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ABSTRACT

Abstract

Music signals are complex. When musicians play together, their instruments’ sounds superimpose

and form a single complex sound mixture. Furthermore, even the sound of a single instrument

may already comprise sound components of harmonic, percussive, noise-like, and transient

nature, among others. The complexity of music signal processing tasks such as time-scale

modification—the task of stretching or compressing the duration of a music signal—or music

source separation—the task of separating a music recording into signals that correspond to the

individual instruments—is therefore often directly derived from the complexity of music signals

themselves.

In this thesis, our goal is to explore novel ways of approaching music signal processing tasks. One

of our core ideas is to reduce a task’s complexity by decomposing a given music signal into a set

of two or more mid-level components and then process these components individually. Depending

on the audio decomposition technique, a mid-level component may reflect certain aspects of the

music signal, such as its harmonic or percussive sounds. This explicit interpretation often allows

us to apply more specialized methods for processing the mid-level components. In a last step,

the processed component signals are recombined to form a global result.

As part of our contributions, we propose various novel audio decomposition techniques for

splitting a music signal into mid-level components. For example, we present a method for

decomposing a signal into three components that contain the signal’s harmonic-, percussive-, and

noise-like sounds, respectively. Furthermore, we apply the general strategy described previously

to approach different tasks in the fields of digital signal processing and music information retrieval.

In particular, we propose novel procedures for time-scale modification, singing voice separation,

vibrato analysis, and audio mosaicing. Built upon these methods, we additionally present various

prototype user interfaces and tools for analyzing, modifying, editing, and synthesizing music

signals.
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ZUSAMMENFASSUNG

Zusammenfassung

Musiksignale sind typischerweise hoch komplexe Klanggemische, die sich aus der Überlagerung

von einzelnen, miteinander interagierenden Instrumentalstimmen ergeben. Sogar der Klang

eines einzelnen Instruments kann sich bereits aus vielen unterschiedlichen Klangkomponenten

zusammensetzen, zum Beispiel aus harmonischen, perkussiven, rauschartigen und transienten

Anteilen. Diese Komplexität macht die automatisierte Verarbeitung von Musiksignalen, etwa für

Aufgabenstellungen wie Time-Stretching (Stauchung oder Streckung der Länge einer Musikauf-

nahme) oder Quellentrennung (Zerlegung einer Musikaufnahme in Anteile die zu den einzelnen

Instrumentalstimmen korrespondieren), zu einem äußerst schwierigen Problem.

Eine Kernidee dieser Arbeit besteht darin, die Verarbeitung von komplexen Musikaufnahmen

zu erleichtern, indem man die Aufnahme zunächst in zwei oder mehrere mid-level Klangkompo-

nenten zerlegt und diese Teilsignale anschließend separat weiterverarbeitet. Da die extrahierten

Komponenten gewisse, von der Zerlegungstechnik vorgegebene Eigenschaften haben, lassen sich

für deren Verarbeitung oft spezialisierte Techniken verwenden. In einem letzten Schritt werden

die verarbeiteten Komponenten wieder zusammengeführt.

In dieser Arbeit stellen wir zunächst verschiedene neuartige Zerlegungstechniken für Audiodaten

vor. Eines dieser Verfahren zerlegt beispielsweise eine Musikaufnahme in drei mid-level Kom-

ponenten, die zu den harmonischen, den perkussiven und den rauschartigen Klanganteilen der

Aufnahme korrespondieren. Diese und weitere Zerlegungstechniken werden dann verwendet um

neuartige Verfahren für Aufgabenstellungen aus den Bereichen der digitalen Audiosignalverar-

beitung und des Music Information Retrievals zu entwickeln, beispielsweise zum Time-Stretching,

zur Abtrennung der Singstimme aus polyphonen Musikaufnahmen, zur Analyse von Vibrato und

für das Audio Mosaicing. Weiterhin stellen wir mehrere prototypische Benutzerschnittstellen

und Werkzeuge zur Analyse, Modifikation, Editierung und Synthese von Musikaufnahmen vor.
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Chapter 1

Introduction

The digital revolution has strongly influenced the way we consume and interact with music.

Digitized music recordings make it possible to enjoy music everywhere and anytime. We can store

large music collections on our mobile playing devices or access them via streaming services, while

music production software turns our home computers into fully functional recording studios.

The step from analog to digital music has also opened up novel ways of music research, leading to

the advent of new scientific disciplines. While early computer-based studies on music were mainly

focused on music in symbolic form—such as MIDI files—the increasing availability of digital

music recordings as well as the leap in computational power made it possible to delve deeper

into music signal processing—digital signal processing with a focus on music recordings [146]. In

the year 2000, the International Society for Music Information Retrieval (ISMIR) was formed, a

community dedicated to the research of computer-based analysis, processing, and retrieval topics
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CHAPTER 1. INTRODUCTION

in the context of music [32]. Since then, this field has blossomed into a variety of sub-fields, each

dealing with a wide range of research questions.

An example for such a research direction is time-scale modification (TSM) [29] of music signals.

Here, the goal is to stretch or compress the duration of a music signal without altering the

signal’s pitch. Methods for TSM are frequently used by DJs and music producers, for example to

synchronize the tempi of two recordings in order to create a music remix. Since music signals may

be very complex—comprising harmonic, percussive, and transient components, among others—

preserving the entirety of a signal’s qualities in a time-scale modified version is a non-trivial

task. Stretching the harmonic sound of a violin usually requires a different TSM approach than

modifying a recording of percussive castanets. To this end, there is no single TSM procedure

that can cope with all kinds of music signals equally well.

Another example is music source separation [65]. Music recordings are usually complex superpo-

sitions of sound sources. For example, a recording of a rock band may consist of singing voice,

guitar, bass, and drums. When the musicians play together, the sounds of their instruments

superimpose and form a single complex music signal. Given this signal, one goal of source

separation is to derive source signals that correspond to the individual instruments such that

one obtains a singing voice, a guitar, a bass, and a drum signal. Ideally, each of the source

signals then sounds as if the respective instrument were being played isolatedly. In general,

source separation can be considered an extremely difficult task. This is especially the case when

singing voice is involved, due to its highly complex nature. Therefore, music source separation is

a problem far from being solved.

As indicated by the two examples described above, the complexity of music processing tasks

often stems from the complexity of the music signals themselves. A common method to

approach this kind of complexity is to apply time-frequency analysis tools, such as the short-

time Fourier transform [158] or the wavelet transform [106]. These tools can be interpreted as

the decomposition of a given music signal into a set of component signals, each of them less

complex than the music signal as a whole. For example, in the case of Fourier analysis, the

components are sinusoidal signals of different frequency, amplitude, and phase. However, despite

the individual component signals’ reduced complexity, it is seldom obvious how to utilize this

kind of decomposition to approach a given processing task, since the components typically lack a

musically meaningful interpretation.

Instead, a novel approach that we explore in this thesis is to use audio decomposition techniques

in order to split a given music signal into a small set of mid-level components with an explicit

semantic interpretation. The core idea is that the task at hand is easier to perform on each

of the mid-level components than on the original signal. This is the case since a mid-level

component’s explicit interpretation may serve as prior knowledge for the subsequent signal

processing step—thus allowing the use of more specialized processing methods. Consider TSM
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1.1. STRUCTURE OF THIS THESIS

as an example. As described above, stretching harmonic sound events requires conceptually

different algorithmic approaches than stretching percussive ones—rendering the modification of

a music signal consisting of both harmonic and percussive sound components a difficult task.

However, decomposing the music signal into two mid-level components—a harmonic component

and a percussive component—reduces the problem’s complexity. Knowing a priori that the

harmonic component contains exclusively harmonic sounds allows us to apply a specialized TSM

procedure that preserves the component’s characteristics. Similarly, the percussive component

can be modified with a different specialized TSM procedure. In the last step, the two modified

component signals are combined to form a global result.

Therefore, the main questions that we approach in this thesis are: Given a signal processing task,

is it possible to decompose a music signal into two or more mid-level component signals such

that the desired task is easier to perform on the components than on the original? What are

suitable audio decomposition techniques for the given task? How can the processed component

signals be combined to form a global result? And, does the decomposition process itself yield

deeper insights into the task at hand?

1.1 Structure of this Thesis

This thesis is structured in six main chapters.

We start in Chapter 2 by reviewing fundamentals of music signal processing. Following [146], we

first introduce various music representations. In particular, we embed music signals, the core

subject of this thesis, in a framework that allows us to define subsequent processing techniques

in a mathematically rigorous way. We proceed with reviewing the famous short-time Fourier

transform—one of the most important tools in music signal processing. Furthermore, we discuss

various feature representations for music signals such as log-frequency spectrograms, chromagrams,

and novelty curves.

In Chapter 3 we introduce novel audio decomposition techniques. In recent years, methods to

decompose an audio signal into a harmonic and a percussive component have received a lot of

interest and are frequently applied as a processing step in a variety of scenarios. One problem is

that the computed components are almost never of purely harmonic or percussive nature, but

also contain noise-like sounds that are neither clearly harmonic nor percussive. Furthermore,

depending on the parameter settings, one often can observe a leakage of harmonic sounds into

the percussive component and vice versa. In this chapter, we present two extensions to a

state-of-the-art harmonic-percussive separation procedure to target these problems. First, we

introduce a separation factor parameter into the decomposition process that allows for tightening

separation results and forcing the components to be clearly harmonic or percussive. As a second

5 PhD Thesis, Jonathan Driedger



CHAPTER 1. INTRODUCTION

contribution, inspired by the classical sines+transients+noise (STN) audio model [133], this novel

concept is exploited to add a third residual component to the decomposition which captures the

sounds that lie in between the clearly harmonic and percussive sounds of the audio signal.

Chapter 4 is dedicated to time-scale modification (TSM)—the task of stretching or compressing

the time-scale of an audio signal without changing its pitch. In digital music production, TSM has

become an indispensable tool, which is nowadays integrated in a wide range of music production

software. A major problem in TSM of music signals is that many approaches degrade the

perceptual quality of percussive transients. To prevent this degradation, some TSM procedures

try to explicitly identify transients in the input signal and to handle them in a special way.

However, such approaches are problematic for two reasons. First, errors in the transient detection

have an immediate influence on the final TSM result and, secondly, a perceptually transparent

preservation of transients is by far not a trivial task. However, there exist methods that can

preserve the transient nature of signals without an explicit transient detection, but only in

very limited scenarios. Our contributions in this chapter are twofold. First, we aim to foster a

better understanding of the capabilities and limitations of several conceptually different TSM

approaches by reviewing fundamental TSM methods. Second, we propose two novel TSM

procedures that improve over the fundamental methods by combining different TSM approaches

with decomposition techniques as introduced in Chapter 3. This strategy allows us to generalize

the aforementioned procedures with implicit transient handling to arbitrary TSM scenarios.

Next, in Chapter 5, we deal with the task of singing voice extraction from music recordings.

