parameters and components of fingerprint-based identification systems under the scenarios

of: complex superposition, audio degradation, shift variances, and matching with shifted-queries.

In this chapter, we describe our processing pipeline. First, we introduce our example data-set

that we used for our initial experiments and then described the methods applied.

3.1 Example Data-set

For our initial experiments we collected a set of 12 loops which can be roughly categorized in 3

types: percussive (P), melodic (M), and other (O). Each loop is a mono (singel audio channel)

or stereo (two audio channels) audio signal with a sampling frequency Fs = 44100 Hz, a length of

8 seconds, and a musical tempo of 120 BPM 1. This example data-set is a compilation of loops

from the websites [6] and [9]. Table 3.1 shows a general description of each loop and it gives an

idea of the kind of audio signals that we are working with.

3.2 Feature Extraction Configuration

Each loop is loaded, re-sampled to a sampling frequency Fs = 22050 Hz, and converted to mono

(if necessary) in order to reduce the computational work load. Closely following [11], we use a

fingerprint-based feature representation. We compute peak maps using a modified version of

the Shazam system described in [20]. First, we calculated the STFT of an audio signal using

1The term tempo refers to the musical time of a piece of music. A common measure of the tempo is the BPM
(Beats per minute)[4].
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Audio Name Label Category Description

Drums 1 L-P1 Percussive A music sample of drums [9]
Kick Snare L-P2 Percussive A music sample of drums [6]

Disco Drums L-P3 Percussive A music sample of drums [6]
Melody 1 L-M1 Melodic Melody made with a piano [9]

Zen Synth 2 L-M2 Melodic Synthetic melodic sequence [6]
120 Aftermath L-M3 Melodic Synthetic melodic sequence [6]

Kalm B4 the Storm L-M4 Melodic Synthetic melodic sequence [6]
Bass 1 L-O1 Other A bass composition [9]

Plingers-Delight L-O2 Other A melody with special sound effects [6]
cm005 monastry phrase L-O3 Other Vocal phrases [6]

NewsJingle-Intro L-O4 Other Lead sequence [6]
Jazz Chords Piano L-O5 Other Two chords sound [6]

Table 3.1: Description of our example data-set.

a Hann window of size 4096 samples and a hop size H = 2048 samples. Then, the magnitude

spectrogram and log-frequency spectrogram are computed as decribed in Section 2.3.2.

Following the general description in Section 2.4.1, a peak map P ∈ BKxM with B := {0, 1} is

constructed from a spectrogram representation Y. Before the peak selection, an exponential

decay is introduced in the spectogram Y , which helps to select the maximum frequency value at

the moment of appearance. A rectangular analysis window is made for each time-frequency bin

Y(m, k). For our initial experiments, the windows size is 15x15 which means that each window

covers 15 time-frames (m) and 15 frequency-indexes (k). Within each window, the maximum

value Y > 1 will set the bin output P(m, k) to 1 and the neighbor output to 0; peaks below 1

are considered noisy or irrelevant information.

A peak map (PM) and a log-frequency peak map (LPM) is computed using the magnitude

spectrogram and the log-frequency spectrogram respectively. Figure 3.1 shows the magnitude

spectrogram peak maps (PM) of our example data-set. The loops are organized along 3 rows

labeled as P (percussive), M (melodic) and O (Other) respectively. For each PM shown, the

frequency axis spans the range between 0 and 11025 Hz; all loops have a length of 8 seconds.

Maximum peaks in the magnitude spectrogram of each loop are represented with black points.

Note that in the top row, the peak maps show predominantly vertical structures. This is due to

the fact that percussive sounds have noise-like onsets that cover a wide range of frequency bands.

In the middle row, we see melodic loops, which are characterized by horizontal structures. In the

bottom row, we show peak maps corresponding to the other category. This category contains

loops with both percussive and melodic properties.
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L-P1 L-P2

L-M1 L-M2 L-M3

L-O1 L-O2 L-O3 L-O4 L-O5

P

M

O

Data Set description

L-P3

L-M4

Figure 3.1: Magnitude spectrogram peak maps (PM) of the example data-set. This data-set
consists of 12 loops where each of them has a duration of 8 seconds. The frequency axis of each
peak map representation goes from 0 to 11025 Hz. Black points represent maximum peaks in
the magnitude spectrogram of the corresponding loop. Loops are grouped among 3 types: P
(percussive sound), M (melodic sound) and O (other). Each row represents one of these types.

3.3 Loop Combination

Our first task involve the study of fingerprint behavior under loop combination scenarios. For

this, we constructed tracks with a duration of 8 seconds (same duration as the loops) in order to

investigate the peak information in specific combinations. In Figure 3.2, we show the resulting

peak map of a track with a duration of 8 seconds which was produced by the sum of 2 audio

loops: L-O5 and L-M2.

When we match a loop query with tracks similar to the one described in Figure 3.2, we

can see that the information related to the query may only be partially present. Additional

information also appears, mostly due to the presence of other loops. In order to measure the

query information contained within these tracks, we computed the precision, recall and f-measure

retrieval information. As said in Section 2.5.2, true positives correspond to common peaks

between the query and the track, false positives are peaks in the track which do not appear in

the query, and false negatives are peaks in the query and do not appear in the track. For a

visual example, Figure 3.3 shows a peak map retrieval representation of the track described in
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Figure 3.2: Peak map of an audio track produced by the sum of L-O5 and L-M2. The audio track
has a duration of 8 seconds. Black points denote the maximum peaks found in the magnitude
spectrogram of the audio track.
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Figure 3.3: Peak map retrieval representation of an audio track. Black points represent common
peaks between the query and the audio track (true positives), red points correspond to peaks in
the audio track but not in the query (false positives) and green points denote the peaks in the
query but not in the audio track (false negatives). In both (a) and (b), we used the track from
the Figure 3.2. The query in (a) is the loop L-O5 and the query in (b) is the loop L-M2.

Figure 3.2. In (a), the loop L-O5 is the query whereas in (b), L-M2 is the query. In both (a) and

(b), black points represent common peaks between the query and the track (true positives), red

points correspond to peaks in the audio track but not in the query (false positives) and green

points denote the peaks in the query which are not present in the track (false negatives).

When an audio combination is done, it may happen that some peaks of the query in the

22 Master Thesis, Pedro Solórzano
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Figure 3.4: Peak map retrieval representation of an audio track where peaks with one time-shift
(left and right) or one frequency index (up and down) differences can be a match. Black points
represent common peaks between the query and the audio track (true positives), red points
correspond to peaks in the audio track but not in the query (false positives) and green points
denote the peaks in the query but not in the audio track (false negatives). In both (a) and (b),
we used the track from the Figure 3.2. The query in (a) is the loop L-O5 and the query in (b) is
the loop L-M2.

combination might be shifted. Thus, during this thesis, we try to match a peak at the exact

time-frequency component, one time frame on the left, one time frame on the right, one frequency

index up, and one frequency index down. Figure 3.4 shows the peak map retrieval representation

of Figure 3.3 when one frame shift is taken into account. As we can see, there are more true

positives and less missing peaks (false negatives).

In our first experiments, we constructed tracks using 4 loops of our example data-set. Each track

has a duration of 8 seconds and it is produced by an unique combination among the 4 chosen

loops. The retrieval information is computed using each loop as a query. With this experiment,

we introduce our audio sample retrieval matrix representation shown in Figure 3.5. Rows are are

assigned to the loops L-P2, L-M2, L-O4, and L-O2. Columns represent the 15 possible tracks.

Colored points in each cell denotes the presence of the loop in the corresponding track. For a

better visualization, different colors have been assigned to each loop: blue (L-P2), green(L-M2),

red(L-O4), and cyan (L-O2). Precision (a), recall (b) and F-measure (c) are represented by

colored squares. Color-bars were adjusted to enhance the visualization.

From the audio sample retrieval matrix, one can easily compare the peak survival information

between loops when they are combined. In Figure 3.5, columns 1 to 4 show a comparison between

loops because tracks 1 to 4 are a replica of the corresponding loop. A perfect match (the retrieval
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Figure 3.5: Audio sample retrieval matrices. In all matrix representations, rows represent audio
samples (loops) of our example data-set: L-P2, L-M2, L-O4 and L-O2. Columns represent tracks
with a duration of 8 seconds which were produced by possible unique superposition among the
previously mentioned 4 loops. Colored points indicate the presence of the loop in the track.
A different color has been assigned to each loop: blue, green, red and cyan to L-P2, L-M2,
L-O4 and L-O2 respectively. All color-bars were adjusted in order to enhance the visualization.
Each cell contains the retrieval results when the corresponding loop is the query. The matrix
representations describe the precision (a), the recall (b), and the F-measure (c).

result is equal to 1) happened when the loop is matched to its replica. It might happen that

loops have common information. If we see closely in (a), when L-O4 (the query) is matched to

the track 4 (replica of L-O2) we see that there is a considerable amount of L-O4’s information

contained in L-O2. In the case that L-O2 is the query and is matched to track 3 (replica of L-O4),

the precision is irrelevant since the amount of information of L-O2 in L-O4 is low. However, in

(b) the recall is relevant which lead us to the idea that a significant ammount of peaks in L-O4

are also in L-O2. In other cases of loops comparison, there is no relevant common information
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Figure 3.6: Peak map representation of track 15. The frequency axis spans the range between 0
and 11025 Hz. Blue, green, red and cyan matched peaks when the query is L-P2, L-M2, L-O4
and L-O2 respectively. Black peaks denote information produced by the overall combination.

(retrieval results are nearly close to zero). Columns 5 to 15 in Figure 3.5 can help to analyze the

survival information of loops in different possible combinations. For example, from the results in

track 15 (Figure 3.5), we can see that in (a) around 30% of the information in the track matches

to L-O4. From (b), we can see that more than 25% of the peaks in L-O4 and L-O2 survived

the combination. The F-measures in (c) shows the accuracy of the combination, in other words,

this measure give an evaluation of the survival peaks with respect to the track and query. If

F-measure is high, true positives are a relevant amount not only in the query but in the track. In

(c), we can see that most of the original peaks in L-O4 survived the combination of the track 15

(around 30%) whereas the survival peaks of L-O2 represents low information in track 15(5%) and

the query (7%). This information can hardly be seen using a peak map retrieval representation.

In Figure 3.6, we shows the peak map representation of track 15. Each loop was matched to the

track and a different color was assigned to the matched peaks; blue (L-P2), green (L-M2), red

(L-O4) and cyan (L-O2). Unmatched peaks produced by the combination of loops are denoted

as black points.

Another interesting case in Figure 3.5 is track 6 when is matched to the query L-O2 (which is not

present in the track). In this case, the result in (b) shows that the query has relevant amount of

information produced by the combination. This can indicate that when L-O2 is added to track 6,

significant information in L-O2 will may be positive affected (see recall of track 13).

A second experiment consists of measuring the survival information when the query is matched

to different complex mixes. During this experiment, the term complex mix refers to the number
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of loops overlapped (including the query). The complexity increase with the number of loops

combined in the track. Figure 3.7 gives an example of 10 tracks with different complexity (from

1 to 10); the length of each track is 8 seconds. Track 1 has the lowest complexity whereas track

10 has the highest complexity.