This source separation problem has received increasing research interest in recent years. Many

proposed decomposition techniques are based on one of the following two strategies. The first

approach is to directly decompose a given music recording into one component for the singing

voice and one for the accompaniment by exploiting knowledge about specific characteristics of

singing voice. Procedures following the second approach disassemble the recording into a large

set of fine-grained components, which are classified as either singing voice or accompaniment,

and are reassembled afterwards to yield the desired source estimates. In this chapter, we propose

a novel approach that combines the strengths of both strategies. We first apply different audio

decomposition techniques in a cascaded fashion to disassemble the music recording into a set

of mid-level components. This decomposition is fine enough to model various characteristics of

singing voice, but coarse enough to keep an explicit semantic meaning of the components. These

properties allow us to directly reassemble the singing voice and the accompaniment from the

components. Our objective and subjective evaluations show that this strategy can compete with

state-of-the-art singing voice separation techniques and yields perceptually appealing results.

In Chapter 6, we explore novel ways of parameterizing signal components in music recordings.

In this chapter’s first part, we introduce a framework for parameterizing a music recording with

respect to note events as they are specified in a given musical score of that recording. This

6



1.1. STRUCTURE OF THIS THESIS

parametrization is then used to decompose the recording into note-wise audio events which

serve as elementary building blocks. In particular, we introduce an interface that employs the

additional score information to provide a natural way for a user to interact with these audio

events. By simply selecting arbitrary note groups within the score, a user can access, modify, or

analyze corresponding events in the music recording. In this way, our framework not only opens

up new ways for audio editing applications, but also serves as a valuable tool for evaluating and

better understanding the results of source separation procedures.

In the second part of Chapter 6, we aim to parameterize vibrato—a musical voice’s periodic

frequency modulation—in complex music signals. A common strategy to analyze vibrato is to

proceed in a two-step fashion. First, a fundamental frequency (F0) trajectory for the musical

voice that is likely to exhibit vibrato is estimated. In a second step, the trajectory is then

analyzed with respect to periodic frequency modulations. As a major drawback, however, such

a method cannot recover from errors made in the inherently difficult first step, which severely

limits the performance during the second step. To this end, we present a novel vibrato analysis

approach that avoids the first error-prone F0-estimation step. Our core idea is to perform

the analysis directly on a signal’s spectrogram representation where vibrato is evident in the

form of characteristic spectro-temporal patterns. We detect and parameterize these patterns by

locally comparing the spectrogram with a predefined set of vibrato templates. Our systematic

experiments indicate that this approach is more robust than F0-based strategies.

Finally, in Chapter 7, we discuss our contributions to the field of audio mosaicing. Given a

target and a source recording, the goal of audio mosaicing is to generate a mosaic recording

that conveys musical aspects—like melody and rhythm—of the target, using sound components

taken from the source. In this chapter, we propose a novel approach for automatically generating

audio mosaics with the objective to preserve the source’s timbre in the mosaic. Inspired by audio

decomposition techniques based on non-negative matrix factorization (NMF), our idea is to use

update rules to learn an activation matrix that, when multiplied with the spectrogram of the

source recording, resembles the spectrogram of the target recording. However, when applying

the original NMF procedure, the resulting mosaic may not adequately reflect the source’s timbre.

As our main technical contribution in this chapter, we propose an extended set of update rules

for the iterative learning procedure that supports the development of sparse diagonal structures

in the activation matrix. The learning procedure therefore tries to balance two conflicting goals:

On the one hand, the sparse diagonal structures better retain the source’s timbral characteristics

in the resulting mosaic. On the other hand, the procedure still aims to approximate the target’s

spectrogram as well as possible.
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1.2 Contributions

The main contributions of this thesis can be summarized as follows.

• Two novel techniques for decomposing an audio recording into mid-level components that

correspond to harmonic sounds, percussive sounds, and sounds that are of neither harmonic

nor percussive nature (Section 3.3.1 and Section 3.3.3).

• A detailed review of time-scale modification of music signals, including illustrative descrip-

tions of the most important fundamental TSM procedures (Section 4.1).

• Two novel TSM procedures that are based on the combination of different TSM approaches

with harmonic-percussive audio decomposition techniques (Section 4.2 and Section 4.3).

• A novel approach for singing voice extraction from music signals based on a cascade of

different audio decomposition techniques (Chapter 5).

• An extension to a score-informed audio parametrization technique that allows for the

decomposition of music recordings into note-wise audio events with applications to audio

editing (Section 6.1).

• A template-based method for the detection and parametrization of vibrato in polyphonic

music recordings (Section 6.2).

• A novel set of update rules for non-negative matrix factorization (NMF) that supports the

development of sparse diagonal structures in activation matrices. These structures have

shown to be beneficial in the context of NMF-based audio mosaicing (Chapter 7).

• The TSM toolbox, a MATLAB toolbox that includes implementations of various TSM

procedures, example applications, and a dataset for the evaluation of TSM methods

(Appendix A).

• Three different MATLAB user interfaces. One for the interactive estimation of fundamental

frequency trajectories in complex music recordings, one for the note-wise decomposition,

analysis and editing of piano recordings, and one for the editing of singing voice in complex

music recordings (Appendix B.1, Appendix B.2, and Appendix B.3).

1.3 Main Publications

The main contributions of this thesis are based on the following publications, which appeared

in conference proceedings and journal articles in the field of audio signal processing and music

information retrieval.
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Chapter 2

Fundamentals of Music Signal

Processing

In this chapter, we introduce notions, transforms, and feature representations that will be used

throughout this thesis. Rather than giving all technical details, our goal is to present them in an

illustrative way while fixing some mathematical notation. For a more elaborate discussion of these

topics we refer to [146]. We start with introducing three different music representations, namely

audio signals (Section 2.1.1), sheet music (Section 2.1.2), and the symbolic MIDI representation

(Section 2.1.3). Afterwards, we review the famous Fourier transform—a tool of fundamental

importance for music signal processing—as well as its short-time formulation (Section 2.2). We

then proceed with discussing various feature representations of music signals: the pitch-based

log-frequency spectrogram and chroma features (Section 2.3), the refined log-frequency spectrogram

and salience spectrogram (Section 2.4), and finally novelty curves (Section 2.5).
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Figure 2.1: Excerpt of a recording of Franz Schubert’s “Gute Nacht”. The signal is sampled at a sampling rate
of Fs = 22050 Hz. (a): The signal plotted on a time axis given in seconds. (b): A short excerpt of the signal,
plotted on a time axis given in samples.

2.1 Music Representations

2.1.1 Audio Signals

A music signal can be seen as an encoding of the time-varying air pressure deviations that we,

ultimately, can hear as sound. Following [146, Section 2.2.1], we define a continuous-time (CT)

signal or analog signal to be a function f : R → R, that assigns an amplitude value f(t) ∈ R
to each point in time t ∈ R. This definition makes it possible to reflect infinitesimally small

changes in both the amplitude and the time and therefore allows for representing arbitrary sounds.

However, when using digital technology, only a finite number of parameters can be stored and

processed. To this end, analog signals need to be converted into finite representations—a process

commonly referred to as digitization. One step that is often applied in an analog-to-digital

conversion is known as equidistant sampling. Given an analog signal f : R→ R and a positive

real number T > 0, one defines a function x : Z→ R by

x(r) = f(r · T ) (2.1)

for r ∈ Z. Since x is only defined on a discrete set of points in time, it is also referred to as

discrete-time (DT) signal. The value x(r) for some sample index r ∈ Z is called a sample taken

at time t = r · T of the original analog signal f . This procedure is also known as T -sampling,
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where the number T is referred to as the sampling period. Its inverse

Fs = 1/T (2.2)

is also called the DT-signal’s sampling rate that specifies the number of samples per second

and is measured in Hertz (Hz). Figure 2.1 shows an example of a DT-signal, visualized as

a waveform (a time-air pressure plot). Here, we see an excerpt from a recording of Franz

Schubert’s “Gute Nacht”, a piece from the famous Winterreise song cycle for singing voice and

piano. Figure 2.1a comprises nine seconds of audio material. Since the sampling rate of this

DT-signal is Fs = 22050 Hertz, resulting in 198450 samples overall, it is not possible to see

individual samples at this scale. Figure 2.1b shows a magnified excerpt of 0.0045 seconds from

the waveform (100 samples) that is plotted on a sample-based time axis.

Note that the above definition still does not allow for storing a DT-signal with a finite set of

parameters due to two reasons: first, the amplitude of a DT-signal is still defined to be in R.

Since it is not possible to store an arbitrary real number with finite memory, a DT-signal’s range

is usually restricted by quantization for storage, see [146, Section 2.2.2.2]. However, we omit this

step at this point for the sake of simplicity. Second, in the above definition, a DT-signal x has an

infinite length (it is defined on Z). For a digital music recording, one only has a finite number of

samples, say x(0), x(1), . . . , x(L− 1), where L ∈ N is the recording’s length. To avoid boundary

considerations, we typically set x(r) = 0 for r ∈ Z\ [0 : L−1] where [0 : L−1] = {0, 1, . . . , L−1},
thus resulting in a signal x : Z→ R.

As a final remark, note that the term “DT-signal” does, in general, not imply any relation to

music or even to audio. Focusing on music signal processing, we will therefore often use terms

like “audio signal”, “music signal”, or “music recording” instead of “DT-signal” to make the

signal’s nature more explicit.

2.1.2 Sheet Music

A music recording captures a specific performance of a piece of music. In contrast, sheet music,

also referred to as musical score, describes the musical work on a more abstract level. Loosely

speaking, the musical score is an instruction for a musician that tells him or her what to play and

how to play it. Figure 2.2 depicts an excerpt of the sheet music, given in Western music notation,

of our Winterreise example. The score is segmented into three staffs that run horizontally.

The first staff is related to the singing voice. In addition to note symbols ( ˇ “( , ˇ “
====̌ “====) and rests ( > , ? ) it

also shows the lyrics that should be sung by the singer. The vertical positions of the notes’ heads

with respect to the staff’s five lines indicate the pitches of the tones to be sung by the singer,

while different note symbols and ornaments encode the notes’ durations, specified in musical
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Figure 2.2: Excerpt of the sheet music for Franz Schubert’s “Gute Nacht” [188] (measures six to ten).

time (given in beats or measures). In Western music, pitches are typically specified with respect

to the equal-tempered scale. Here, one octave (the pitch interval between two tones where one

tone’s frequency is half or double the frequency of the other) is divided into twelve semitones

that are denoted by a chroma C, C#, D,. . .,B in combination with a number that specifies the

octave (for a detailed discussion on cognitive aspects of musical pitch, we refer to [122]). The

first note of the singing voice is an eighth note F4, being half a beat long, followed by the eighth

notes E4, D4, A3, and F3 (marked in red). Notes of other durations are, for example, the half

note ˘ “, having a duration of two beats, or the quarter note with a duration of one beat.

The second and third staff specify what should be played by the piano. Here, note symbols are

stacked on top of each other, indicating that the respective notes should be played simultaneously

by the pianist. The notes are distributed over two staffs to loosely indicate which ones should be

played by the piano player’s left and right hand, respectively. We also see additional performance

instructions like pp, which stands for pianissimo and instructs the musician to play “very softly”.

Unlike music recordings where information about notes that are played by musicians or the

lyrics that are sung by the singer are implicitly encoded in the recording’s waveform, sheet music

specifies this kind of information explicitly. This explicit information can be very valuable in

the context of music signal processing since it can be used to guide the processing of the audio

material in various applications. However, sheet music is typically not computer-readable and

furthermore lacks a connection between the musical time specified in the score (given in beats

and measures) and the physical time of a music recording (given in seconds or sample indices).

For further details about sheet music we refer to [146, Section 1.1].