L-M4
L-P3
L-M1
L-P1
L-O1
L-O2
L-O3
L-M3
L-O4

1 2 3 4 5 6 7 8 9 10

Fixed Loops
+

Query

Tracks

Complexity

1

10

Complexity data‐set

Figure 3.7: Complex mixtures. A total of 10 tracks were generated with different complexity.
Tracks were constructed by the superposition of loops of our example data-set according to the
following order: query, L-O4, L-M3, L-O3, L-O2, L-O1, L-P1, L-M1, LP3, L-M4. The complexity
is increasing from track 1 to track 10. Track 1 has the lowest complexity whereas track 10 has
the highest complexity. Blue blocks indicate the presence of a loop query. Orange blocks denote
the presence of additional loop.

The retrieval information was computed for these complex tracks. In Figure 3.8, the F-measure

results for the loops L-P2, L-M2, and L-O4 are shown. Vertical axes are in a logarithmic scale

and represent the F-measure. Horizontal axes correspond to the complexity (number of loops

contained in the track). Loops were added according to the order described in Figure 3.7. The

orange, green and blue lines correspond to the F-measure when the query is L-O5, L-M2 and

L-P2 respectively. The dashed line is a base-line computed by averaging F-measure results of 50

random queries (noise audio loops and real audio loops) that are not contained in the constructed

tracks. In (a), magnitude square peak maps (PM) were used to compute the F-Measure. In (b),

log-frequency peak maps (LPM) were used. In both (a) and (b), we can see that when we add

the second loop L-O4 to the query (see Figure 3.7 complexity 2), less than 30% of the spectral

peaks survived the combination. From complexity 2 to 10, results continues slowly decreasing or

increasing, depending on the complexity and the types of loops combined. In the case where

the F-measure of a query goes below the base-line (see figure (b), loop L-O5 with complexity 7

and 8), it means that relevant information of that query didn’t survive to that kind of complex

configuration. Thus, this loop might be hardly recognizable in the matching process when that

particular combination is presented.
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Figure 3.8: F-measure performance when the loops L-O5, L-M2 and L-P2 are matched to tracks
with different complexity. Horizontal axes represents the complexity of the track. The term
complexity states to the number of loops superimposed in the track. The track was constructed
by the superposition of loops of our example data-set according to the following order: query,
L-O4, L-M3, L-O3, L-O2, L-O1, L-P1, L-M1, LP3, L-M4. Vertical axes represents the F-measure
in a logarithmic scale. (a) shows the results using magnitude square peak maps. (b) shows the
results using log-frequency peak maps.

3.4 Audio Degradation

For the study of fingerprinting under audio degradation scenarios, we applied 9 different types

of degradation techniques which are grouped into two subsections: adding external sound and

adding effects.

3.4.1 Adding External Sound

In our experiments of adding external sounds, we used the audio degradation toolbox described

in [13], as well as 4 different sounds from the toolbox data-set: random white noise, vinyl

sounds (old-dusty-vinyl-recording.wav), pub environment (restaurant08.wav), and headphone

noise (hum-50Hz-from-headphone-plug.wav). We constructed tracks by adding an external sound

to a loop query with a specific signal to noise ratio (SNR)2; each track has a length of 8 seconds.

Figure 3.9 gives a visual example of how each track was constructed. There are a total of 22

tracks where the first track contains only the original sound. Tracks 2 to 22 are a combination of

the query and the external sound with SNR from 60 dB to 0 dB respectively.

Figure 3.10 shows the F-measure for the 4 audio degradation experiments. The results correspond

the loops: L-P2 (blue), L-M2 (orange) and L-O4 (green). Solid lines correspond to magnitude

2The signal to noise ratio (SNR) is defined as the ratio of the signal power to the noise power [15]. In this thesis,
the SNR is expressed in decibels (dB). A ratio higher than 0 dB means higher signal power than noise power.
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Figure 3.9: Adding external sound degradation. A total of 22 tracks were generated, each of
them with a duration of 8 seconds. Track 1 contains the original track whereas the rest contains
the query and an audio degradation with a specific SNR. Tracks 2 to 22 span the range of SNR
from 60 dB to 0 dB respectively. Blue blocks indicate the presence of a loop query. Red blocks
denote the presence of an external sound.

spectrogram peak maps (PM) while dashed lines indicate the use of log-frequency spectrograms

(LPM). Figures (a), (b), (c), and (d) correspond to the experiments of: white noise, pub

environment, vinyl noise sound, and headphone noise sound. Horizontal axes spans the range of

SNR 60 dB to 0 dB. The first value is always one, because the track corresponds to the replica

of the loop. For all types of degradation, we can see that L-M2 decreases faster when compared

to the other loops. This is due to the fact that spectral peaks in L-M2 are more spread which

means peaks are more vulnerable to noisy distortions. Loops L-O4 and L-P2 are more resistant

to noise changes, where in most cases L-O4 presents a higher F-measure. Furthermore, in cases

(a) and (c), the decreases in all loops start around 50 dB while in cases (b) and (d), the decrease

started around 40 dB. When SNR = 0 dB, the external sound has the same intensity as the

loop, and in most of our results the F-measures are below 0.5. For a comparison among the

noisy sounds, we can see that loops are more resistant to headphone noise since the spectral

peaks of the query start to decrease from SNR 40 dB. In addition, white and vinyl noises add

more distortion to the loops with SNR < 55 dB. Peak maps and log-frequency peak maps have a

similar behavior within the pub environment and headphone degradation. However, LPMs have

a noticeable higher performance for the vinyl and white noise degradation.

3.4.2 Adding Effects

We conducted further degradation experiments with the following audio effects: reverberation,

delay, volume changes, linearly increasing the volume and linearly decreasing the volume. The

methods applied to construct tracks for each experiment are described in the following sections.
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3.4 AUDIO DEGRADATION

F‐measure: Add Sound_3Loops, L‐P2, LM2 and L‐O4 
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Figure 3.10: F-measure vs. SNR (dB) results when an external sound is added to the loop.
Vertical axes show the F-measure on a linear scale. Horizontal axes span the SNR range from 60
dB to 0 dB. The first value is always one, because the track corresponds to the replica of the loop.
Solid lines indicate the use of magnitude spectrogram peak maps (PM). Dashed lines indicate the
use of log-frequency peak maps (LPM). The results of 3 loop queries of our example data-set are
shown. Blue, orange and green correspond to the loop queries L-P2, LM2 and L-O4 respectively.
In (a), white noise was added to the loops. In (b), a sound that simulates a pub environment
was superimposed. In (c), vinyl noise sound was added. In (d), a sound that simulates noise
from headphones was added to the loops.

3.4.2.1 Reverberation and Delay

Reverberation is one of the most common effects applied in electronic music [3], [18], [2]. There

is a wide range of reverberation configurations. However, we modeled a simple effect using the
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Matlab function reverb (available on Matlab version R2016b). A total of 21 tracks were built

with different diffusion factors, from 0 to 1. This parameter is associated to the density of the

reverb tail. A diffusion closer to 1 means that all reflections are pushed together. If the diffusion

is closer to 0, more discrete echoes are created. The other input parameters of the function were

set to their default values: Pre-delay = 0, HighCutFrequency = 20000 Hz, DecayFactor = 0.5,

HighFrequencyDamping = 0.0005, WetDryMix = 0.3. The F-measure for the loops L-P2 (blue),

L-M2 (orange) and L-O4 (green) are shown in Figure 3.11 (a). In this particular experiment, the

melodic loop shows a higher loss of information (low F-measure). In the case of diffussion = 0.9,

the F-measure for L-P2 and L-O2 start to decrease, for L-M2 slowly increase; and they end with

0.6 (diffussion = 1) because at this point the reflections are pushed together and produce a noisy

sound combination that affects the spectral peaks of loops. However, when the reflections are

more spread from each other, F-measures slowly decrease and increase. From a diffusion factor

of 0 to 0.9, L-P2 shows a higher F-measure whereas L-M2 shows the lowest. LPMs have higher

performance for L-P2 while PMs have higher performance for L-M2.Reverberation and Delay
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Figure 3.11: F-measures for reverberation and delay. Vertical axes show the F-measure on a
linear scale. Solid lines indicate that the magnitude spectrogram peak maps (PM) were used.
Dashed lines indicate that log-frequency peak maps (LPM) were used. The results of 3 loop
queries of our example data-set are shown: L-P2 (blue), LM2 (orange) and L-O4 (green). In (a),
a reverberation effect was applied. The horizontal axis spans the diffusion factor range of 0 to 1
and the vertica axis spans the range of 0.4 to 1. In (b), delay was applied. The horizontal axis
spans the delay factor range of 0 to 1 and the vertical axis spans the range of 0.6 to 1.

Adding Delay is another common effect applied in electronic music in order to cause an impact

on the music [3], [18], [2]. One can find a wide variety of delay configurations. For our initial

experiments, we focused on a simple scenario which consist of adding one delayed version of the

loop withing its activation time. Therefore, a total of 21 tracks were built with a different delay

30 Master Thesis, Pedro Solórzano
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factor, from 0 to 1. The delayed version is activated with half of the original volume level and

linearly decreases within the loop activation time. In Figure 3.11 (b), we can see the F-measure

results for L-P2, L-M2, and L-O4. The same notation as in (a) were used in the figure. There is

a sharp drop in F-measure between the delay 0 and 0.5. After this initial drop, the F-measure

oscillates with an overall increasing behavior. The oscillation are due to the fact that the delayed

copy contains the same musical relations which in certain delay values can be severe to the loop

(minima) or less destructive (maxima). As the delay factor is increasing the overall F-measure is

also increasing since less sections of the loop are affected by the delayed copy.

3.4.2.2 Volume Changes

In electronic music, loops might appear with an adjusted volume to create tension and variety

in the music. As a first experiment with volume changes, we computed tracks using the loops

with different volume-level factors ∈ [0, 1]. The resulting track is the loop query with a different

intensity level; the volume goes from 0 to the original volume of the query. The F-measure

results of the loops L-P2 (blue), L-M2 (orange) and L-O4 (green) are shown in Figure 3.12

(a). The horizontal axis spans the range of 0 to 1. Solid lines indicate the use of magnitude

spectrogram peak maps (PM) and dashed lines indicate the use of log-frequency peak maps

(LPM). In (a), we can see that LPM performs better when compared to PM. When we have

around 20% of the original volume, more than half of the loop’s information is captured by the

feature representation. In this case, the amplitude limitations in the peak selection process of

a peak map plays an important role. As said in Section 3.2, the exponential decay and the

amplitude threshold avoids to choose noise or irrelevant peaks. Thus, when the volume-level

factor is low, peaks are not chosen because of lower amplitude values in the spectrogram. If

we apply such amplitude limitation with a lower exponential decay factor and lower amplitude

threshold, more information is captured with lower volume levels and the F-measure increase

faster than in (a).

As a second experiment, we applied linearly increasing volume changes in a track. Following the

ADSR envelope modell [14], we can define the increasing volume phase of a loop query as an

attack phase, and the steady section as a sustain phase (portion with the original volume). We

constructed tracks using the loops with an attack factor. This factor indicates what starting

portion of the loop will be modified. All resulting tracks start with an increasing section (attack

phase), then continue with its original intensity until the end of the loop is reached (sustain

phase). In the attack phase, the volume-level increases linearly from 0 to the original query

volume. For example, a factor of 0.5 means that from the beginning of the audio loop until its

midpoint, the volume increases. The rest of the audio loop is not affected. Using the same loops

and notation in Figure 3.12 (a), the F-measure results are shown in Figure 3.12 (b). The vertical

axis spans the range of 0.5 to 1. The results of this experiment show a decreasing F-measure.
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Figure 3.12: F-measure for 3 different volume changes scenarios. The queries are: L-P2 (blue),
L-M2 (orange), and L-O4 (green). Solid lines indicate the use of magnitude spectrogram peak
maps (PM) and dashed lines indicate the use of log-frequency peak maps (LPM). Figure (a)
shows results after uniformly adjusting the volume level of the query. When volume-level factor
is equal to 1, the original intensity level of the loop is used in the track. A volume-level of 0
means there is no sound. The vertical axis spans the range of 0 to 1. Figure (b) shows the results
after an attack phase on the loop is applied. The attack factor ∈ [0,1] indicates what starting
section of the loop will be increasing. The vertical axis spans the range of 0.5 to 1. In (c), an
ending section of the loop decreases the volume intensity to 0 (release phase). The vertical axis
spans the range of 0.65 to 1.