2.1.3 MIDI Representation

Symbolic music representations, such as the Musical Instrument Digital Interface (MIDI) standard,

bridge the gap between the worlds of music recordings and sheet music. MIDI is a digital protocol

that is commonly used to control electronic music instruments [107, 192, 205]. The format allows
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Figure 2.3: Excerpt of a MIDI representation of Franz Schubert’s “Gute Nacht”. Individual notes are represented
by rectangles. The singing voice’s track is indicated in red. (a): Plotted on a physical time axis. (b): Plotted on
a musical time axis.

to sequence large amounts of control parameters and to store them in so called MIDI files. In a

MIDI file, the control parameters are grouped in tracks that commonly correspond to the different

voices of a musical piece. Besides other information, each track encodes the individual notes’

pitches as well as their on- and offset times. Figure 2.3a shows a time-pitch plot, sometimes also

referred to as a piano roll representation, of our running example’s MIDI file. Notes are indicated

by rectangles where a rectangle’s vertical position, horizontal localization, and length encode the

note’s pitch, onset time, and duration, respectively. Furthermore, the different musical voices are

color-coded. Here, red rectangles correspond to the singing voice and black rectangles to the

piano. This example illustrates that a MIDI file may deliver similar information as a musical

score.

In MIDI, a pitch is encoded by a number p ∈ [0 : 127], also called a MIDI pitch, that corresponds

to the physical frequency

Fpitch(p) = 2(p−69)/12 · 440 , (2.3)

given in Hertz. This assignment reflects the equal-tempered scale as introduced in the previous

section. A note’s on- and offset may be specified both in musical as well as in physical units.
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Figure 2.4: Signal representations. (a): Waveform. (b): Magnitude Fourier spectrum. (c): Spectrogram. The
fundamental frequency of the singer’s first note is indicated in red while its overtones are marked in blue.

This is shown in Figure 2.3 where the MIDI file is once visualized on a time axis (Figure 2.3a)

and once on an axis (Figure 2.3b). This feature of MIDI is particularly interesting in the context

of music signal processing since MIDI can therefore link the abstract world of sheet music with

the concrete world of music recordings. To this end, we commonly use MIDI files when our goal

is to incorporate information from musical scores into music signal processing techniques.

2.2 Fourier Transform and Spectrogram Representation

Music signals can be complex mixtures consisting of a multitude of different sound components.

A first step in better understanding a given signal is to decompose it into building blocks that

are better accessible for the subsequent processing steps. In the case that these building blocks

consist of exponential functions, such a process is also called Fourier analysis. The famous

Fourier transform maps a time-dependent signal to a frequency-dependent function which reveals

the spectrum of frequency components that compose the original signal. While there are also

Fourier transform formulations for CT-signals, we exclusively deal with the Fourier transform
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2.2. FOURIER TRANSFORM AND SPECTROGRAM REPRESENTATION

for DT-signals—also known as discrete Fourier transform (DFT)—in the context of this thesis.

Given a DT-signal x of length L, the DFT X of x is defined by

X(k) =
L−1∑
r=0

x(r) · exp(−2πikr/L) , (2.4)

for k ∈ [0 : L− 1]. The complex Fourier coefficient X(k) encodes the magnitude and phase of

the given signal’s sinusoidal component with frequency

Fcoef(k) =
k · Fs

L
. (2.5)

Summing these sinusoidal components yields the original signal again, a process known as inverse

discrete Fourier transform:

x(r) =
1

L

L−1∑
k=0

X(k) · exp(2πikr/L) , (2.6)

for r ∈ [0 : L− 1]. In Figure 2.4a/b we see our running example’s waveform and the magnitude

of its Fourier transform. While in the recording’s waveform we can see when sound events are

occurring (at least roughly), the Fourier transform reveals which sound events can be heard

(in terms of their frequencies). Loosely speaking, a signal and its Fourier transform are two

sides of the same coin. On the one side, the signal displays the time information and hides the

information about frequencies. On the other side, the Fourier transform reveals information

about frequencies and hides the time information [106].

To obtain back the hidden time information, Dennis Gabor introduced in the year 1946 a modified

version of the Fourier transform, now known as the short-time Fourier transform (STFT) [74].

This transform is a compromise between a time- and a frequency-based representation. Its core

idea is to apply the Fourier transform to local sections of a signal, so called frames, rather than

to the whole signal at once. This way, the STFT does not only reveal which frequencies are

contained in a given signal signal, but also at which points of times—or, to be more precise, in

which time frames—these frequencies appear. A signal’s STFT is defined by

X(m, k) =

N/2−1∑
r=−N/2

w(r) · x(r +mH) · exp(−2πikr/N) , (2.7)

where m ∈ Z is the frame index, k ∈ [0 : N − 1] is the frequency index, N is the frame length,

w is a window function and H is the hopsize that defines the number of samples between two

consecutive frames. A Fourier coefficient X(m, k) is also referred to as time-frequency bin where
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the time index m corresponds to the physical time

Tcoef(m) =
m ·H
Fs

, (2.8)

given in seconds, and the frequency index k corresponds to the frequency band with center

frequency

Fcoef(k) =
k · Fs

N
, (2.9)

given in Hertz. An STFT’s magnitude is also called a spectrogram which we denote by Y :

Y = |X| . (2.10)

Figure 2.4c shows our running example’s spectrogram for N = 1024 and H = 512. Here, the color-

coded magnitude values reveal time- and frequency-dependent information about the recording.

In particular, we can see wave-like structures that stem from vibrato in the singing voice as well

as horizontal patterns originating from the notes played on the piano. The spectrogram also

reveals the harmonic nature of both the piano as well as the singing voice. A single sung note

does not only have energy at the frequency corresponding to its pitch (also known as the pitch’s

fundamental frequency or F0 ), but also at integer multiples (known as overtones). In Figure 2.4c

the fundamental frequency of the singer’s first note is indicated in red while its overtones are

marked in blue.

This example already indicates the STFT’s great potential in the context of music signal

processing. The STFT will serve as fundamental decomposition and analysis tool throughout

this thesis.

For further information on Fourier analysis and its mathematical foundations we refer to classical

textbooks such as [158, 172, 146].

2.3 Pitch- and Chroma-Based Audio Features

A common task in music signal processing is to analyze a music recording with respect to musical

pitches occurring in the recording or its rough harmonic progression. Feature representations

that capture this kind of information in a given music recording are therefore often helpful.

In this section, we first introduce the pitch-based log-frequency spectrogram (Section 2.3.1)

that represents a recording’s energy distribution with respect to the 128 pitches defined by

Equation (2.3). Afterwards, we show how it can be converted into a chromagram, a feature

representation that reflect harmony-based properties of the recording (Section 2.3.2).
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Figure 2.5: Feature representations derived from the STFT X. (a): Pitch-based log-frequency spectrogram
YLF. The pitches of the singing voice’s first five notes are indicated by red rectangles (note that the recording is
transposed and the first note is therefore an Eb4 rather than an F4). Furthermore, pitch bands corresponding to
the chroma Eb are marked in blue. (b): Chromagram C. The pooling process is visualized in blue for the chroma
Eb.

2.3.1 Pitch-Based Log-Frequency Spectrogram

In Section 2.2 we introduced the STFT, a tool that can be used to derive a time-frequency

representation of a given signal. As indicated by Equation (2.9), the frequency axis of such an

STFT representation is linearly sampled, meaning that the center frequencies of two neighbored

frequency bands always differ by the same constant amount. However, in order to represent

the signal’s pitch content, it is desirable to have a logarithmically spaced frequency axis that

reflects the logarithmic nature of musical pitches. There exist various methods to derive so called

log-frequency spectrograms as, for example, the Constant-Q Transform [13, 187], filter bank

approaches [145], or approaches based on instantaneous frequency estimation [33, 183]. When

the goal is to have a frequency axis where each frequency band corresponds to a MIDI pitch

as defined by Equation (2.3), a particularly simple approach is described in [146, Section 3.1].

Given a music signal’s STFT X as defined in Equation (2.7), the idea is to assign each Fourier

coefficient X(m, k) to the MIDI pitch p whose frequency Fpitch(p) is closest to the coefficient’s
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center frequency Fcoef(k). More precisely, we define

P (p) = {k : Fpitch(p− 0.5) ≤ Fcoef(k) < Fpitch(p+ 0.5)} , (2.11)

p ∈ [0 : 127], to be the set of frequency indices that are pooled in the pitch band p. Using this

definition we then define the pitch-based log-frequency spectrogram YLF : Z× [0 : 127]→ R by

YLF(m, p) =
∑

k∈P (p)

|X(m, k)|2 . (2.12)

Figure 2.5a shows YLF for our running example. Similar as the MIDI representation shown

in Figure 2.3a, the shown visualization is a time-pitch plot. When looking carefully at this

representation, one can even recognize the notes sung by the singer (marked in red). This

investigation reveals that the musicians actually transposed the musical piece downwards by two

semitones for their performance (the first note sung by the singer is a Eb rather than an F as

notated in the musical score shown in Figure 2.2). This simple example demonstrates that the

pitch-based log-frequency spectrogram can deliver musically meaningful information about a

music recording.

2.3.2 Chroma Features

When the task is to capture the recording’s rough harmonic progression one possibility is to derive

chroma features (sometimes also referred to as pitch class profiles) that capture the recording’s

energy with respect to the twelve chroma classes [5, 79, 145]. They can be easily derived from

the pitch-based log-frequency spectrogram YLF by pooling pitch bands that correspond to the

same chroma. Formally, we define a chromagram C by

C(m, c) =
∑

{p∈[0:127]:p mod 12=c}

YLF(m, p) , (2.13)

for c ∈ [0 : 11]. Figure 2.5b shows the chromagram derived from the pitch-based log-frequency

spectrogram shown in Figure 2.5a. Here we see, for example, that in the first second of the

observed excerpt most of the energy in the recording is contained in the chroma bands C, Eb,

and G, indicating a C minor harmony. Considering that the recording was transposed by the

musicians, this corresponds to the D minor chord that is notated in the musical score to be played

by the piano in this excerpt’s first measure (see Figure 2.2). Here, the chromagram therefore

reflects the recording’s harmonic content well.

At around second 20 the chromagram is rather noisy, which is caused by multiple effects such as

strong vibrato in the singing voice, breathing sounds, and dense overtone distributions. While the

presented simple procedure for deriving chroma features yields a suboptimal chroma representation
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Figure 2.6: Spectrogram representations. (a): Spectrogram with linear frequency axis Y . (b): Refined
log-frequency spectrogram Y IF

LF. (c): Salience spectrogram Z. (d): Manual annotation of the melody track.

in this case, there exists various methods in the literature to enhance chroma representations

of music signals. Some of these approaches are, for example, based on weighting schemes in

the pooling process of STFT coefficients [60, 79], enhancing low energy values by logarithmic

compression [118] or related spectral whitening techniques [202], considering short-term statistics

over the energy distributions [153], or making the features timbre invariant [150].

Note that there exist various publically available implementations of both log-frequency spectro-

grams [187, 151, 59] as well as chroma features [58, 151, 134].

2.4 Audio Features for Melody Tracking

In the previous section, we have seen the concept of a log-frequency spectrogram that reflects

the logarithmic nature of pitch better than a spectrogram with linearly sampled frequency axis.

23 PhD Thesis, Jonathan Driedger



CHAPTER 2. FUNDAMENTALS OF MUSIC SIGNAL PROCESSING

The pitch-based log-frequency spectrogram has one frequency band per semitone. For tasks like

melody extraction or predominant F0 estimation, where the objective is to estimate the sequence

of frequency values that correspond to the main melody [80, 82, 149, 167, 183, 184] (the melody

track of our running example’s melody can be see in Figure 2.6d), this coarse resolution does,

however, not suffice. Here it is necessary to have a much finer frequency resolution such that

aspects like vibrato or glissando in the melody can be represented appropriately. In this section,

closely following [146, Section 8.2], we therefore first discuss the refined log-frequency spectrogram

that can have an arbitrary frequency resolution (Section 2.4.1). Afterwards, we introduce the

salience spectrogram, a feature representation that is derived from the refined log-frequency

spectrogram and particularly designed for the task of melody tracking (Section 2.4.2).

2.4.1 Refined Log-Frequency Spectrogram

Recall that the core idea of the pitch-based log-frequency spectrogram was to assign the center

frequencies of the STFT’s frequency bands to pitch bands by Equation (2.11). One can show

that Equation (2.11) can be reformulated by

P (p) = {k : Bin(Fcoef(k)) = p} , (2.14)

with

Bin(ω) =
⌊
12 · log2

( ω

440

)
+ 69.5

⌋
. (2.15)

Inspired by the MIDI pitch numbers as defined in Equation (2.3), this assignment is designed

such that the center frequency 440 Hertz serves as reference and is assigned to the index 69.

Furthermore, one octave is subdivided into 12 bands. We can generalize this assignment in

the following way. Assume that our goal is to construct a log-frequency representation with

B ∈ N bands where each band corresponds to R cents (a semitone is subdivided into 100

cents). Furthermore, let ωref be a reference frequency such that index bref of our representation

corresponds to this frequency. The bin assignment can then be defined by

Bin(ω) =

⌊
1200

R
· log2

(
ω

ωref

)
+ bref + 0.5

⌋
. (2.16)

This definition allows us to construct a grid for a log-frequency representation with arbitrary

frequency resolution. The problem at this point is that the frequency resolution of the STFT

itself is rather coarse—we can only associate a Fourier coefficient X(m, k) with the center

frequency Fcoef(k). However, it is possible to refine frequency estimates for the STFT by using

techniques for instantaneous frequency estimation [1, 28, 69, 125] (we discuss instantaneous

frequency estimation in detail in Section 4.1.4.3). These techniques yield refined frequency

estimates F IF
coef : Z× [0 : N − 1]→ R for all Fourier coefficients of an STFT. We can therefore
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define a refined log-frequency spectrogram by

Y IF
LF(m, b) =

∑
k∈P IF(m,b)

|X(m, k)|2 , (2.17)

with b ∈ [0 : B − 1] and

P IF(m, b) = {k : Bin(F IF
coef(m, k)) = b} . (2.18)

In this representation the frequency index b ∈ [0 : B − 1] corresponds to the physical frequency

F IF
LF(b) = 2(b−bref)R/1200 · ωref , (2.19)

given in Hertz. Figure 2.6b shows the refined log-frequency spectrogram of our running example.

Here, we defined each band to correspond to R = 10 cents, set the reference frequency to

ωref = 62.5 Hertz and the reference index bref = 0. When comparing this representation to the

spectrogram with linear frequency axis shown in Figure 2.6a, one can see that in the refined

log-frequency spectrogram spectral structures are much sharper due to the refined frequency

resolution. Furthermore, the multiplicative relation between a fundamental frequency and its

overtones translates into an additive one in the log-frequency domain. Therefore, a fundamental

frequency and its nth overtone always have the same distance, irrespective of the fundamental

frequency itself. This is indicated in Figure 2.6b by blue arrows. We will exploit this property

in the next section in order to derive a spectrogram representation that visually enhances the

underlying music recording’s melody track.

2.4.2 Salience Spectrogram

A main step in procedures for melody extraction is the computation of a salience function

or salience spectrogram. A salience spectrogram is a time-frequency representation of a given

music recording in which time-frequency bins that are likely to be part of a recording’s melody

track are salient [82, 183, 117]. One approach to derive a salience spectrogram is harmonic

summation [117, 183]. This strategy is based on the observation that melody instruments, unlike

accompanying instruments, tend to have large amounts of energy not only in their fundamental

frequency but also in their overtones. This can also be seen in Figure 2.6a where the singing

voice’s overtones are quite dominant while the piano’s overtones tend to be weaker. The idea of

the harmonic summation strategy is to compute a salience spectrogram Z by assigning each time-

frequency bin Z(m, b) not only the energy Y IF
LF(m, b), but also the energy of the time-frequency

bins corresponding to the first H overtones of the fundamental frequency F IF
LF(b). Formally, we
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Figure 2.7: Energy-based novelty. (a): Audio signal of four consecutive notes played on a clarinet x. (b): Local
energy function E. (c): Discrete derivative. (d): Novelty curve ∆Energy.

can define the harmonic summation by

Z(m, b) =
H+1∑
h=1

Y IF
LF

(
m,Bin

(
h · F IF

LF(b)
))

. (2.20)

This process is indicated in Figure 2.6b for the first H = 4 overtones. When comparing this

representation to the manual annotation of this excerpt’s melody in Figure 2.6d, one can see that

in Z this track is, as intended, rather salient. Still, the automatic extraction of the melody from

this representation is a difficult task that attracts high research interest [3, 82, 117, 183]. In this

thesis, we present a user interface in Appendix B.1 that allows for approaching this problem in a

user-guided fashion.
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2.5. NOVELTY-BASED AUDIO FEATURES

2.5 Novelty-Based Audio Features

An important concept in music signal processing is novelty—the sudden change of some musical

or physical property in a music recording. Such changes may be measured by novelty curves

which represent the “degree of change” over time with respect to some audio feature that captures

the property of interest. On a coarse level, novelty may be related to musical structure. A new

musical segment can be indicated by, for example, a change in instrumentation, key, tempo, and

so on [70]. On a finer level, novelty is often related to the onsets of individual notes or transient

sound events. To this end, novelty curves of high time-resolution are commonly used for onset

detection [6, 21, 27]—a task that often serves as a first step to approach more complex problems

such as tempo estimation or beat tracking [88, 90, 165, 87, 86].

A very basic and simple method for computing novelty curves in the context of onset detection

is described in [146, Section 6.1] and visualized in Figure 2.7. Figure 2.7a shows an audio signal

x consisting of four consecutive notes played on a clarinet. One can see that the note onsets go

along with a sudden increase of the audio signal’s energy. Therefore, a first step in computing a

novelty curve for the given audio signal is to derive its local energy

E(r) =

N/2−1∑
`=−N/2

|x(r + `) · w(`)|2 =
∑
`∈Z
|x(`) · w(`− r)|2 , (2.21)

where r ∈ Z, w is a centered window function, and N is the window function’s length. The local

energy of our example signal is shown in Figure 2.7b, where we can see four segments of high

energy that correspond to the four notes. Since we want to detect the notes’ onsets, we aim

to detect the sudden energy increases at the segments’ beginnings. We therefore compute the

local energy’s discrete derivative as it can be seen in Figure 2.7c. In this representation, the note

onsets go along with clear peaks while the sudden energy decreases at the notes’ offsets cause

dips. Since we are only interested in energy increases, not decreases, we only keep the positive

derivative values while setting the negative values to zero. This operation is known as half-wave

rectification that can be formally defined by

|r|≥0 =
r + |r|

2
=

r, if r ≥ 0,

0, otherwise,
(2.22)

for r ∈ R. The novelty curve is computed by

∆Energy(r) = |E(r + 1)− E(r)|≥0 . (2.23)

In our example’s novelty curve, which is plotted in Figure 2.7d, we can see four clear peaks that

indicate the note’s onsets. Although the presented energy-based approach is sufficient to detect
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the onsets in this toy example, it is not very robust in general. In particular instruments with soft

note onsets, such as the violin, do not cause sudden energy increases at onset positions. To detect

this kind of onsets, much more involved procedures for novelty curve computation are needed.

Approaches proposed in the literature are based, for example, on analyzing the signal’s spectral

content [6, 66, 100, 229], pitch [22, 100, 229], harmony [62, 81], or phase [6, 99, 100]. There

also exist various methods that combine different cues [25, 66, 100, 211, 229] and supervised

approaches [66, 123]. Finally, note that freely available implementations of onset detectors are

included, for example, in LibROSA [135], or in the Tempogram Toolbox [89, 87].
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Chapter 3

Extensions to Harmonic-Percussive

Separation of Music Signals

In this chapter, we discuss audio decomposition techniques that we originally proposed in [46, 42].

These methods will serve as fundamental tools that we use to approach other music signal

processing tasks in subsequent chapters.

The task of decomposing an audio signal into its harmonic and its percussive component has

received large interest in recent years. This is mainly because for many applications it is useful

to consider just the harmonic or the percussive portion of an input signal. Harmonic-percussive

separation has been applied, for example, for audio remixing [156], improving the quality

of chroma features [213], tempo estimation [76], or time-scale modification [55, 48]. Several

decomposition algorithms have been proposed. In [54], the percussive component is modeled by
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Figure 3.1: (a): Input audio signal x. (b): Magnitude spectrogram |X|. (c): Magnitude spectrograms of the
harmonic component |Xh| (left), the percussive component |Xp| (middle) and the residual component |Xr| (right).
(d): Waveforms of the harmonic component xh (left), the percussive component xp (middle) and the residual
component xr (right).

detecting portions in the input signal which have a rather noisy phase behavior. The harmonic

component is then computed by the difference of the original signal and the computed percussive

component.

A crucial observation that many procedures are based on is that harmonic sounds have a

horizontal structure in a spectrogram representation of the input signal, while percussive sounds

form vertical structures, see [14, 67, 77, 157, 163, 206]. These properties can then be exploited to

separate portions of an audio signal’s spectrogram belonging to harmonic sounds from portions

belonging to percussive sounds. For example, in [157] the harmonic and percussive structures

are first enhanced by iteratively diffusing the spectrogram once in horizontal and once in vertical

direction, respectively. The two enhanced representations are then compared, and entries in the

original spectral representation are assigned to either the harmonic or the percussive component

according to the dominating enhanced spectrogram. Finally, the two components are transformed

back to the time-domain. Following the same idea, Fitzgerald [67] replaces the diffusion step by
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a much simpler median filtering strategy, which turns out to yield similar results while having a

much lower computational complexity.

A drawback of the aforementioned approaches is that the computed decompositions are often

not very tight in the sense that the harmonic and percussive components may still contain some

non-harmonic and non-percussive residues, respectively. This is mainly because of two reasons.

First, sounds that are neither of clearly harmonic nor of clearly percussive nature such as applause,

rain, or the sound of a heavily distorted guitar are often more or less randomly distributed among

the two components. Second, depending on the parameter setting, harmonic sounds often leak

into the percussive component and the other way around. Acquiring satisfactory results for the

task at hand often involves either finding suitable parameters that yield an acceptable trade-off

between a leakage in one or the other direction, or post-processing the resulting decomposition

to remove the leaked sounds again, see [209].