This is due to the fact that when the attack factor is close to 1, less information is captured by

the peak maps. However, in the case where the increasing factor is equal to 1, the F-measure is

greater than 0.5. Also, the amplitude limitations in the peak selection play an important role

since peaks with lower intensity are not chosen. As the attack fator increase, more peaks are not

captured by the peak selection process.

As a third experiment of volume changes, we created tracks using the loops with a decreasing
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section. Following the ADSR envelope modell [14], we can define this section as an release phase.

This method is similar to the previous experiment. All tracks start with a sustain phase and

end with a release phase. The release factor indicates what portion of the loop will be modified.

For all the values of release, the volume-level reduces from the loop’s original volume to 0. For

example, a release factor of 0.5 means that from the midpoint of the audio, the volume is linearly

reducing (release phase). The rest of the audio loop is not affected (sustain phase). Following

the same notations of previous experiments, the F-measure results of the loops L-P2, L-M2 and

L-O4 are shown in Figure 3.12 (c). The F-measures decrease and reach a value more than 0.65

when release = 1. Here again, we see the effects of amplitude limitations in the peak selection

process. Less peaks are chosen when the release factor is increasing. The performances in both

cases (b) and (c) have the same behavior, but different decreasing rates. From these particular

results, one can see that more feature information survived when a release phase is used rather

than when an attack phase is used. In other words, relevant features are captured when the

beginning of the loop is in its original form (decreasing-volume case), rather than having an

unmodified ending section (increasing-volume case).

3.5 Time Shift Differences within a STFT window frame

In real world cases, a loop can be activated several times within a track. STFT framing has an

effect on the resulting feature representation. When the STFT is computed, in both query and

track, the information of the isolated loop query and the information of the loop within the track

can be different since the position of the signal inside the window-frames can also be different.

Figure 3.13 shows a simple example of this case. Signal samples are denoted by blue points whilst

zero-padding is indicated by black points. Dashed lines denote the information captured by a

frame in the STFT. The signal on the top has a total of 11 samples and the resulting STFT of

this signal, with a window size of 9 samples and hop size of 4 samples, has 2 frames. The signal

in the middle row is a shifted version of the signal above; the shift step is 2 samples. These two

signals can have considerably different feature representations. This is because the frames in

both signal contain different information inside. The STFT of the signal at the bottom results in

3 frames, where the last 2 frames contain almost all the original information of the signal.

Motivated by this case, we want to study the effects of shifting the audio loops in time. following

the same procedure as in Figure 3.13, we created tracks which contain a loop signal shifted

in time. The loop signal, with sampling frequency Fs = 22050 Hz, is shifted by increments of

64 samples (2.9 ms) until the sample 4096 (185,8 ms) is reached, yielding a total of 64 tracks

(shifted loop versions). The STFT is computed for each shift step by means of zero padding.

The first frame is centered with respect to the time t = 0 seconds of the signal, using a Hann

window with a size of 4096 samples, and a hop size H = 2048 samples. The query is matched
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Shift over time

Frame 1

x[n]
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x[n-3]
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Figure 3.13: Effects of shifting a signal by zero-padding. The signal samples are denoted as blue
points. The STFT is computed by means of zero-padding (black points). A signal x [n], x [n − 2]
and x [n − 3] are shown from top to bottom. Dashed lines denote the information captured by a
frame in the STFT.

to the resulting tracks. When we do a comparison, the first 2 and last 2 frames are not taken

into account in order to avoid distortions from the zero-padding. In Figure 3.14, we show the

resulting F-measure for the loops L-P2 (blue), L-M2 (orange), and L-O4 (green). Following the

same notation as previous figures, solid lines correspond to PM and dashed lines to LPM. In (a),

we considered a true positive as the peak in the query that matches to a peak in the track at the

same time-frequency index. In (b), we considered a true positive as the peak in the query that

matches to a peak in the track at the same time-frequency index, one time-frame on the left, one

time-frame on the right, one frequency index on up, or one frequency-index down. The STFT

is increasingly different to those computed with shift zero until the hop size is reached in the

case of (a), and until half of the hop size in the case of (b). A minimum is reached in shift 1984

in (a) and in shift 1024 in (b). As we can see, if we search for matched not only at the exact

time-frame position but also at neighbor time-frequency indexes, the similarities between shifted

versions increase.

3.6 Matching with Shifted Queries

In Section 3.5, it was interesting to see that a loop computed with different time-frame positions

can results in such different STFTs. With this in mind, we came to the idea of finding a loops

within a track by using several shifted versions of the query. First, we created tracks which
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Figure 3.14: F-measure results when an audio sample is compared with a shifted-version. The
results of the loops L-P2 (blue), L-M2 (orange) and L-O4 (green) are shown. Solid lines indicate
the use of magnitude spectrogram peak maps (PM) and dashed lines indicate the use of log-
frequency peak maps (LPM). In (a), we considered a true positive as the peak in the query that
matches to a peak in the track at the same time-frequency index. In (b), we considered a true
positive as the peak in the query that matches to a peak in the track at the same time-frequency
index, one time-frame on the left, one time-frame on the right, one frequency index on up, or
one frequency-index down.

contain one loop repeated a number of consecutive times. Then, we computed several shifted

versions of the loop query, form shift 0 (zero) to 1024 sample (half of the Hop size). The original

loop is compared with tracks by means of the F-measure since we want to evaluate the matched

peaks in both track and query; the matching procedure is applied as described in Section 2.4.2.

We try to find matches not only with peaks in the same time-frequency index but also with the

neighbor peaks. The results are saved as a query similarity variable. Features from the query

and track do not include the first 2 and last 2 frames. This decision was made because these two

frames, in the query STFT, can contain distorted information caused by the zero-padding.

Secondly, we proceed to do a matching between the original loop query (no shift added) and the

track. In Figure 3.15, we can see the F-measure results for 3 different shifted-query versions of

L-P2 when they are compared with the other shifted versions. The queries correspond to the

loop versions x [n] (blue), x [n − 1024] (red) and x [n − 1984] (green). Blue points indicate the

F-measure results when the original query (x [n]) is compared to the versions x [n − 1024] and

x [n − 1984]. As we can see, the maximum diference between the versions is 0.55 which can help

us to avoid irrelevant matching values.

As a third step, we proceed to compute a matching curve as described in (see Section 2.4.2).

In this case, the similarity measures aims to quantify how much information of the query is
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contained withing a track. We use the F-measure as a similarity measure. When the similarity

measure between the original loop (shift zero) and the track is close to a query similarity value,

we compare again using the corresponding shifted version. This procedure is done because we

assume that a similarity measure with a shifted version will result in a higher value or similarity

than using the original loop. The resulting matching curve will contain enhanced peaks that can

help to locate the activation times of the query. Furthermore, a threshold of similarity can be set

by using the query similarity value between the shift 0 and the shift 512. If a similarity is lower

than this value, it can be considered irrelevant (this assumption is made because this is a simple

case scenario where no other sounds are added).

Fmeasure: 3 loop versions
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• L-P2 (x[n]) is the query.

• L-P2  (x[n-512]) is the query.

• L-P2  (x[n-1024]) is the query.

Figure 3.15: F-measure results for time-shift comparison of the audio signal L-P2. Blue, red
and green lines denote the results when the original loop (x [n]), the loop shifted by 512 samples
(x [n − 512]) and the loop shifted by 1024 samples (x [n − 1024])are the respective queries. Blue
dots indicate the F-measure when the original loop is compared to the other queries.

Using our example data-set, we created 12 tracks which contain one loop repeated 10 times

with no information in between repetitions. We computed the matching curve when different

shifted versions of the query were used. The shift is between the samples 0 and half of the hop

size (1024) where the first query is the original loop and the second query version correspond to

the shift 1024. Then, the query similarity is computed by means of the F-measure (similarity

measure). Figure 3.16 shows the matching curve for the loops L-P2, LM2, and L-O4. Triangles

denote the ground truth activation times. In the curves on the left (a) only the original query

was used in the identification process. On the right side, the curves in (b) show the results when

3 versions of the query were used. When we compare both (a) and (b), we can see that the peaks

in (b) are enhanced. For percussive loops like L-P2, the curves in both cases do not show clear

activation times. This kind of loops contain similar repetitive patterns (see Figure 3.1) which

can give high similarity results on local comparison along the track.
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Figure 3.16: Matching curve for the loops L-P2, L-M2 and L-O4. For the curves on the left side
(a), we used only the original query. For the curves on the right side (b), we used three shifted
queries. Triangles indicate the activation times of a query in the track.

In order to compare the matching performance in each track with respect to the number of

time-shifted queries used, we computed the gain ratio GainRatio and Pearson correlation Pcorrcoef

mentioned in Section 2.5. Figure 3.17 shows the corresponding Pearson correlation (a) and gain

ratio (b) results for loops L-P2 (blue), L-M2 (orange), and L-O3 (green). Magnitude spectrogram

peak maps were used. As we can see in the figure, both the gain ratio and Pearson correlation

for PMs increases when a 2 loop version is used in the matching procedure. For the loop L-P2,

both gain and Pearson correlation slowly increase because of the repetitive peak patterns within

the loop PM [11]. On the other hand, for L-M2 and L-O2, the increase is stronger in both (a)

and (b) with 2 shifted queries, then the increase is slower for higher number of queries.

At this moment, we have discussed methods such as the feature extraction based on peak maps,

F-measure for audio sample evaluation, and the gain ratio and Pearson correlation for evaluation.

Furthermore, we described the experiments applied for loop combination, audio degradation,
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Figure 3.17: Gain ratio (a) and Pearson Correlation (b) for the loops L-P2, L-M2 and L-O4.
Horizontal axes span the range of 1 to 10 and correspond to the number of shifted versions used
in the matching process.

shift differences, and matching with shifted queries. The results showed in this chapters aimed to

illustrate all the task done in this thesis and they don’t lead to a relevant conclusion of a general

peak map feature behavior in electronic music samples. However, in the following chapter we

will discuss the results obtained by using a bigger data set which will guide us to meaningful

results and analyses.
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Chapter 4

Larger-Scale Experiments

Having described the processing pipeline in Chapter 3, we proceed to study its performance

with a larger, more realistic data-set. Following the structure of the previous chapter, we start

explaining our data-set. Then, we give a description of the feature extraction configuration. The

results and analysis are described in the sections: loop combination, audio degradation, and time

shift differences within a STFT window frame.

4.1 Loop data-set

The loop data-set consists of 111 audio samples. We collected these samples from the included

data-base of MAGIX Music Maker Premium software [12]. Loops are organized into 6 electronic

music genres: dance, deep house, dubstep, hip-hop, techno and trap. Within each genre, loops

are categorized by instrumental families: bass, brass, drums, fx, guitar, keys, lead, mallet, pad,

percussion, sequence, special, strings, synth, vocals, and vocal rap. All loops are stereo with

a sampling frequency of Fs = 44100 Hz. The length of a loop can be of 1, 2, 4 or 8 bars. The

musical tempo is indicated by the BPM. Table 4.1 shows a summary of the data-set information

based on genre categories. Table 4.2 shows a summary of the data-set information based on

instrumental families. In Appendix A, there is a detailed description of each loop in the data-set.