In this chapter, we propose two extensions to [67] that lead towards more flexible and refined

decompositions. First, we introduce the concept of a separation factor (Section 3.2). This

novel parameter allows for tightening decomposition results by enforcing the harmonic and

percussive component to contain just the clearly harmonic and percussive sounds of the input

signal, respectively, and therefore to attenuate the aforementioned problems. Second, we exploit

this concept to add a third residual component that captures all sounds in the input audio signal

which are neither clearly harmonic nor percussive1 (see Figure 3.1). This kind of decomposition

is inspired by the classical sines+transients+noise (STN) audio model [133, 166, 217, 219, 194]

that aims at resynthesizing a given audio signal in terms of a parameterized set of sine waves,

transient sounds, and shaped white noise.

While a first methodology to compute such a decomposition follows rather straightforward from

the concept of a separation factor (Section 3.3.1), we also propose a more involved iterative

decomposition procedure. Building on concepts first proposed in [207, 113], this procedure allows

for a more refined adjustment of the decomposition results (Section 3.3.3). Finally, we evaluate

our proposed procedures based on objective evaluation measures as well as subjective listening

tests (Section 3.4). Note that this chapter has an accompanying website at [45] where one can

find all audio examples that are used in this chapter.

1Noticeably, Jeong and Lee proposed a technique for the task of singing voice extraction (see Chapter 5) based
on similar ideas in [113] at the same time that we proposed this work in [46]. In their work, instead of building on
the harmonic-percussive separation technique proposed by Fitzgerald [67] as we did, they extended the work by
Ono et al. from [157].
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3.1 Basic Procedure

Our proposed procedures extend Fitzgerald’s method for harmonic-percussive separation [67],

which we review in this section. The input of this procedure is an audio signal as shown in

Figure 3.2a, where we see a synthetic mixture of a tone played on a violin (harmonic) and a

single click of castanets (percussive). The procedure’s first step is to compute the STFT X

of the given audio signal x as defined in Equation (2.7). A critical observation is that, in the

spectrogram Y = |X|, harmonic sounds form structures in the time direction, while percussive

sounds yield structures in the frequency direction. In the spectrogram shown in Figure 3.2b we

can see horizontal lines, reflecting the harmonic sound of the violin, as well as a single vertical

line in the middle of the spectrogram, stemming from the click of the castanets. By applying

a median filter to Y—once horizontally and once vertically—we get a horizontally enhanced

spectrogram Ỹh and a vertically enhanced spectrogram Ỹp:

Ỹh(m, k) = median (Y (m− `h, k), . . . , Y (m+ `h, k)) (3.1)

Ỹp(m, k) = median (Y (m, k − `p), . . . , Y (m, k + `p)) (3.2)

for `h, `p ∈ N, where 2`h + 1 and 2`p + 1 are the lengths of the median filters, respectively

(Figure 3.2c). A time-frequency bin of the original STFT X(m, k) is assumed to be part of

the harmonic component if Ỹh(m, k) > Ỹp(m, k) and of the percussive component if Ỹp(m, k) ≥
Ỹh(m, k). Using this principle, one can define binary masks Mh and Mp for the harmonic and

the percussive components (Figure 3.2d):

Mh(m, k) =

1, if Ỹh(m, k) > Ỹp(m, k),

0, otherwise,
(3.3)

Mp(m, k) =

1, if Ỹp(m, k) ≥ Ỹh(m, k),

0, otherwise.
(3.4)

Applying these masks to the original STFT X yields modified STFTs corresponding to the

harmonic and percussive components (Figure 3.2e):

Xh(m, k) = X(m, k) · Mh(m, k) , (3.5)

Xp(m, k) = X(m, k) · Mp(m, k) . (3.6)

These spectrograms can then be transformed back to the time-domain by applying an “inverse”

short-time Fourier transform, see [84]. This yields the desired signals xh and xp, respectively. As

we can see in Figure 3.2f, the harmonic component xh contains the tone played by the violin,

while the percussive component xp shows the waveform of the castanets’ click.
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Figure 3.2: The harmonic-percussive separation procedure presented in [67]. (a): Input audio signal x. (b):
STFT X of x. (c): Horizontally and vertically enhanced spectrograms Ỹh and Ỹp. (d): Binary masks Mh and
Mp. (e): Spectrograms of the harmonic and the percussive component Xh and Xp. (f): Harmonic and percussive
components xh and xp.

3.2 Separation Factor

In this section we present our first extension to Fitzgerald’s fundamental harmonic-percussive

separation procedure, that we discussed in the previous section. Given an input audio signal x, our

goal is to compute a tight harmonic component xh and a tight percussive component xp such that

xh and xp contain only the clearly harmonic and percussive sounds of x, respectively. The first

steps of our proposed procedure are the same as in Fitzgerald’s method. To this end, we compute

the horizontally and vertically enhanced spectrograms Ỹh and Ỹp as defined in Equations (3.1)
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Figure 3.3: (a): Original magnitude spectrogram |X| of the sound mixture of a violin, castanets, and applause.
(b): Magnitude spectrograms |Xh| (left) and |Xp| (right) for β = 1. (c): Magnitude spectrograms |Xh| (left) and
|Xp| (right) for β = 3.

and (3.2), respectively. Then, extending [67], we introduce an additional parameter β ∈ R, β ≥ 1,

called the separation factor. We assume an entry of the original spectrogram X(m, k) to be part of

the clearly harmonic or percussive component if Ỹh(m, k) > β ·Ỹp(m, k) or Ỹp(m, k) ≥ β ·Ỹh(m, k),

respectively. Intuitively, for a sound to be included in the harmonic component it is required to

stand out from the percussive portion of the signal by at least a factor of β, and vice versa for

the percussive component. We therefore define the binary masks Mh and Mp by

Mh(m, k) =

1, if Ỹh(m, k) > β · Ỹp(m, k),

0, otherwise,
(3.7)

Mp(m, k) =

1, if Ỹp(m, k) ≥ β · Ỹh(m, k),

0, otherwise.
(3.8)

Applying these masks to the original STFT X and transforming the resulting modified STFTs

back to the time-domain yields the desired signals xh and xp. Choosing a separation factor

β > 1 tightens the separation result of the procedure by preventing sounds which are neither

clearly harmonic nor percussive to be included in the components. To demonstrate this, we

extend the sound mixture used in Figure 3.2 of a violin (clearly harmonic) and castanets (clearly
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percussive) with applause (noise-like, and neither harmonic nor percussive). Figure 3.3a shows

the spectrogram of this mixture. Again, the sound of the violin manifests itself as clear horizontal

structures, while the click of the castanets is visible as a clear vertical structure in the middle of

the spectrogram. However, the sound of the applause does not form any kind of directed structure

and is spread all over the spectrum. When decomposing this audio signal with a separation

factor of β = 1, which basically yields the procedure proposed in [67], the applause is more or

less equally distributed among the harmonic and the percussive component, see Figure 3.3b.

However, when choosing β = 3, only the clearly horizontal and vertical structures are preserved

in Xh and Xp, respectively, and the applause is no longer contained in the two components, see

Figure 3.3c.

3.3 Harmonic-Percussive-Residual (HPR) Separation

In the previous section we have seen how harmonic-percussive separation can be tightened

such that the harmonic and the percussive components only contain the clearly harmonic and

percussive sounds, respectively. Sounds that are neither of clearly harmonic nor percussive nature

are therefore excluded from the resulting components. In this section we extend the tightened

harmonic-percussive separation procedure with a third residual component that captures the

excluded sounds. We first show a rather straight forward extension approach in Section 3.3.1.

Afterwards, in Section 3.3.2, we discuss how the parameters of the proposed procedure influence

the decomposition results. Finally, in Section 3.3.3, we present an iterative decomposition

procedure which allows for a more flexible adjustment of the decomposition results.

3.3.1 Basic HPR Separation

The concept presented in Section 3.2 allows us to extend the decomposition procedure with a

third component xr, called the residual component. It contains the portion of the input signal

x that is neither part of the harmonic component xh nor the percussive components xp. To

compute xr, we define the binary mask

Mr(m, k) = 1−
(
Mh(m, k) +Mp(m, k)

)
, (3.9)

apply it to X, and transform the resulting spectrogram Xr back to the time-domain (note that

the masks Mh and Mp are disjoint). This decomposition into three components is inspired by

the STN audio model [133, 166, 217] and related formulations [175]. Here, an audio signal is

analyzed to yield parameters for sinusoidal, transient, and noise components which can then

be used to approximately resynthesize the original signal. While the main application of the

STN model lies in the field of low bitrate audio coding, the estimated parameters can also be
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used to synthesize just the sinusoidal, the transient, or the noise component of the approximated

signal. The harmonic, the percussive, and the residual component resulting from our proposed

decomposition procedure are often perceptually similar to the STN components. However, our

proposed procedure is conceptually different. STN modeling aims for a parametrization of the

given audio signal. While the estimated parameters constitute a compact approximation of the

input signal, this approximation and the original signal are not necessarily equal. Our proposed

approach yields a decomposition of the signal. The three components always add up to the

original signal again. The separation factor β hereby constitutes a flexible handle to adjust the

sound characteristics of the components.

3.3.2 Influence of the Parameters

The main parameters of our decomposition procedure are the length of the median filters, the

frame size N used to compute the STFT, and the separation factor β. Intuitively, the length

of the filters specify the minimal sizes of horizontal and vertical structures which should be

considered as harmonic and percussive sounds in the STFT of x, respectively. Our experiments

have shown that the filter lengths actually do not influence the decomposition too much as long

as no extreme values are chosen, see also [45]. The frame size N on the other hand pushes

the overall energy of the input signal towards one of the components. For large frame sizes,

the short percussive sounds lose influence in the spectral representation and more energy is

assigned to the harmonic component. This results in a leakage of some percussive sounds to

the harmonic component. Vice versa, for small frame sizes the low frequency resolution often

leads to a blurring of horizontal structures, and harmonic sounds tend to leak into the percussive

component. The separation factor β shows a different behavior to the previous parameters. The

larger its value, the clearer becomes the harmonic and percussive nature of the components

xh and xp. At the same time, also the portion of the signal that is assigned to the residual

component xr increases. To illustrate this behavior, let us first consider a synthetic example

where we apply our proposed procedure to the mixture of a violin (clearly harmonic), castanets

(clearly percussive), and applause (neither harmonic nor percussive), all sampled at 22050 Hertz

and having the same energy. In Figure 3.4, we visualized the relative energy distribution of the

three components for varying frame sizes N and separation factors β, while fixing the length

of the median filters to be always equivalent to 200 milliseconds in horizontal direction and

500 Hertz in vertical direction, see also [45]. Since the energy of all three signals is normalized,

potential leakage between the components is indicated by components that have either more or

less than a third of the overall energy assigned. Considering Fitzgerald’s procedure [67] as a

baseline (β = 1), we can investigate its behavior by looking at the first columns of the matrices

in Figure 3.4. While the residual component has zero energy in this setting, one can observe by

listening that the applause is more or less equally distributed between the harmonic and the

36



3.3. HARMONIC-PERCUSSIVE-RESIDUAL (HPR) SEPARATION

N
 

1 2 3 5 10 

128 

256 

512 

1024 

2048 

4096 

128 

256 

512 

1024 

2048 

4096 

128 

256 

512 

1024 

2048 

4096 

0 

0.2 

0.4 

0.6 

0.8 

1 

𝛽 𝛽 𝛽 

(a) (b) (c) 

1.5 1 2 3 5 10 1.5 1 2 3 5 10 1.5 

Figure 3.4: Energy distribution between the harmonic, percussive, and residual components for different frame
sizes N and separation factors β. (a): Harmonic components. (b): Percussive components. (c): Residual
components.

percussive component for medium frame sizes. This is also reflected in Figure 3.4a/b by the

energy being split up roughly into equal portions. For very large N , most of the signal’s energy

moves towards the harmonic component (value close to one in Figure 3.4a for β = 1, N = 4096),

while for very small N , the energy is shifted towards the percussive component (value close to one

in Figure 3.4b for β = 1, N = 128). With increasing β, one can observe how the energy contained

in the harmonic and the percussive component flows towards the residual component (decreasing

values in Figure 3.4a/b and increasing values in Figure 3.4c for increasing β). Listening to the

decomposition results shows that the harmonic and the percussive component thereby become

more and more extreme in their respective characteristics. For medium frame sizes, this allows

us to find settings that lead to decompositions in which the harmonic component contains the

violin, the percussive component contains the castanets, and the residual contains the applause.