4.2 Feature Extraction Configuration

Following the same steps as described in Section 3.2, for each stereo audio sample, we did

a conversion from stereo to mono by means of the average of the channels. Each loop was

re-sampled to the sampling frequency Fs = 22050. The STFT was computed using a Hann

window of size 4096 samples and a hop size H = 2048 samples. The magnitude spectrogram and
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# of # of instrumental BPM Bar
loops families measure

Dance 10 10 130 2, 4, 8
Deep House 19 11 120 1, 2, 4

Dubstep 19 8 135 4, 8
HipHop 20 12 90 1, 2, 4
Techno 23 8 130 1, 2
Trap 20 8 75 1, 2, 4

Table 4.1: General description of the audio loop data-set organized by genres.

# of # of BPM Bar
loops Genres measure

Bass 13 6 75, 90, 120, 130, 135 1, 2, 4
Brass 3 3 75, 90, 120 2, 4
Drums 22 6 75, 90, 120, 130, 135 2, 4, 8

Fx 11 6 75, 90, 120, 130, 135 2, 4
Guitar 2 2 90, 130 2, 8
Keys 4 4 90, 130, 135 2, 4
Lead 2 1 135 4, 8

Mallet 1 1 130 2
Pad 7 6 75, 90, 120, 130, 135 2, 4

Percussion 8 3 120, 130 1, 2, 4
Sequence 15 6 75, 90, 120, 130, 135 1, 2, 4
Special 3 1 120 2
Strings 3 2 90, 120 2, 4
Synth 7 5 75, 90, 120, 130, 135 1, 2, 4
Vocals 9 4 75, 90, 120, 130 2, 4, 8

Vocal Rap 1 1 90 1

Table 4.2: General description of the audio loop data-set organized by instrumental families.

log-frequency spectrogram were calculated. The peak map (PM) and the log-frequency peak

map (LPM) of each audio were computed using an analysis window of 4x4 (see Section 3.2).

This window size was chosen in order to obtain peaks at the beat times of the audio sample.

Maximum values in the spectrogram below 1 are not chosen as peaks. In all retrieval calculations

we considered a true positive as a peak in the query that matches to a peak in the track at the

exact position, one time frame position to the left, one time frame position to the right, one

frequency index position up, or one frequency index position down (see Section 3.3).

4.3 Loop Combination

In this experiment, we applied the audio sample retrieval matrix on loops with the same genre.

Then, we study the behavior of features for different complex mix scenarios. The results and

analysis are shown in the following sections.
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4.3.1 Audio retrieval matrices

In this section, we describe the audio retrieval matrices results obtained for each EM genre in

Table 4.1. Within each genre, loops can have different length, thus, we extended the loops to the

maximum length found within the genre by means of repetitions. For example, if the maximum

length of a loop is 8 bars, all loop within the same genre will be extended by means of repetitions

until a length of 8 bars is reached.

4.3.1.1 Dance

A total of 10 audio samples (loops) were used. Each loop belongs to an instrumental family:

bass, drums, fx, guitar, keys, pad, percussion, sequence, synth, and vocals. The musical tempo

is 130 BPM where loops can have a duration of 2, 4 or 8 bars (3.69, 7.38, or 14.76 seconds

respectively). A detailed description of these loops can be seen in Table A.1. Audio sample

retrieval matrices were computed for all 10 loops (extended to 14.76 seconds) and the results are

shown in Figure 4.1. Rows in Figure 4.1 represent the loops which are sorted as in Table A.1.

Columns represent 27 tracks with length of 8 bars (14.76 seconds). Red points in all matrices

denote the presence of a loop.

In Figure 4.1, columns 1 to 10 show that there is common information among loops. In (a),

rows 1, 2, 4, and 9 correspond to the loops with the category bass, drums, guitar, and synth

respectively. All loops contain in most cases around 20% of the peaks in the aforementioned

4 loops (columns 1 to 10). In (b), we can see the same were columns 1 (bass), 2 (drums), 4

(guitar), and 9 (synth) show significant values on recall (around 20%). In (c), we can see which

loops share a similar amount (in query and in track) of common peaks since the F-measure gives

a relation between the precision and recall (Section 2.5.2).

Columns 11 to 27 describe some specific combinations of loops (we show different combinations

of 2 to 10 loops) which were randomly computed. In precision matrix (a), we can see how much

information survived in a combination since we compute the ratio of matched peaks and peaks

in the track. In most cases, loops 2 (drums) and 9 (synth) present large amount of peaks in the

combination (around 50% of the peaks in the query), which can mean that these loops have

a considerable amount of peaks, and/or the other loops in the combination have few feature

components. An example of these cases is track 15, which is the combination of 4 loops: loop

1 (bass), loop 2 (drums), loop 5 (keys), and loop 8 (Sequence). Most of the peaks in track 15

matched to peaks in loop 2; these peaks (true positives) represent 63% of the peaks in track 15.

On the other hand, loop 5 has the lowest relevance in track 15 since true positives represent 5%

of the peaks in the track. In Figure 4.2, we show the peak map retrieval representation for the

recall of track 15. In (a) the query is loop 2 (drums) and in (b) the query is loop 5 (keys).
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Figure 4.1: Audio sample retrieval matrices for the genre Dance. In all matrix representations,
rows represent audio samples (loops) which are sorted (from top to bottom) by the instrumental
families: bass, drums, fx, guitar, keys, pad, percussion, sequence, synth, and vocals (see Table A.1).
Columns represent tracks with a duration of 8 bars (14.76 seconds). Red points indicate the
presence of the loop in the track. Each cell contains the retrieval results when the corresponding
loop is the query. The matrix representation in (a) describes the precision computed by the ratio
of true positives to peaks in the track. The figure (b) shows the recall computed by the ratio of
true positives to peaks in the loop. (c) represents the F-measure between the results in (a) and
(b).

From the recall results in Figure 4.1(b), in columns 11 to 14, we can see that matched peaks of

queries included in the combination (red points) represent in the track more than 35%. This

peak information can decrease to 20% when the number of combined loops is increasing. This is

due to the fact that new information is added to the track, thus, some peaks of the query may be

distorted by the combination and they may not be relevant in the fingerprinting process. Also,
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Figure 4.2: Peak map retrieval representation of track 15. The horizontal axis spans the range of
0 to 3.69 seconds (2 bars). Black points represent common peaks between the query and the
audio track (true positives). Red points correspond to peaks in the audio track but not in the
query (false positives). The query in (a) is loop 2 (drums) and the query in (b) is loop 5 (keys).

we can see that tracks contain information that is also present in loops which are not in the

corresponding combination. The reason is that loops share information among them (columns

1 to 10) and combinations of them may help to emphasize features that can also be in loops

not present in the mixture. As a result, in the case of few combination of loops (columns 11 to

14), we can see at least 5% of common peaks between a track an a loop (not included in the

combination), and in the case of higher loop combinations, it increases to around 15%.

In (c), we can see that the features in loops 2 (drums) and 9 (synth) represent a large amount

of peaks in both query and track. The other loops have low representative information in

combination experiments since true positives (common peaks between track and query) represent

a small portion of features in both track and query.

4.3.1.2 Deep House

A total of 19 audio samples were used (see Table 4.1). The instrumental families included in

this genres are: bass, brass, drums, fx, pad, percussion, sequence, special, strings, synth, and

vocals. The musical tempo is 120 BPM where loops can have a duration of 1, 2 or 4 bars (2,

4, or 8 seconds respectively). A detailed description of these loops can be seen in Table A.2.

Audio sample retrieval matrices were computed for the 19 loops (extended to 8 seconds) and the

results are shown in Figure 4.3. Rows in Figure 4.3 represent the loops which are sorted as in

Table A.2. Red points in all matrices denote the presence of a loop. Columns represent 54 tracks

with duration of 4 bars (8 seconds).
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Figure 4.3: Audio sample retrieval matrices for the genre Deep House. In all matrix represen-
tations, rows represent audio samples (loops) which are sorted (from top to bottom) by the
instrumental families: bass, brass, drums, fx, pad, percussion, sequence, special, strings, synth,
and vocals (see Table A.2). Columns represent tracks with a duration of 4 bars (8 seconds). Red
points indicate the presence of the loop in the track. Each cell contains the retrieval results when
the corresponding loop is the query. The matrix representation in (a) describes the precision
computed by the ratio of true positives to peaks in the track. The figure (b) shows the recall
computed by the ratio of true positives to peaks in the loop. (c) represents the F-measure
between the results in (a) and (b).

Loops 3, 4, 5, and 6 show a significant similarity since they are members of the same category

drums; in columns 1 to 19, they show in precision (a), recall (b) and F-measure (c) more than

25% of representation of matched peaks. There are cases where these 4 loops are not present in

the track but they yield high precision values (a). In addition, loop 3 (drums 1), 4 (drums 2), 5

(drums 3), 6 (drums 4), and 14 (special 2) contain significant information that is also present in
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Figure 4.4: Peak map retrieval representation of track 27. The horizontal axis spans the range of
0 to 4 seconds (2 bars). Black points represent common peaks between the query and the audio
track (true positives). Red points correspond to peaks in the audio track but not in the query
(false positives). The query in (a) is loop 3 (drums 1) and the query in (b) is loop 14 (special 2).

other loops; we can see clear regions in precision (horizontal regions) and recall (vertical regions).

In the combination examples of Figure 4.3 (columns 20 to 57), loops 3 (drums 1), 4 (drums 2),

5 (drums 3), 6 (drums 4), and 14 (special 2) are audio samples that represent a large portion

of peaks in tracks. These 5 loops show high values in the F-measure (c) since more than 10%

of matched peaks is in both query and track. The other loops have low precision values which

indicate that matched peaks represent a small amount of peaks in the track (less than 6%), thus

the F-measure is low. In addition, we can see high values in the recall (b) which means that

matched peaks represent at least 20% of peaks in the query. In cases were the query is not

present in the combination, we can see that tracks match more than 15% of peaks in the query,

e.g., track 27. In Figure 4.4, we show the peak map retrieval representation of track 27 where

the query in (a) is loop 3 (drums 1) which is not present in the combination, however, it shows

a significant amount of matched peaks (21%). The query in (b) is loop 14 (special 2) which is

present in the mixture (62%).

4.3.1.3 Dubstep

A total of 19 audio samples were used (see Table 4.1). The instrumental families included in

this genres are: bass, drums, fx, keys, lead, pad, sequence, and synth. Loops can have a length

of 4 or 8 bars (7.11 or 14.22 seconds) and they have a musical tempo of 135 BPM. A detailed

description of these loops can be seen in Table A.3. In the audio sample retrieval matrices shown

in Figure 4.5, all 19 loops (extended to 14.22 seconds) were used. Rows in Figure 4.5 represents
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Figure 4.5: Audio sample retrieval matrices for the genre Dubstep. In all matrix representation,
rows represent audio samples which are sorted (from top to bottom) by the instrumental families:
bass, drums, fx, keys, lead, pad, sequence, and synth (see Table A.3). Columns represent tracks
with a duration of 8 bars (14.22 seconds). Red points indicate the presence of the loop in the
track. Each cell contains the retrieval results when the corresponding loop is the query. The
matrix representation in (a) describes the precision computed by the ratio of true positives to
peaks in the track. The figure (b) shows the recall computed by the ratio of true positives to
peaks in the loop. (c) represents the F-measure between the results in (a) and (b).

the loops which are organized as described in Table A.3. Red points in all matrices denote the

presence of a loop. Columns represent 54 tracks with duration of 8 bars (14.22 seconds).

In Figure 4.5, columns 1 to 19 show horizontal regions in (a) and vertical regions in (b) which

indicate that there are loops containing relevant information included also in other loops. These

regions correspond to loops: 1 (bass 1), 3 (drums 1) , 4 (drums 2), 5 (drums 3), 10 (lead 1), 11
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Figure 4.6: Peak map retrieval representation of track 22. The horizontal axis spans the range of
0 to 3.55 seconds (2 bars). Black points represent common peaks between the query and the
audio track (true positives). Red points correspond to peaks in the audio track but not in the
query (false positives). The query in (a) is loop 9 (keys) and the query in (b) is loop 2 (bass 2).

(lead 2), 15 (sequence 2), and 18 (synth 2). At least these loops contain 15% of peaks that are

also in other loops.

In the combination examples (columns 20 to 54), the precision (a) shows that the peaks of

loops 1, 3, 4, 5, 10, 11, 15 and 18 represent more than 15% of the peaks in tracks; they are a

representative portion of peaks in tracks. In the case of the other loops, matched peaks represent

in most cases less that 12% of the peaks in the query. The recall (c) shows that matched peaks

represent more than 20% of the peaks in the query, even if the query is not present in the

corresponding combination. From the f-measure (c), we can see that features of loops 1 (bass 1),

3 (drums 1) , 4 (drums 2), 5 (drums 3), 10 (lead 1), 11 (lead 2), 15 (sequence 2), and 18 (synth

2) are loops which contain a relevant amount of peaks since the precision and recall are high.

On the other hand, we can also see loops which do not have a representative amount of peaks

and they may be easily distorted. For example, track 22 is a combination of 3 loops: loop 2

(bass 2), loop 9 (keys), and loop 13 (pad 2). Loop 2 presents the lowest F-measure because of

its irrelevancy with respect of peaks in track 22; few peaks in track 22 matched to loop 2 (low

precision), however, matched peaks represent 60% of peaks in the loop. On the contrary, loop 9

is the relevant loop in track 22 since most of the peaks in the audio recording matched the loop.

In Figure 4.6, it is shown the peak map retrieval representation of track 22. The query in (a) is

the loop 9 (keys) and the query in (b) is the loop 2 (bass 2).
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4.3.1.4 Hip-Hop

A total of 20 audio samples were used (see Table 4.1). The instrumental families included in this

genres are: bass, brass, drums, fx, guitar, keys, pad, sequence, strings, synth, vocals and vocal

raps. Loops can have a length of 1, 2, or 4 bars (2.66, 5.32, or 10.64 seconds) and and they have

a musical tempo of 90 BPM. A detailed description of these loops can be seen in Table A.4. In

the audio sample retrieval matrices shown in Figure 4.7, all 20 loops (extended to 10.64 seconds)

were used. Rows in Figure 4.7 represents the loops which are organized as described in Table A.4.

Red points in all matrices denote the presence of a loop. Columns represent 54 tracks with

duration of 4 bars (10.64 seconds).

The precision results (a) show that there are loops that represent less than 6% of the peaks in

combination examples, e.g, loop 1 to 3 (bass), 4 (brass), 15 (sequence), etc. In columns 20 to 57,

the recall results (b) show that matched peaks represent in most cases more than 20% in the

query, even if it is not present in the track. Peaks from the category drums are more relevant in

the track than others. Also, in columns 1 to 20, loops 5 to 13 (drums, fx, guitar, and keys) show

in most cases more than 13% of peaks which are also in other loops. In the F-measure (columns 1

to 20), loops 1 to 3 share information since belongs to the category bass. Also, loops 5 to 9 have

common information because they are members of the category drums. In addition, matched

peaks in drums queries and loop 13 (keys) represent in most cases more than 17% in both query

and tracks. As a visual example of a loop combination, Figure 4.8 shows an peak map retrieval

representation of track 25 where the query in (a) is loop 14 (pad) with a precision of 0.09 and

recall 0.25. The query in (b) is loop 19 (vocals) with a precision of 0.23 and a recall of 0.51.

4.3.1.5 Techno

A total of 23 audio samples were used (see Table 4.1). The instrumental families included in

this genres are: bass, drums, fx, keys, mallet, pad, percussion, and sequence. Loops can have a

length of 1, 2, or 4 bars (1.84, 3.68, and 7.36 seconds) and they have a musical tempo of 130

BPM. A detailed description of these loops can be seen in Table A.5. The audio sample retrieval

matrices in Figure 4.9 were computed for the 23 loops (extended to 7.36 seconds). Rows in

Figure 4.9 represents the loops which are organized as described in Table A.5. Red points in all

matrices denote the presence of a loop. Columns represent 54 tracks with duration of 4 bars

(7.36 seconds).

From these matrices, we can see similarity between loops which in most cases is because they

belong to the same instrumental family. Loops 1 to 3 are members of the category bass, loops 4

to 8 belong to the category drums, loops 13 to 16 belongs to the category percussion, and loops

17 to 23 are members of the category sequence (see precision, recall). In the categories drums,

percussion, and sequence, the matched peaks represent a significant amount of information in
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Figure 4.7: Audio sample retrieval matrices for the genre Hip-Hop. In all matrix representations,
rows represent audio samples which are sorted (from top to bottom) by the instrumental families:
bass, brass, drums, fx, guitar, keys, pad, sequence, strings, synth, vocals and vocal raps (see
Table A.4). Columns represent tracks with a duration of 4 bars (10.64 seconds). Red points
indicate the presence of the loop in the track. Each cell contains the retrieval results when
the corresponding loop is the query. The matrix representation in (a) describes the precision
computed by the ratio of true positives to peaks in the track. The figure (b) shows the recall
computed by the ratio of true positives to peaks in the loop. (c) represents the F-measure
between the results in (a) and (b).

both the track (precision) and the query (recall); they represent more than 35%, 20%, 15% and

respectively (see F-measure). One example of a loop combination within this genre is the track

25 which is a mix of loop 11 (mallet) and loop 15 (percussion 3). The query in (a) is loop 11

with a precision 0.24 of and recall of 0.53. The query in (b) is loop 15 with a precision 0.37 of

and recall of 0.42.
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Figure 4.8: Peak map retrieval representation of track 25. The horizontal axis spans the range of
0 to 5.32 seconds (2 bars). Black points represent common peaks between the query and the
audio track (true positives). Red points correspond to peaks in the audio track but not in the
query (false positives). The query in (a) is loop 19 (vocals) and the query in (b) is loop 14 (pad).

4.3.1.6 Trap

As we can see in Table 4.1, a total of 20 audio samples were used. The instrumental families

included in this genres are: bass, brass, drums, fx, pad, sequence, synth and vocals. Loops can

have a length of 1, 2, or 4 bars (3.2, 6.4, and 12.8 seconds) and they have a musical tempo of 75

BPM. A detailed description of these loops can be seen in Table A.6. The audio sample retrieval

matrices in Figure 4.11 were computed for the 20 loops (extended to 12.8 seconds). Rows in

Figure 4.11 represents the loops which are organized as described in Table A.6. Red points in

all matrices denote the presence of a loop. Columns represent 54 tracks with duration of 12.8

seconds.

From the F-measure (c), we can see that loops 5 to 8 share a similar amount of information since

they belong to the category drums. There is common information among loops with different

categories; loops 13 to 20 have similarities in features and they are organized in 3 different

categories: sequence, synth, and vocals. Loops 5 to 8 (drums), 11 (fx), and loops 13 to 20

(sequence, synth, and vocals) show common information among loops with more than 12% of

matched peaks (see recall and precision). All these mentioned loops have in most of combination

a significant amount of matched peaks in both track and query. From the recall (b), we can see

that matched peaks represent at leas 15% of the peaks in query, even if the query is not present

in the corresponding combination. There are loops with a significant amount of matched peaks

in the query (around 40% recall) but they are not relevant in the track (low precision). Thus,

their F-measure decrease, e.g., track 23. Figure 4.12 shows the peak map retrieval representation

of track 23 which is the combination of loop 2 (bass 2), 12 (pad), and 13 (sequence). In this case,
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Figure 4.9: Audio sample retrieval matrices for the genre Techno. In all matrix representations,
rows represent audio samples which are sorted (from top to bottom) by the instrumental families:
bass, drums, fx, keys, mallet, pad, percussion, and sequence (see Table A.5). Columns represent
tracks with a duration of 4 bars (7.36 seconds). Red points indicate the presence of the loop in
the track. Each cell contains the retrieval results when the corresponding loop is the query. The
matrix representation in (a) describes the precision computed by the ratio of true positives to
peaks in the track. The figure (b) shows the recall computed by the ratio of true positives to
peaks in the loop. (c) represents the F-measure between the results in (a) and (b).

loop 2 (bass) has a precision of 0.02 and a recall of 0.39 while loop 12 (pad) has a precision of

0.12 and a recall of 0.45.
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Figure 4.10: Peak map retrieval representation of track 25. The horizontal axis spans the range
of 0 to 3.68 seconds (2 bars). Black points represent common peaks between the query and
the audio track (true positives). Red points correspond to peaks in the audio track but not in
the query (false positives). The query in (a) is loop 11 (mallet) and the query in (b) is loop 15
(percussion 3).

4.3.2 Complex mixtures

In this experiment, we computed the retrieval information (precision, recall, and F-measure) of

tracks with different complexity level. As said in Section 3.3, the complexity level increases when

a loop is added (including the query). We randomly chose 20 different combinations of 9 loops

with same genre as the query. For each combination we proceed to construct tracks following the

procedure described in Figure 3.7; for each complexity greater than 1 we compute 2220 tracks.

Figures 4.13, 4.14, and 4.15 show the retrieval information results by means of boxplots. Boxes

indicate the interquartile range where the red line inside each box is the median. Magnitude

spectrogram peak maps (PM) were used in (a) whilst log-frequency peak maps (LPM) were used

in (b). The dashed horizontal line in both (a) and (b) denote the base-line computed by the

average of retrieval information results when the query is white noise.

In Figure 4.13, we can see a decreasing behavior of the precision as the complexity increases.

This decrease starts rapidly when a second loop is added; the median in the precision is 0.42

(PM) and 0.49 (LPM) for complexity 2. The decrease is slower for a complexity higher than 5 in

both LPM and PM. There are particular cases that show a lower decrease (red crosses above

boxes) that are related to loop queries with a large amount of features and they can easily be

relevant in a track combination, e.g., drums in the techno genre. On the other hand, there are

cases in which the precision goes below the base-line (horizontal dashed line). These cases are

related to loop with a small amount of peaks, e.g. loop 2 (bass 2) in dubstep genre.
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Figure 4.11: Audio sample retrieval matrices for the genre Trap. In all matrix representation,
rows represent audio samples which are sorted (from top to bottom) by the instrumental families:
bass, brass, drums, fx, pad, sequence, synth, and vocals (seeTable A.6). Columns represent tracks
with a duration of 4 bars (12.8 seconds). Red points indicate the presence of the loop in the
track. Each cell contains the retrieval results when the corresponding loop is the query. The
matrix representation in (a) describes the precision computed by the ratio of true positives to
peaks in the track. The figure (b) shows the recall computed by the ratio of true positives to
peaks in the loop. (c) represents the F-measure between the results in (a) and (b).