This is reflected by Figure 3.4, where for N = 1024 and β = 2 the three sound components all

hold roughly one third of the overall energy. For very large or very small frame sizes it is not

possible to get such a clear separation. For example, considering β = 1 and N = 4096, we already

observed that the harmonic component holds most of the signal’s energy and also contains some

of the percussive sounds. However, already for small β > 1 these percussive sounds are shifted

towards the residual component (see the large amount of energy assigned to the residual in

Figure 3.4c for β = 1.5, N = 4096). Furthermore, also the energy from the percussive component

moves towards the residual. The large frame size therefore results in a very clear harmonic

component while the residual holds both the percussive as well as all other non-harmonic sounds,

leaving the percussive component virtually empty. For very small N the situation is exactly the

other way around. This observation can be exploited to define a refined decomposition procedure

which we discuss in the next section.
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Figure 3.5: Overview of the refined procedure. (a): Input signal x. (b): First run of the decomposition
procedure using a large frame size Nh and a separation factor βh. (c): Second run of the decomposition procedure
using a small frame size Np and a separation factor βp.

3.3.3 Iterative HPR Separation

In [207], Tachibana et al. described a method for the extraction of human singing voice from

music recordings. In this algorithm, the singing voice is estimated by iteratively applying the

harmonic-percussive decomposition procedure described in [156] first to the input signal and

afterwards again to one of the resulting components. This yields a decomposition of the input

signal into three components, one of which containing the estimate of the singing voice. The core

idea of this algorithm is to perform the two harmonic-percussive separations on spectrograms

with two different time-frequency resolutions. In particular, one of the spectrograms is based

on a large frame size and the other on a small frame size. Using this idea, we now extend our

proposed harmonic-percussive-residual separation procedure presented in Section 3.3.1. Although

it is possible to find a good combination of N and β for this procedure such that both the

harmonic as well as the percussive component represent the respective characteristics of the

input signal well (see Section 3.3.2), the computation of the two components is still coupled. It
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Figure 3.6: Energy distribution between the harmonic, percussive, and residual components for different separation
factors βh and βp. (a): Harmonic components. (b): Percussive components. (c): Residual components.

is therefore not clear how to adjust the content of the harmonic and the percussive component

independently. Having made the observation that large N lead to good harmonic but poor

percussive/residual components for β > 1, while small N lead to good percussive components

but poor harmonic/residual components for β > 1, we build on the idea from Tachibana et

al. [207] and compute the decomposition in two iterations. Here, the goal is to decouple the

computation of the harmonic component from the computation of the percussive component.

First, the harmonic component is extracted by applying our basic procedure with a large frame

size Nh and a separation factor βh > 1, yielding xfirst
h , xfirst

p , and xfirst
r . In a second run, the

procedure is applied again to the sum xfirst
p + xfirst

r , this time using a small frame size Np and a

second separation factor βp > 1. This yields the components xsecond
h , xsecond

p , and xsecond
r . Finally,

we define the output components of the procedure to be

xh = xfirst
h , (3.10)

xp = xsecond
p , (3.11)

xr = xsecond
h + xsecond

r . (3.12)

For an overview of the procedure see Figure 3.5. While fixing the values of Nh and Np to a small

and a large frame size, respectively (in our experiments we chose Nh = 4096 and Np = 256), the

separation factors βh and βp yield handles that give simple and independent control over the

harmonic and percussive component. Figure 3.6, which is based on the same audio example as

Figure 3.4, shows the energy distribution among the three components for different combinations

of βh and βp, see also [45]. For the harmonic components (Figure 3.6a) we see that the portion

of the signals energy contained in this component is independent of βp and can be controlled

purely by βh. This is a natural consequence from the fact that in our proposed procedure
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the harmonic component is always computed directly from the input signal x and βp does not

influence its computation at all. However, we can also observe that the energy contained in the

percussive component (Figure 3.6b) is fairly independent of βh and can be controlled almost

solely by βp. Listening to the decomposition results confirms these observations. Our proposed

iterative procedure therefore allows to adjust the harmonic and the percussive component almost

independently what significantly simplifies the process of finding an appropriate parameter

setting for a given input signal. Note that in principle it would also be possible to choose

βh = βp = 1, resulting in an iterative application of Fitzgerald’s method [67]. However, as

discussed in Section 3.3.2, Fitzgerald’s method suffers from component leakage when using very

large or small frame sizes. Therefore, most of the input signal’s energy will be assigned to the

harmonic component in the first iteration of the algorithm, while most of the remaining portion

of the signal is assigned to the percussive component in the second iteration. This leads to a

very weak, although not empty, residual component.

3.4 Evaluation

In a first experiment, we applied objective evaluation measures to our running example. Assuming

that the violin, the castanets, and the applause signal represent the characteristics that we

would like to capture in the harmonic, the percussive, and the residual components, respectively,

we treated the decomposition task of this mixture as a source separation problem. In an

optimal decomposition the harmonic component would contain the original violin signal, the

percussive component the castanets signal, and the residual component the applause. To evaluate

the decomposition quality, we computed the source to distortion ratios (SDR), the source to

interference ratios (SIR), and the source to artifacts ratios (SAR) [220] for the decomposition

results of the following procedures.

As a baseline (BL), we simply considered the original mixture as an estimate for all three sources.

Furthermore, we applied the standard harmonic-percussive separation procedure by Fitzgerald

[67] (HP) with the frame size set to N = 1024, the HP method applied iteratively (HP-I)

with Nh = 4096 and Np = 256, the proposed basic harmonic-percussive-residual separation

procedure (HPR) as described in Section 3.3.1 with N = 1024 and β = 2, and the proposed

iterative harmonic-percussive-residual separation procedure (HPR-I) as described in Section 3.3.3

with Nh = 4096, Np = 256, and βh = βp = 2. As a final method, we also considered HPR-I

with separation factor βh = 3 and βp = 2.5, which were optimized manually for the task at

hand (HPR-IO). The filter lengths in all procedures were always fixed to be equivalent to 200

milliseconds in time direction and 500 Hertz in frequency direction. Decomposition results for all

procedures can be found at [45].
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BL −3.10 −2.93 −3.04 −3.10 −2.93 −3.04 274.25 274.25 274.25

HP −5.85 3.58 — −5.09 6.06 — 8.33 8.14 —

HP-I 0.08 2.86 −7.03 1.08 10.45 14.69 9.44 4.07 −6.85

HPR 8.23 8.29 4.25 17.69 22.34 8.41 8.82 8.49 6.95

HPR-I 7.65 9.14 4.93 14.58 20.66 12.80 8.78 9.50 5.93

HPR-IO 8.85 9.28 5.00 21.65 24.41 9.04 9.11 9.44 7.69

Table 3.1: Objective evaluation measures. All values are given in dB.

The results are listed in Table 3.1. All values are given in dB and higher values indicate better

results. As expected, BL yields rather low SDR and SIR values for all components, while the

SAR values are excellent since there are no artifacts present in the original mixture. The method

HP yields low evaluation measures as well. However, these values are to be taken with care since

HP decomposes the input mixture in just a harmonic and a percussive component. The applause

is therefore not estimated explicitly and, as also discussed in Section 3.2, randomly distributed

among the harmonic and percussive component. It is therefore clear that especially the SIR

values are low in comparison to the other procedures since the applause heavily interferes with

the remaining two sources in the computed components. When looking at HP-I, the benefit

of having a third component becomes clear. Although here the residual component does not

capture the applause very well (SDR of −7.03 dB) this already suffices to yield SDR and SIR

values clearly above the baseline for the estimates of the violin and the castanets. The separation

quality further improves when considering the results of our proposed method HPR. Here, the

evaluation yields high values for all measures and components. The very high SIR values are

particularly noticeable since they indicate that the three sources are separated very clearly with

very little leakage between the components. This confirms our claim that our proposed concept

of a separation factor allows for tightening decomposition results as described in Section 3.2. The

results of HPR-I are very similar to the results for the basic procedure HPR. However, listening

to the decomposition reveals that the harmonic and the percussive component still contain some

slight residue sounds of the applause. Slightly increasing the separation factors to βh = 3 and

βp = 2.5 (HPR-IO) eliminates these residues and further increases the evaluation measures. This

straight-forward adjustment is possible since the two separation factors βh and βp constitute

independent handles to adjust the content of the harmonic and percussive component, what

demonstrates the flexibility of our proposed procedure.

41 PhD Thesis, Jonathan Driedger



CHAPTER 3. EXTENSIONS TO HARMONIC-PERCUSSIVE SEPARATION OF MUSIC SIGNALS

Item name Description

CastanetsViolinApplause Synthetic mixture of a violin, castanets and applause.

Heavy Recording of heavily distorted guitars, a bass and drums.

Stepdad Excerpt from My Leather, My Fur, My Nails by the band Stepdad.

Bongo Regular beat played on bongos.

Glockenspiel Monophonic melody played on a glockenspiel.

Winterreise Excerpt from “Gute Nacht” by Franz Schubert which is part of
the Winterreise song cycle. It is a duet of a male singer and
piano.

Table 3.2: List of audio excerpts.

The above described experiment constitutes a first case study for the objective evaluation of our

proposed decomposition procedures, based on an artificially mixed example. To also evaluate

these procedures on real-world audio data, we additionally performed an informal subjective

listening tests with several test participants. To this end, we applied our procedures to the set of

audio excerpts listed in Table 3.2. Among the excerpts are complex sound mixtures as well as

purely percussive and harmonic signals, see also [45]. Raising the question whether the computed

harmonic and percussive components meet the expectation of representing the clearly harmonic

or percussive portions of the audio excerpts, respectively, the performed listening test confirmed

our hypothesis. It furthermore turned out that βh = βp = 2, Nh = 4096 and Np = 256 seems

to be a setting for our iterative procedure which robustly yields good decomposition results,

rather independent of the input signal. Regarding the residual component, it was often described

to sound like a sound texture by the test participants, which is a very interesting observation.

Although there is no clear definition of what a sound texture exactly is, literature states “sound

texture is like wallpaper: it can have local structure and randomness, but the characteristics of

the fine structure must remain constant on the large scale” [182]. In our opinion this is not a

bad description of what one can hear in residual components.