The recall is shown in Figure 4.14. These results indicate that less peaks in the query are

matched to tracks with higher complexity. The recall decreases from a median of 0.69 to 0.22 for

complexity 2 to 6 in the case of PMs (a). When LPMs are used (b), the recall decreases from

a median of 0.63 to 0.19 for complexity 2 to 6. Median values of 0.17 (for PMs) and 0.19 (for

LPMs) are reached for complexity 10 meaning that in most cases around 17% of peaks in the

query are matched. The red crosses are related to loops with a small amount of peaks where a
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Figure 4.12: Peak map retrieval representation of track 23. The horizontal axis spans the range of
0 to 6.4 seconds (2 bars). Black points represent common peaks between the query and the audio
track (true positives). Red points correspond to peaks in the audio track but not in the query
(false positives). The query in (a) is loop 2 (bass) and the query in (b) is loop 12 (sequence).Precision
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Figure 4.13: Precision with respect to different complexity. Horizontal axes represent the
complexity of the track. The term complexity states the number of loops superimposed in the
track. Vertical axes represent the F-measure in a logarithmic scale. (a) shows the results using
magnitude square peak maps (PM). (b) shows the results using log-frequency peak maps (LPM).

few distortions produced by combinations can severely affect the recognition of these kind of

loops.

Figure 4.14 shows that the F-measure in both (a) and (b) has a similar behavior. The results

decrease with the increase of complexity. Log- frequency peak maps (b) show a better performance

when they are compared with magnitude spectrogram peak maps (a). Matched peaks of LPMs

represent a big portion in both track and query. In addition, LPMs present values above the

base-line denoting that recognition can be based on a significant amount of matched peaks in
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4.4 AUDIO DEGRADATIONRecall

(a) PM (b) LPM
R

ec
al

l

1

10-1

100

Complexity
2 4 7 103 5 6 8 9 1

10-1

100

Complexity
2 4 7 103 5 6 8 9

R
ec

al
l

• Baseline L-M2
• L-O5 L-P2

Figure 4.14: Recall with respect to different complexity. Horizontal axes represent the complexity
of the track. The term complexity states the number of loops superimposed in the track. Vertical
axes represent the F-measure in a logarithmic scale. (a) shows the results using magnitude square
peak maps (PM). (b) shows the results using log-frequency peak maps (LPM).
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Figure 4.15: F-measure with respect to different complexity. Horizontal axes represent the
complexity of the track. The term complexity states the number of loops superimposed in the
track. Vertical axes represent the F-measure in a logarithmic scale. (a) shows the results using
magnitude square peak maps (PM). (b) shows the results using log-frequency peak maps (LPM).

both query and track. For example, if matched peaks are in a noisy environment (precision below

base-line) the query can be recognizable.

4.4 Audio Degradation

In the following sections we describe the results for the scenarios of adding external sounds.
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4.4.1 Adding External Sound

As we discussed in Section 3.4.1, we constructed tracks with an external sound added to a loop

with a specific SNR. These sounds are: white noise, pub environment, and vinyl noise. Precision,

recall and F-measure were computed for each case and the results are discussed below with

respect to SNR.

4.4.1.1 White Noise

Figures 4.16, 4.18, and 4.20 show the retrieval information precision, recall, F-measure respectively.

Magnitude spectrogram peak maps (PM) were used in (a) whilst log-frequency peak maps (LPM)

were used in (b).White noise
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Figure 4.16: Precision with respect of SNR (dB). White noise was added to the query as described
in Figure 3.9. Horizontal axes span the SNR range of 69 dB to 0 dB. The first value (on the left
side) is always one, because the track corresponds to the replica of the query. Boxes indicate the
intequartiles where the red line inside each box is the median. In (a), the magnitude spectrogram
peak map (PM) was used and in (b) the log-frequency peak map (LPM) was used.

The precision in Figure 4.16 shows that once white noise is added to a loop (form SNR 69 dB

to 0 dB), there are noisy peaks in the track which decrease the ratio of matched peaks (true

positives) and peaks in the audio recording. In the cases of adding external sound, we have to

consider the effects of amplitude limitations in the peak map selection process (see Section 2.4.1).

As we said, in the feature configuration section (Section 4.2), we applied an exponential decay in

order to obtain peaks at the moment of appearance, and in addition, maximum values in the

spectrogram which are below to 1 are not chosen so that irrelevant information is not considered.

If we eliminate these amplitude limitations, the precision results may be lower (there are more

noisy peaks in the track) and the decrease may start with higher values of SNR (peaks with low

amplitude are chosen). For PMs (a), the decrease starts with a SNR of 45 dB with a median

0.96 and continues to SNR of dB with a median of 0.097. For LPMs (b), the decrease starts
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with 39 dB with a median of 0.97 and continues to SNR with a median of 0.37. The decrease is

stronger for PMs (a) than LPMs (b). Figure 4.17 shows an example of the white noise effect

for the case of SNR = 40 dB (a) and SNR = 20 dB. Noisy peaks in the track (false negatives)

increase when they are compared to the matched peaks (true positives).
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Figure 4.17: Retrieval representation of a track produced by a loop (vocals 2 of the genre trap,
see Table A.6) and white noise. White noise was added to the query as described in Figure 3.9.
Horizontal axes span the duration range of 0 to 3.68 seconds (2 bars). Black points denote the
matched peaks (true positives). Red points indicate peaks in the track but not in the query
(false positives).White noise
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Figure 4.18: Recall with respect of SNR (dB). White noise was added to the query as described
in Figure 3.9. Horizontal axes span the SNR range of 69 dB to 0 dB. The first value (on the left
side) is always one, because the track corresponds to the replica of the query. Boxes indicate the
intequartiles where the red line inside each box is the median. In (a), the magnitude spectrogram
peak map (PM) was used and in (b) the log-frequency peak map (LPM) was used.

The recall shown in Figure 4.18 indicates how much information survived the noisy recording.

As we can see, there are loops whose features are vulnerable to noisy scenarios (red crosses below
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boxes) and there are also loops with resistant peaks (crosses above boxes). However, in most

loops, the decrease of matched peaks in the query (true positives) starts from SNR of 45 dB

with a median of 0.98 for peak maps (a) and from SNR of 33 dB with a median of 0.984 for

log-frequency spectrogram (b). When SNR is equal to 0 dB, the recall has a median of 0.39 in

(a) and 0.56 in (b). In this case, the recall is above 0.24 in both (a) and (b), which means that at

least 25% of the peak in the query survived the noisy environment. In Figure 4.19 we can see an

example of the decrease in matched peaks. Loop 5 of the genre dance is the query and presents

a decrease of matched peaks (true positives) when the SNR goes from 40 dB (a) to 20 dB (b).

Fr
eq

ue
nc

y
(H

z)

0
Time (seconds)

1.84 3.68

Loop 5 dance

Fr
eq

ue
nc

y
(H

z)

0
Time (seconds)

1.84 3.68

(a) SNR = 40 dB (b) SNR = 20 dB

0

5000

10000

0

5000

10000

Legend:            True Positives. False Negatives.

Figure 4.19: Retrieval representation of a loop query (keys of the genre dance, see Table A.1).
The track consist of white noise added to the query as described in Figure 3.9. Horizontal axes
span the duration range of 0 to 3.68 seconds (2 bars). Black points denote the matched peaks
(true positives). Green points indicate peaks in the query but not in the track (false negatives).

The F-measure in Figure 4.20 gives a notion of how the noise affects the features in both track

and query. There are 8 particular loops which are vulnerable to white noise environments since

they presented F-measures below the minimum of typical values in high SNR values (red crosses).

They can be easily distorted (low recall) and/or they can have a small amount of representative

features (low precision) . PMs have a stronger decrease in matched peaks than LPMs, this is due

to the fact that LPMs emphasize features in a logarithmic scale, thus, noisy peaks are decreased

and the distortion is less powerful.

4.4.1.2 Pub environment

Figures 4.21, 4.22, and 4.23 show the retrieval information precision, recall, F-measure respectively.

Magnitude spectrogram peak maps (PM) were used in (a) whilst log-frequency peak maps (LPM)

were used in (b).

In Figure 4.21, we can see a similar decreasing behavior as in the previous case. The precision

58 Master Thesis, Pedro Solórzano
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Figure 4.20: F-measure with respect of SNR (dB). White noise was added to the query as
described in Figure 3.9. Horizontal axes span the SNR range of 69 dB to 0 dB. The first value
(on the left side) is always one, because the track corresponds to the replica of the query. Boxes
indicate the intequartiles where the red line inside each box is the median. In (a), the magnitude
spectrogram peak map (PM) was used and in (b) the log-frequency peak map (LPM) was used.Pub
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Figure 4.21: Precision with respect of SNR (dB). The audio sound restaurant08.wav (included in
the audio degradation tool box [13]) was added to the query as described in Figure 3.9. Horizontal
axes span the SNR range of 69 dB to 0 dB. The first value (on the left side) is always one,
because the track corresponds to the replica of the query. Boxes indicate the intequartiles where
the red line inside each box is the median. In (a), the magnitude spectrogram peak map (PM)
was used and in (b) the log-frequency peak map (LPM) was used.

results show that the information added by the noise represents a large amount of peaks in the

track. Once the SNR decreases, the region of possible values expands considerably in both cases

(a) and (b). This is due to the fact that this external sound has strong (high amplitude) peaks

even with high SNR, which decreases the precision. In other words, loops that have a small

amount of peaks will obtain a low precision value; in Figure 4.21, they correspond to red crosses

below boxes.

59 Master Thesis, Pedro Solórzano
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Figure 4.22: Recall with respect of SNR (dB). The audio sound restaurant08.wav (included in the
audio degradation tool box [13]) was added to the query as described in Figure 3.9. Horizontal
axes span the SNR range of 69 dB to 0 dB. The first value (on the left side) is always one,
because the track corresponds to the replica of the query. Boxes indicate the intequartiles where
the red line inside each box is the median. In (a), the magnitude spectrogram peak map (PM)
was used and in (b) the log-frequency peak map (LPM) was used.

In the case of recall (Figure 4.22), in both (a) and (b), loops are resistant to the combination

up to SNR of 41 dB. For SNR of 0 dB, the recall in (a) shows a median of 0.43 and a range

of 0.35 to 0.55 for the interquartiles. The recall in (b) shows a median of 0.48% and range of

0.39 to 0.56 for the interquartiles. In this experiment, loops can be recognized under this sound

combination with at least 13% of the peaks in the query. Loops which are easily distorted in the

pub environment sound can be seen as red crosses in high SNR (low intensity of the external

sound).

The F-measure in Figure 4.23 starts to decrease when SNR is 51 dB for PMs (a) and 46 dB for

LPMs (b). In both cases (a) and (b), from SNR 18 dB to 0 dB, the typical values expand a wide

range which decrease toward lower values with minima cases nearly close to zero. When SNR is

0 dB, the median is 0.35 for PMs and 0.38 for LPMs. LPMs have a better performance since the

median is higher and the boxes are smaller than in the case of PM. This is due to the fact that

logarithmic scale in LPMs emphasize components and compact certain frequency bands (related

to the human auditory model). This property helps to compact noisy peaks which decrease

precision (less noisy peaks in the track) and increase recall (less distortion). Figure 4.24 shows

the retrieval representation of a track produced by the loop 12 (guitar of the genre hip-hop)

and the external sound with a SNR of 21 dB. As we can see, the peaks from the log-frequency

spectrogram are more spread along low frequency components and the noisy peaks represent a

smaller amount of peaks in the track when they are compared to peaks in the PM (a).
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Figure 4.23: F-measure with respect of SNR (dB). The audio sound restaurant08.wav (included
in the audio degradation tool box [13]) was added to the query as described in Figure 3.9.
Horizontal axes span the SNR range of 69 dB to 0 dB. The first value (on the left side) is always
one, because the track corresponds to the replica of the query. Boxes indicate the intequartiles
where the red line inside each box is the median. In (a), the magnitude spectrogram peak map
(PM) was used and in (b) the log-frequency peak map (LPM) was used.
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Figure 4.24: Retrieval representation of a track. The track consist of a pub environment added
to the query as described in Figure 3.9. The query is loop 12 (guitar) of the genre hip-hop (see
Table A.4). The SNR is equal to 21 dB. Horizontal axes span the duration range of 0 to 5.32
seconds (2 bars). Black points denote the matched peaks (true positives). Red points indicate
peaks in the track but not in the query (false positives).