3.5 Applications of HPR Separation

Concerning applications of our procedure, we see a potential use for example in extracting

enhanced audio features. Such approaches have already been used, where harmonic-percussive

separation is applied to improve chroma features [213] or tempo features [76]. As an illustrative

example we computed chroma features (standard harmony-based features, see Section 2.3) and a

simple energy-based novelty curve (as they can be used for onset detection and beat tracking,
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Figure 3.7: Chroma features. (a): Original mixture signal. (b): Harmonic component of the procedure proposed
in [67]. (c): Harmonic component of our refined procedure. (d): Original violin signal.

see Section 2.5) for our running example (the mixture of a violin, castanets and applause). The

results are visualized in Figure 3.7 and 3.8. In Figure 3.7a, one can see the chroma sequence

computed for the mixture signal. Note that the presence of the castanets as well as the applause

in the signal lead to rather noisy features. Applying Fitzgerald’s method and computing the

features on just the harmonic component only slightly denoises the features since a part of the

applause is still present in this component, see Figure 3.7b. However, utilizing the separation

factor βh = 3.5 yields a much cleaner feature sequence, see Figure 3.7c. As comparison, we also

computed the chroma features on the pure violin signal which is visualized in Figure 3.7d. One

can see that this sequence actually does not differ too much from the sequence computed on the

harmonic component of our procedure.

Figure 3.8a shows an excerpt of the novelty curve computed for the mixture signal. On can

see that, although each annotated castanet onset—visualized by a vertical gray line—is aligned

with a peak of the curve, there are further spurious peaks present. The same is true for the

novelty curve that is computed on the percussive component of Fitzgerald’s procedure visualized

in Figure 3.8b. Again, this is due to the fact that this component still contains residual sounds of

the applause. When applying our proposed refined decomposition procedure with βp = 5, these

spurious peaks do not occur any more, similar as in the novelty curve which was computed on

the pure castanets signal, see Figure 3.8c/d. Of course, these examples only indicate tendencies

and a detailed evaluation, e.g., in the context of chord recognition and beat tracking, is left as

future work.
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Figure 3.8: Novelty curves. Gray vertical lines indicate the ground truth onset positions. (a): Original mixture
signal. (b): Percussive component of the procedure proposed in [67]. (c): Percussive component of our refined
procedure. (d): Original castanets signal.

A third application lies in the field of time-scale modification (TSM) of audio signals. A problem

of many basic time-scale modification algorithms is that they can process signals of purely

harmonic or purely percussive nature well, while introducing noticeable artifacts to signals of the

opposite class. In Chapter 4 we show how harmonic-percussive decomposition techniques can be

utilized to improve the quality of TSM algorithms by first decomposing a given audio signal into

a set of component signals and processing the components separately afterwards.

Finally, it has shown that our proposed decomposition technique can also be applied in the

context of singing voice extraction, see Chapter 5. The task of decomposing a given music

recording of a singer accompanied by musical instruments into one component that holds the

singing voice and second component containing the accompaniment is very difficult in general.

However, similar as for the TSM problem, it turned out that it is beneficial to first decompose a

given recording with the presented harmonic-percussive-residual decomposition technique and

then process the three components individually.

3.6 Conclusions and Further Notes

In this chapter, we introduced novel methods for decomposing music signals into harmonic,

percussive, and residual sound components. Our proposed procedures are based on the observation

that harmonic sounds tend to have horizontal structures in spectrogram representations (in
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Figure 3.9: HPR Decomposition using the Structure Tensor. Based on the estimated orientation of structures
(indicated by arrows), time-frequency bins are assigned to either the harmonic (red), the percussive (blue) or the
residual (green) component. Example taken from [72].

time direction), while percussive sounds usually form vertical structures (in frequency direction).

However, this is not always true. For example, a tone sung with strong vibrato (periodic

frequency fluctuation) or glissando (continuous frequency fluctuation) is usually considered to

be a harmonic sound. The magnitude spectrogram of singing voice, superimposed with clicks

of castanets and applause, can be seen in Figure 3.9. Here we can observe that the singing

voice does not form horizontal, but wave-like structures due to the vibrato. Our proposed HPR

decomposition procedures would therefore not assign it to the harmonic component since this

component captures—by design—only clearly horizontal structures.

In the context of standard harmonic-percussive separation, this problem has been recently

approached by Park and Lee in [163] with a strategy based on non-negative matrix factorization.

Another interesting approach was proposed by Füg et al. who extended our HPR Decomposition

method [72]. Their core idea is to use the Structure Tensor [8, 119] known from image processing

to derive information about the orientation of structures in magnitude spectrograms. This

information is visualized in Figure 3.9 by colored arrows. Dependent on the computed orientation

(orientation of arrows) and confidence measures (length of arrows), time-frequency bins are

assigned to either the harmonic (red), the percussive (blue), or residual (green) component. This

allows the method to also capture vibrato or glissando sounds in the harmonic component. Sound

examples for the HPR decomposition based on the Structure Tensor can be found at [71].
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Chapter 4

Contributions to Time-Scale

Modification of Music Signals

This chapter is based on our review article on time-scale modification (TSM) of music signals

[44] as well as our contributions published in [48, 40].

Time-scale modification procedures are digital signal processing methods for stretching or

compressing the duration of a given audio signal. Ideally, the time-scale modified signal should

sound as if the original signal’s content was performed at a different tempo while preserving

properties such as pitch and timbre. TSM procedures are applied in a wide range of scenarios.

For example, they simplify the process of creating music remixes. Music producers or DJs

apply TSM to adjust the durations of music recordings, enabling synchronous playback [19, 110].

Nowadays TSM is built into music production software as well as hardware devices. A second
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application scenario is adjusting an audio stream’s duration to that of a given video clip. For

example, when generating a slow motion video, it is often desirable to also slow down the tempo

of the associated audio stream. Here, TSM can be used to synchronize the audio material with

the video’s visual content [143].

A main challenge for TSM procedures is that music signals are complex sound mixtures, consisting

of a wide range of different sounds. As an example, imagine a music recording consisting of a

violin playing together with castanets. When modifying this music signal with a TSM procedure,

both the harmonic sound of the violin as well as the percussive sound of the castanets should

be preserved in the output signal. To keep the violin’s sound intact, it is essential to maintain

its pitch as well as its timbre. On the other hand, the clicking sound of the castanets does not

have a pitch—it is much more important to maintain the crisp sound of the single clicks, as

well as their exact relative time positions, in order to preserve the original rhythm. Retaining

these contrasting characteristics usually requires conceptually different TSM approaches. For

example, classical TSM procedures based on waveform similarity overlap-add (WSOLA) [216] or

on the phase vocoder (PV-TSM) [69, 168, 128] are capable of preserving the perceptual quality of

harmonic signals to a high degree, but introduce noticeable artifacts when modifying percussive

signals. However, as we show in this chapter, it is possible to substantially reduce artifacts by

combining different TSM approaches.

This chapter is structured as follows. In Section 4.1 we first discuss fundamental challenges and

algorithmic approaches in the field of TSM, review well-known TSM methods, and discuss their

respective advantages and drawbacks. Afterwards, we propose two novel TSM procedures that

are both based on combining different TSM strategies. In Section 4.2 we introduce the first

procedure that improves on the fundamental approaches by first decomposing a given audio signal

into a harmonic and a percussive sound component. The two components are then modified

separately. The second method, discussed in Section 4.3, extends a fundamental TSM procedure

that is capable of scaling music signals with high quality, but not by arbitrary factors. Here,

the idea is to cascade the procedure with our proposed method based on harmonic-percussive

separation in order to allow for arbitrary modifications. Finally, we point out different application

scenarios for TSM such as music synchronization and pitch-shifting in Section 4.4 and close this

chapter in Section 4.5.

4.1 Fundamentals on Time-Scale Modification (TSM)

4.1.1 Basic TSM Strategy

As mentioned above, a key requirement for time-scale modification procedures is that they change

the time-scale of a given audio signal without altering its pitch content. To achieve this goal,
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Figure 4.1: Generalized processing pipeline of TSM procedures.

many TSM procedures follow a common fundamental strategy which is sketched in Figure 4.1.

The core idea is to decompose the input signal into short frames. Having a fixed length, usually

in the range of 50 to 100 milliseconds of audio material, each frame captures the local pitch

content of the signal. The frames are then relocated on the time axis to achieve the actual

time-scale modification, while, at the same time, preserving the signal’s pitch.

More precisely, this process can be described as follows. The input of a TSM procedure is a

discrete-time audio signal x : Z→ R, equidistantly sampled at a sampling rate of Fs as described

in Chapter 2. Recall that although audio signals typically have a finite length of L ∈ N samples

x(r) for r ∈ [0 : L− 1], for the sake of simplicity, we model them to have an infinite support by

defining x(r) = 0 for r ∈ Z \ [0 : L− 1]. The first step of the TSM procedure is to split x into

short analysis frames xm, m ∈ Z, each of them having a length of N samples (in the literature,

the analysis frames are sometimes also referred to as grains, see [230]). The analysis frames are

spaced by an analysis hopsize Ha ∈ N:

xm(r) =

x(r +mHa), if r ∈ [−N/2 : N/2− 1],

0, otherwise.
(4.1)

In a second step, these frames are relocated on the time axis with regard to a specified synthesis

hopsize Hs ∈ N. This relocation accounts for the actual modification of the input signal’s

time-scale by a stretching factor α = Hs/Ha ∈ Q+. Since it is often desirable to have a specific

overlap of the relocated frames, the synthesis hopsize Hs is often fixed (common choices are

Hs = N/2 or Hs = N/4) while the analysis hopsize is given by Ha = Hs/α. However, simply

superimposing the overlapping relocated frames would lead to undesired artifacts such as phase

discontinuities at the frame boundaries and amplitude fluctuations. Therefore, prior to signal

reconstruction, the analysis frames are suitably adapted to form synthesis frames ym. In the
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Figure 4.2: Typical artifacts that occur when choosing the synthesis frames ym to be equal to the analysis frames
xm. The input signal x is stretched by a factor of α = 1.8. The output signal y shows discontinuities (blue oval)
and amplitude fluctuations (indicated by blue lines).

final step, the synthesis frames are superimposed in order to reconstruct the actual time-scale

modified output signal y : Z→ R of the TSM procedure:

y(r) =
∑
m∈Z

ym(r −mHs) . (4.2)

Although this fundamental strategy seems straightforward at a first glance, there are many

pitfalls and design choices that may strongly influence the perceptual quality of the time-scale

modified output signal. The most obvious question is how to adapt the analysis frames xm in

order to form the synthesis frames ym. There are many ways to approach this task, leading to

conceptually different TSM procedures. In the following, we discuss several strategies.

4.1.2 TSM Based on Overlap-Add (OLA)

4.1.2.1 The Procedure

In the general scheme described in the previous section, a straightforward approach would be to

simply define the synthesis frames ym to be equal to the unmodified analysis frames xm. This

strategy, however, immediately leads to two problems which are visualized in Figure 4.2. First,

when reconstructing the output signal by using Equation (4.2), the resulting waveform typically

shows discontinuities—perceivable as clicking sounds—at the unmodified frames’ boundaries.

Second, the synthesis hopsize Hs is usually chosen such that the synthesis frames are overlapping.