4.4.1.3 Vinyl Noise

Figures 4.25, 4.26, and 4.27 show the retrieval information precision, recall, F-measure respectively.

Magnitude spectrogram peak maps (PM) were used in (a) whilst log-frequency peak maps (LPM)

were used in (b).
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Figure 4.25: Precision with respect of SNR (dB). The audio sound old-dusty-vinyl-recording.wav
(included in the audio degradation tool box [13]) was added to the query as described in Figure 3.9.
Horizontal axes span the SNR range of 69 dB to 0 dB. The first value (on the left side) is always
one, because the track corresponds to the replica of the query. Boxes indicate the intequartiles
where the red line inside each box is the median. In (a), the magnitude spectrogram peak map
(PM) was used and in (b) the log-frequency peak map (LPM) was used.

Precision results in Figure 4.25 indicate the presence of noisy peaks in the track for high SNRs.

A strong decrease starts from SNR of 51 dB for PMs and from SNR of 45 dB for LPMs. The

F-measure starts to decrease with a high rate when SNR is 51 dB for PMs and 42 dB for LPMs.

In the case of peak maps (a), when SNR is equal to 0 dB, the median is 0.20 and results can

vary from 0 to 0.42. In the case of LPMs, when SNR is equal to 0 dB, the median is 0.31 and

results can vary from 0.01 to 0.60. Loops which do not have a representative amount of peaks

can be seen as red crosses below boxes in high SNR (low intensity of the external sound).

Figure 4.26 shows the recall results. Loops that are sensitive to this external sound can be seen

as red crosses below boxes. In most cases, the vinyl noise starts affecting the peaks in the query

from a SNR of 49 dB for PMs and LPMs. The variance in the recall is smaller and the drops are

slower for LPMs. For SNR = 0 dB, most of the loops can be identified with at least 15% of the

peaks in the query in both (a) and (b).

As a result of such precision and recall, the F-measure in Figure 4.27 shows that in both cases

(a) and (b), from SNR 21 dB to 0 dB, the typical values expand a wide range which decrease

toward lower values with minimum cases close to zero. LPMs have a better performance since

the median is higher and the variances in the F-measure are smaller than in the case of PM; in

most cases, matched peaks are relevant in both query and track. Figure 4.28 shows a retrieval

representation of a track produced by adding the external sound to the loop 3 (bass) of the genre

hip-hop with a SNR of 21 dB. The retrieval representation of the track and query is shown in (a)

and (b) respectively. The vinyl sound has a representative number of peaks, however, they do

not affect severely the peaks in the query.
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Figure 4.26: Recall with respect of SNR (dB). The audio sound old-dusty-vinyl-recording.wav
(included in the audio degradation tool box [13]) was added to the query as described in Figure 3.9.
Horizontal axes span the SNR range of 69 dB to 0 dB. The first value (on the left side) is always
one, because the track corresponds to the replica of the query. Boxes indicate the intequartiles
where the red line inside each box is the median. In (a), the magnitude spectrogram peak map
(PM) was used and in (b) the log-frequency peak map (LPM) was used.Vinyl
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Figure 4.27: F-measure with respect of SNR (dB). The audio sound old-dusty-vinyl-recording.wav
(included in the audio degradation tool box [13]) was added to the query as described in Figure 3.9.
Horizontal axes span the SNR range of 69 dB to 0 dB. The first value (on the left side) is always
one, because the track corresponds to the replica of the query. Boxes indicate the intequartiles
where the red line inside each box is the median. In (a), the magnitude spectrogram peak map
(PM) was used and in (b) the log-frequency peak map (LPM) was used.

4.5 Time Shift Differences within a STFT window frame

As said in Section 3.5, this experiment consists of comparing different shifted versions of a loop.

Figure 4.29 shows the F-measure results when we try to match peaks in the query to peaks

in the track at the exact time-frequency position. The STFT is increasingly different to those
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Figure 4.28: Retrieval representation of a track and a query. The track consist of vinyl noise
sound added to the query as described in Figure 3.9. The query is loop 3 (bass) of the genre
hip-hop (see Table A.4). The SNR is equal to 21 dB. Horizontal axes span the duration range of
0 to 2 bars. Black points denote the matched peaks (true positives). Red points indicate peaks
in the track but not in the query (false positives). Green points the peaks in the query but not
in the track (false negatives)

computed with shift zero until the hop size is reached. In both (a) and (b), the difference is high

for values close to zero. In the case of shift 1984 (just before the hop size), the F-measure is

close to zero; the median is 0.01.Time Shifts: Fmeasures
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Figure 4.29: F-measure with respect of shift differences (in samples). Horizontal axes span the
SNR range of 0 to 1024 samples. The first value (on the left side) is always one, because the
track corresponds to the replica of the query (shift 0). Boxes indicate the intequartiles where
the red line inside each box is the median. In (a), the magnitude spectrogram peak map (PM)
was used and in (b) the log-frequency peak map (LPM) was used. True positives are defined as
peaks that matched to peaks in the track at the exact time-frequency position.

Figure 4.30 shows the F-measure results when we try to match peaks in the query to peaks in

64 Master Thesis, Pedro Solórzano
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Figure 4.30: F-measure with respect of shift differences (in samples). Horizontal axes span the
SNR range of 0 to 1024 samples. The first value (on the left side) is always one, because the
track corresponds to the replica of the query (shift 0). Boxes indicate the intequartiles where
the red line inside each box is the median. In (a), the magnitude spectrogram peak map (PM)
was used and in (b) the log-frequency peak map (LPM) was used. True positives are defined as
peaks that matched to peaks in the track at the exact time-frequency position, one time frame
on the left, one time frame on the right, one frequency index up, or one frequency index down.

the track at the exact time-frequency position, one time frame to the left, one time frame to the

right, one frequency index up, and one frequency index down. As we can see, if we search for

matches not only at the exact time-frame position but also at neighbor time-frequency indexes

(Figure 4.30), the similarities between shifted versions increase. This is due to the fact that we

consider some shift variance in the matching process. In both (a) and (b), the decrease reaches a

median value close to 0.7 (more than 50% of matched peaks in both query and track) for shift

1024.

As we can notice, shift differences affect the position of peaks because different information is

captured by the windows in the STFT. Figure 4.31 shows the retrieval representation of loop 9

(Fx) of the genre techno (see, Table A.5) where the track is the loop shifted by 1024 samples. In

(a), the matching process is done by comparing peaks at the exact time-frequency position. In

(b) the matching process is done by considering shift differences of peaks. More matched peaks

(true positives) are captured for the case of matching peaks with shift differences; there are more

true positives than false negatives.

In summary, in this chapter, we used a collection of 111 audio samples (loops) and described the

feature extraction configuration used. Then, we applied experiments such as loop combinations,

audio degradation, and shift differences within STFT window frames in order to study the

behavior of features. In each experiment we identify parameters and components in the feature

extraction procedure that have an important influence on the results obtained. Now, in the

following chapter, we discuss the conclusions based on these results and analysis. In addition, we
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Figure 4.31: Retrieval representation the comparison between shift versions of a query. The
query is the loop 9 (Fx) of the genre techno (see, Table A.5). The track consist of the query
shifted by 1024 samples. Horizontal axes span the duration range of 0 to 1.84 seconds (1 bar).
Black points denote the matched peaks (true positives). Red points indicate peaks in the track
but not in the query (false positives). Green points the peaks in the query but not in the track
(false negatives).

mention recommendations and ideas for future works.
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Chapter 5

Conclusions

In this thesis, we studied the parameters and components of a fingerprint-based sample identifi-

cation system in electronic music. The fingerprinting technique is based on peak maps, where

maximum values (above an amplitude of 1) in the spectrogram are chosen as peaks yielding to a

peak map representation. We considered the electronic music scenario in which musical patterns

(short fragments of an musical piece) are repeatedly triggered and may appear superimposed

with other sound sources. We used a collection of 111 EM music loops organized into 6 genres:

dance, deep house, dubstep, hip-hop, techno, and trap. We compared loops with each other

and we matched peaks of a loop query into a track produced by complex combinations, audio

degradation, or time shift differences. The evaluation of the feature performance was made by a

variation of the definition of precision, recall, and F-measure.

Based on the results and analysis in Chapter 4, we demonstrated by using audio sample retrieval

matrices that loops can contain information that is also included in other loops. Furthermore, we

demonstrated that specific combinations of loops can yield to information that is also contained

in other loops which are not present in corresponding mixture.

In complex combinations, the relevance of a loop in a track (in terms of number of peaks) depends

of the number of peaks in the loop query. In the case of loops which have a significant amount of

peaks, their presence in a mixture may tend to slowly decrease (easy audio recognition) while in

the case of a loop with a small amount of peaks, their presence in a combination may sharply

decrease (hard audio recognition). Furthermore, information produced by audio combinations can

severely affect the recognition of loops which contain a small amount of representative peaks since

small changes can represent high variation of information in such loops. In addition, matched

peaks strongly decrease once an audio sample is added and it slowly decrease for combinations of

5 to 10 loops.

Amplitude limitations in the fingerprinting process such as exponential decay and minimum
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amplitude of a peak can help to avoid noisy or irrelevant components of an audio signal. However,

there are loops whose peaks values are close to the amplitude thresholds. Their peaks in

combination with other sounds may be distorted and/or may represent a small amount of peaks

in the mixture, thus, the recognition of such loops can be negatively affected.

Magnitude spectrogram peak maps (PMs) have a stronger decrease in complex combination

when comparing to log-frequency peak maps (LPMs). The logarithmic scale helps to emphasize

certain frequency components (related to the human auditory system), where distortions are less

powerful and there are less noisy peaks.

Time-shift differences within STFT window frames produce changes into the peak maps of an

audio signal. In the case of matching peaks at the exact time-frequency index, the STFT of an

audio signal is increasingly different to the original audio (audio without time shift) reaching a

minimum value of matched peaks close to zero just before the hop size. In the case of matching

peaks at the exact time-frequency index and neighbor time-frequency indexes, the similarities

slowly decrease where a minimum is reached at the shift of half of the hop size, however, this

minimum in most cases indicate less than 50% of different peaks.

The behavior of the features in addition to the identified parameters and components of a

fingerprint-based sample identification system can lead to interesting approaching in music struc-

ture analysis not only in electronic music but also in other genres in which sample identification

is used. We recommend to do experiments of volume changes proposed in Section 3.4.2.2 using a

realistic larger data-set. In our initial experiments, we showed that peaks are not chosen due

to the amplitude limitations. This limitations can affect particular loops which are sensitive to

amplitude variations and/or with a small amount of peaks, thus, recognition can be hard in cases

of having tracks or queries with low volume. Experiments on a realistic larger data-set can help to

identify such types of loops and to obtain a better understanding of the behavior of the features

under this scenario. Furthermore, we recommend to elaborate experiments of audio matching

with shift-queries or with different query versions. In our initial experiments (Section 3.6), we

showed that using at least 2 time-shifted queries, the matching procedure can discriminate

irrelevant values and obtain better matching performance. Therefore, experiments on a realistic

larger data-set can help to conclude to general behaviors of the matching performance and

identify particular cases.

Experiments with adding effects to a larger-scale data set may lead to interesting conclusions

about the behavior of the features in electronic music. In our initial experiments (Section 3.4.2.1),

we showed that reverberation effects and delay can affect the recognition of an audio sample.

These audio effects add information in a track that can reduce the relevance of a loop in terms

of the peaks, and/or can make some peaks to not appear in the peak map of the track (less

matched peaks).
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Appendix A

Data-Set Description

The following tables give a general description of each loop of the data-set used in Chapter 4. A

total of 111 loops were colleted from the data-base of ”MAGIX Music Maker Premium” software

[12]. Each table shows a list of loops corresponding to the electronic music genres: dance, deep

house, dubstep, hip-hop, techno and trap.

Audio file name Instrumental BPM Fs Size Duration Bar
family (samples) (seconds)

Patrick Bass A 1.ogg Bass 130 44100 162830 3.692 2
Patrick Beat A.ogg Drums 130 44100 162830 3.692 2

Lindstroem Fx 1.ogg Fx 130 44100 325662 7.385 4
Straight On 1.ogg Guitar 130 44100 651324 14.769 8
Maya Piano 1.ogg Keys 130 44100 162832 3.692 2
Pierre Pad 1.ogg Pad 130 44100 325662 7.385 4
Percusser A.ogg Percussion 130 44100 325662 7.385 4

Mats Synth B 1.ogg Sequence 130 44100 162832 3.692 2
El Acid A 1.ogg Synth 130 44100 162832 3.692 2
Be There 1.ogg Vocals 130 44100 651324 14.769 8

Table A.1: Audio loops from the genre dance.
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A. DATA-SET DESCRIPTION

Audio file name Instrumental BPM Fs Size Duration Bar
family (samples) (seconds)

Jupiter Bass 1.ogg Bass 120 44100 176400 4.000 2
Wild Trumpet 1.ogg Brass 120 44100 352800 8.000 4

Basic Beat A.ogg Drums 120 44100 176400 4.000 2
Free Beat A.ogg Drums 120 44100 176400 4.000 2

Jupiter Beat A.ogg Drums 120 44100 176400 4.000 2
Polar Beat E.ogg Drums 120 44100 176400 4.000 2
Polar Scape 1.ogg Fx 120 44100 176400 4.000 2

Old Fairytale 1.ogg Pad 120 44100 176400 4.000 2
Basic Congas.ogg Percussion 120 44100 176400 4.000 2

Moonchild Clave.ogg Percussion 120 44100 88200 2.000 1
Origin Perc 1.ogg Percussion 120 44100 352800 8.000 4

Jupiter Sequence 1.ogg Sequence 120 44100 176400 4.000 2
Jupiter Rhodes 1.ogg Special 120 44100 176400 4.000 2

Polar Lead 1.ogg Special 120 44100 176400 4.000 2
Solar Chord 1.ogg Special 120 44100 176400 4.000 2

Free Orchester 1.ogg Strings 120 44100 352800 8.000 4
Warm Sine 1.ogg Synth 120 44100 176400 4.000 2

Warm Voice A 1.ogg Vocals 120 44100 176400 4.000 2
Wild Vox 1.ogg Vocals 120 44100 176400 4.000 2

Table A.2: Audio loops from the genre deep house.

Audio file name Instrumental BPM Fs Size Duration Bar
family (samples) (seconds)

KomplexWobble 1.ogg Bass 135 44100 313600 7.111 4
Sub Bass 1.ogg Bass 135 44100 313600 7.111 4
Clean Set A.ogg Drums 135 44100 627200 14.222 8
Cutwater A.ogg Drums 135 44100 627200 14.222 8

TimeKeepsTicking A.ogg Drums 135 44100 627200 14.222 8
Clean UpLifter.ogg Fx 135 44100 313600 7.111 4

CoinFX.ogg Fx 135 44100 313600 7.111 4
Noise Uplifter FX.ogg Fx 135 44100 313600 7.111 4

TalkingPiano 1.ogg Keys 135 44100 313600 7.111 4
Aprocalyptic Break 1.ogg Lead 135 44100 627200 14.222 8
MelodyLead Saw 1.ogg Lead 135 44100 313600 7.111 4
MysticDgtlChoir 1.ogg Pad 135 44100 313600 7.111 4
VectorFM Pad 1.ogg Pad 135 44100 313600 7.111 4
CosmosTwoArp 1.ogg Sequence 135 44100 313600 7.111 4

DarkAnlgPowerArp 1.ogg Sequence 135 44100 313600 7.111 4
OldSpaceArp 1.ogg Sequence 135 44100 313600 7.111 4

Impact Wobble 1.ogg Synth 135 44100 313600 7.111 4
PartyDropTri 1.ogg Synth 135 44100 313600 7.111 4

YahyahWobble 1.ogg Synth 135 44100 313600 7.111 4

Table A.3: Audio loops from the genre dubstep.
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A. DATA-SET DESCRIPTION

Audio file name Instrumental BPM Fs Size Duration Bar
family (samples) (seconds)

Dizzy 1.ogg Bass 90 44100 235200 5.333 2
Jungle Time 1.ogg Bass 90 44100 235200 5.333 2

Tip Bass 1.ogg Bass 90 44100 235200 5.333 2
French Horn 1.ogg Brass 90 44100 235200 5.333 2

Big Bang A.ogg Drums 90 44100 235200 5.333 2
Double Kit A.ogg Drums 90 44100 470400 10.667 4
Finger Snap A.ogg Drums 90 44100 235200 5.333 2

Hisser A.ogg Drums 90 44100 235200 5.333 2
Play Kit A.ogg Drums 90 44100 235200 5.333 2

Effect K.ogg Fx 90 44100 235200 5.333 2
Scratch A.ogg Fx 90 44100 235200 5.333 2
Hot Pick 1.ogg Guitar 90 44100 235202 5.333 2

Strange Sound 1.ogg Keys 90 44100 235200 5.333 2
5th Pad 1.ogg Pad 90 44100 235200 5.333 2
Delayed 1.ogg Sequence 90 44100 235200 5.333 2

Cello 1.ogg Strings 90 44100 235200 5.333 2
Tip Cello 1.ogg Strings 90 44100 235200 5.333 2
Wow Stab 1.ogg Synth 90 44100 235200 5.333 2
Attraction 1.ogg Vocals 90 44100 470402 10.667 4

Adlib Yeah B.ogg Vocals Raps 90 44100 117602 2.667 1

Table A.4: Audio loops from the genre hip-hop.
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A. DATA-SET DESCRIPTION

Audio file name Instrumental BPM Fs Size Duration Bar
family (samples) (seconds)

Astral Bass 1.ogg Bass 130 44100 162832 3.692 2
Dark Bass 1.ogg Bass 130 44100 162832 3.692 2

Haunted Bass 1.ogg Bass 130 44100 81416 1.846 1
Broken Beat A.ogg Drums 130 44100 162830 3.692 2
Broken Beat B.ogg Drums 130 44100 162830 3.692 2
Dark Beat A.ogg Drums 130 44100 162832 3.692 2
Dark Beat B.ogg Drums 130 44100 162832 3.692 2
Space Beat A.ogg Drums 130 44100 162832 3.692 2

Space Sharp Riser 3.ogg Fx 130 44100 325662 7.385 4
Space Organ 1.ogg Keys 130 44100 325662 7.385 4

Haunted Bells 1.ogg Mallet 130 44100 162832 3.692 2
Haunted Pad 1.ogg Pad 130 44100 162830 3.692 2

Dark Groove With Sidechain.ogg Percussion 130 44100 162832 3.692 2
Lunar Hihats.ogg Percussion 130 44100 81416 1.846 1

Magnetic Rythm.ogg Percussion 130 44100 162832 3.692 2
Space Clicker.ogg Percussion 130 44100 162832 3.692 2

Astral Sequence 1.ogg Sequence 130 44100 162832 3.692 2
Broken Cycle 1.ogg Sequence 130 44100 162832 3.692 2
Future Toms 1.ogg Sequence 130 44100 81416 1.846 1

Haunted Groove 1.ogg Sequence 130 44100 81416 1.846 1
Haunted Phaser 1.ogg Sequence 130 44100 162832 3.692 2
Obscure Dancer 1.ogg Sequence 130 44100 81416 1.846 1

Space Ping 1.ogg Sequence 130 44100 162832 3.692 2

Table A.5: Audio loops from the genre techno.
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A. DATA-SET DESCRIPTION

Audio file name Instrumental BPM Fs Size Duration Bar
family (samples) (seconds)

Klong Oxi A 1.ogg Bass 75 44100 282240 6.400 2
Plucky Deep 1.ogg Bass 75 44100 282240 6.400 2

Yai Duo 1.ogg Bass 75 44100 282240 6.400 2
Plucky Tro En 1.ogg Brass 75 44100 564480 12.800 4
Cheeze Combi C.ogg Drums 75 44100 282240 6.400 2
Cheeze Combi E.ogg Drums 75 44100 282240 6.400 2
Final Chapter A.ogg Drums 75 44100 282240 6.400 2

Yai Lizard D.ogg Drums 75 44100 282240 6.400 2
Cheeze Down A.ogg Fx 75 44100 282240 6.400 2
Cheeze Single 1.ogg Fx 75 44100 282240 6.400 2
Freaky UpUp 1.ogg Fx 75 44100 564480 12.800 4
Scream Deep 1.ogg Pad 75 44100 282240 6.400 2
Scream Step 1.ogg Sequence 75 44100 141120 3.200 1
Yai Spoken 1.ogg Sequence 75 44100 282240 6.400 2
Freaky Uni 1.ogg Synth 75 44100 141120 3.200 1

Dip Fx A.ogg Vocals 75 44100 282240 6.400 2
Dip Fx B.ogg Vocals 75 44100 564480 12.800 4

Dip Squad Hook A.ogg Vocals 75 44100 564480 12.800 4
Dip Squad Verse 1 A.ogg Vocals 75 44100 564480 12.800 4

Faded Fx A.ogg Vocals 75 44100 564480 12.800 4

Table A.6: Audio loops from the genre trap.
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https://www.ableton.com/
http://www.attackmagazine.com/
http://www.dolmetsch.com/musictheorydefs.htm
http://freesound.org/
https://www.audiolabs-erlangen.de/resources/MIR/2016-ISMIR-EMLoop
https://www.audiolabs-erlangen.de/resources/MIR/2016-ISMIR-EMLoop
https://www.magix.com, Retrieved July 2016
https://www.magix.com, Retrieved July 2016


BIBLIOGRAPHY

[14] M. Müller, Fundamentals of Music Processing – Audio, Analysis, Algorithms, Applications, Springer

Verlag, 2015.

[15] A. V. Oppenheim, A. S. Willsky, and H. Nawab, Signals and Systems, Prentice Hall, 1996.

[16] Propellerhead Software, Reason. https://www.propellerheads.se/, Retrieved August 2016,

2016.

[17] B. Rocha, N. Bogaards, and A. Honingh, Segmentation and timbre similarity in electronic

dance music, in Proceedings of the Sound and Music Computing Conference (SMC), Stockholm,

Sweden, 2013, pp. 754–761.

[18] R. Snoman, Dance Music Manual: Tools, Toys, and Techniques, Taylor & Francis, 2013.
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