When superimposing the unmodified frames, this typically leads to an undesired increase of the

output signal’s amplitude.
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Figure 4.3: The principle of TSM based on overlap-add (OLA). (a): Input audio signal x with analysis frame
xm. The output signal y is constructed iteratively. (b): Application of Hann window function w to the analysis
frame xm resulting in the synthesis frame ym. (c): The next analysis frame xm+1 having a specified distance of
Ha samples from xm. (d): Overlap-add using the specified synthesis hopsize Hs.

A basic TSM procedure should both enforce a smooth transition between frames as well as

compensate for unwanted amplitude fluctuations. The idea of the overlap-add (OLA) TSM

procedure is to apply a window function w to the analysis frames, prior to the reconstruction

of the output signal y. The task of the window function is to remove the abrupt waveform

discontinuities at the the analysis frames’ boundaries. A typical choice for w is a Hann window

function

w(r) =

0.5 ·
(

1− cos
(

2π(r+N/2)
N−1

))
, if r ∈ [−N/2 : N/2− 1],

0, otherwise.
(4.3)

The Hann window has the nice property that

∑
n∈Z

w

(
r − nN

2

)
= 1 , (4.4)
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for all r ∈ Z. The principle of the iterative OLA procedure is visualized in Figure 4.3. For

the frame index m ∈ Z, we first use Equation (4.1) to compute the mth analysis frame xm

(Figure 4.3a). Then, we derive the synthesis frame ym by

ym(r) =
w(r) · xm(r)∑

n∈Z
w(r − nHs)

. (4.5)

The nominator of Equation (4.5) constitutes the actual windowing of the analysis frame by

multiplying it pointwise with the given window function. The denominator normalizes the frame

by the sum of the overlapping window functions, which prevents amplitude fluctuations in the

output signal. Note that, when choosing w to be a Hann window and Hs = N/2, the denominator

always reduces to one by Equation (4.4). This is the case in Figure 4.3b where the synthesis

frame’s amplitude is not scaled before being added to the output signal y. Proceeding to the next

analysis frame xm+1, (Figure 4.3c), this frame is again windowed, overlapped with the preceding

synthesis frame, and added to the output signal (Figure 4.3d). Note that Figure 4.3 visualizes

the case where the original signal is compressed (Ha > Hs). Stretching the signal (Ha < Hs)

works in exactly the same fashion. In this case, the analysis frames overlap to a larger degree

than the synthesis frames.

OLA is an example of a time-domain TSM procedure where the modifications to the analysis

frames are applied purely in the time-domain. In general, time-domain TSM procedures are not

only efficient but also preserve the timbre of the input signal to a high degree. On the downside,

output signals produced by OLA often suffer from other artifacts, as we explain next.

4.1.2.2 Artifacts

The OLA procedure is in general not capable of preserving local periodic structures that are

present in the input signal. This is visualized in Figure 4.4 where a periodic input signal x is

stretched by a factor of α = 1.8 using OLA. When relocating the analysis frames, the periodic

structures of x may not align any longer in the superimposed synthesis frames. In the resulting

output signal y, the periodic patterns are distorted. These distortions are also known as phase

jump artifacts. Since local periodicities in the waveforms of audio signals correspond to harmonic

sounds, OLA is not suited to modify signals that contain harmonic components. When applied

to harmonic signals, the output signals of OLA have a characteristic warbling sound, which is

a kind of periodic frequency modulation [128]. Since most music signals contain at least some

harmonic sources (as for example singing voice, piano, violins, or guitars), OLA is usually not

suited to modify music.
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Figure 4.4: Illustration of a typical artifact for an audio signal modified with OLA. In this example, the input
signal x is stretched by a factor of α = 1.8. The OLA procedure is visualized for two frames indicated by window
functions. The periodic structure of x is not preserved in the output signal y.

4.1.2.3 Tricks of the Trade

While OLA is unsuited for modifying audio signals with harmonic content, we found out in [48]

that it delivers high quality results for purely percussive signals, as is the case with drum or

castanet recordings. This is because audio signals with percussive content seldom have local

periodic structures, but are more of noise-like or transient nature. The phase jump artifacts

introduced by OLA are therefore not noticeable in the output signals. In this scenario, it is

important to choose a very small frame length N (corresponding to roughly 10 milliseconds of

audio material) in order to reduce the effect of transient doubling, an artifact that we discuss

at length in Section 4.1.3.2. Although transients are slightly stretched in length when modified

with OLA, they are still perceptually appealing and crisp for reasonable α (we experimented

with α ∈ [0.5, 3]). The conclusion is that OLA can be used to modify noise-like signals, while

preserving transients without any explicit transient detection step.

4.1.3 TSM Based on Waveform Similarity Overlap-Add (WSOLA)

4.1.3.1 The Procedure

One of OLA’s problems is that it lacks signal sensitivity: the windowed analysis frames are copied

from fixed positions in the input signal to fixed positions in the output signal. In other words,
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Figure 4.5: The principle of WSOLA. (a): Input audio signal x with the adjusted analysis frame x′m. The frame
was already windowed and copied to the output signal y. (b)/(c): Retrieval of a frame from the extended frame
region x+m+1 (solid blue box) that is as similar as possible to the natural progression x̃m (dashed blue box) of the
adjusted analysis frame x′m. (d): The adjusted analysis frame x′m+1 is windowed and copied to the output signal
y.

the input signal has no influence on the procedure. One time-domain strategy to reduce phase

jump artifacts as caused by OLA is to introduce some flexibility in the TSM process, achieved by

allowing some tolerance in the analysis or synthesis frames’ positions. The main idea is to adjust

successive synthesis frames in such a way that periodic structures in the frames’ waveforms are

aligned in the overlapping regions. Periodic patterns in the input signal are therefore maintained

in the output. In the literature, several variants of this idea have been described, such as

synchronized OLA (SOLA) [180], time-domain pitch-synchronized OLA (TD-PSOLA) [144], or

autocorrelation-based approaches [126].

Another well-known procedure is waveform similarity-based OLA (WSOLA) [216]. This method’s

core idea is to allow for slight shifts (of up to ±∆max ∈ Z samples) of the analysis frames’

positions. Figure 4.5 visualizes the principle of WSOLA. Similar to OLA, WSOLA proceeds in

54



4.1. FUNDAMENTALS ON TIME-SCALE MODIFICATION (TSM)

an iterative fashion. Assume that in the mth iteration the position of the analysis frame xm was

shifted by ∆m ∈ [−∆max : ∆max] samples. We call this frame the adjusted analysis frame x′m

(Figure 4.5a):

x′m(r) =

x(r +mHa + ∆m), if r ∈ [−N/2 : N/2− 1],

0, otherwise.
(4.6)

The adjusted analysis frame x′m is windowed and copied to the output signal y as in OLA

(Figure 4.5a). Now, we need to adjust the position of the next analysis frame xm+1. This task can

be interpreted as a constrained optimization problem. Our goal is to find the optimal shift index

∆m+1 ∈ [−∆max : ∆max] such that periodic structures of the adjusted analysis frame x′m+1 are

optimally aligned with structures of the previously copied synthesis frame ym in the overlapping

region when superimposing both frames at the synthesis hopsize Hs. The natural progression x̃m

of the adjusted analysis frame x′m (dashed blue box in Figure 4.5b) would be an optimal choice

for the adjusted analysis frame x′m+1 in an unconstrained scenario:

x̃m(r) =

x(r +mHa + ∆m +Hs), if r ∈ [−N/2 : N/2− 1],

0, otherwise.
(4.7)

This is the case, since the adjusted analysis frame x′m and the synthesis frame ym are essentially

the same (up to windowing). As a result, the structures of the natural progression x̃m are perfectly

aligned with the structures of the synthesis frame ym when superimposing the two frames at the

synthesis hopsize Hs (Figure 4.5b). However, due to the constraint ∆m+1 ∈ [−∆max : ∆max], the

adjusted frame x′m+1 must be located inside of the extended frame region x+
m+1 (solid blue box

in Figure 4.5b):

x+
m+1(r) =

x (r + (m+ 1)Ha) , if r ∈ [−N/2−∆max : N/2− 1 + ∆max],

0, otherwise.
(4.8)

Therefore, the idea is to retrieve the adjusted frame x′m+1 as the frame in x+
m+1 whose waveform

is most similar to x̃m. To this end, we must define a measure that quantifies the similarity of

two frames. One possible choice for this metric is the cross-correlation

c(q, p,∆) =
∑
r∈Z

q(r) · p(r + ∆) (4.9)

of a signal q and a signal p shifted by ∆ ∈ Z samples. We can then compute the optimal shift

index ∆m+1 that maximizes the cross-correlation of x̃m and x+
m+1 by

∆m+1 = argmax
∆∈[−∆max:∆max]

c(x̃m, x
+
m+1,∆) . (4.10)
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Figure 4.6: Preservation of periodic structures by WSOLA. The input signal x is the same as in Figure 4.4, this
time modified with WSOLA (time-stretch with α = 1.8).

The shift index ∆m+1 defines the position of the adjusted analysis frame x′m+1 inside the extended

frame region x+
m+1 (Figure 4.5c). Finally, we compute the synthesis frame ym+1, similarly to

OLA, by

ym+1(r) =
w(r) x(r + (m+ 1)Ha + ∆m+1)∑

n∈Z
w(r − nHs)

(4.11)

and use Equation (4.2) to reconstruct the output signal y (Figure 4.5d). In practice, we start

the iterative optimization process at the frame index m = 0 and assume ∆0 = 0.

4.1.3.2 Artifacts

WSOLA can improve on some of the drawbacks of OLA as illustrated by Figure 4.6 (WSOLA) and

Figure 4.4 (OLA). However, it still causes certain artifacts that are characteristic for time-domain

TSM procedures.

A prominent problem with WSOLA-like methods is known as transient doubling or stuttering.

This artifact is visualized in Figure 4.7, where we can see a single transient in the input signal x

that is contained in the overlapping region of two successive adjusted analysis frames x′m and

x′m+1. When the frames are relocated and copied to the output signal, the transient is duplicated

and can be heard two times in quick succession. A related artifact is transient skipping where

transients get lost in the modification process since they are not contained in any of the analysis

frames. While transient doubling commonly occurs when stretching a signal (α > 1), transient

skipping usually happens when the signal is compressed (α < 1). These artifacts are particularly

noticeable when modifying signals with percussive components, such as recordings of instruments

with strong onsets (e.g. drums, piano).
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Figure 4.7: Transient doubling artifact as it typically occurs in signals modified with WSOLA.

Furthermore, WSOLA has particular problems when modifying polyphonic input signals such as

recordings of orchestral music. For these input signals, the output often still contains considerable

warbling. The reason for this is that WSOLA can, by design, only preserve the most prominent

periodic pattern in the input signal’s waveform. Therefore, when modifying recordings with

multiple harmonic sound sources, only the sound of the most dominant source is preserved in

the output, whereas the remaining sources can still cause phase jump artifacts. While WSOLA

is well-suited to modify monophonic input signals, this is often not the case with more complex

audio.

4.1.3.3 Tricks of the Trade

In order to assure that WSOLA can adapt to the most dominant periodic pattern in the waveform

of the input signal, one frame must be able to capture at least a full period of the pattern. Also,

the tolerance parameter ∆max must be large enough to allow for an appropriate adjustment.

Therefore, it should be set to at least half a period’s length. Assuming that the lowest frequency

that can be heard by humans is roughly 20 Hertz, a common choice is a frame length N

corresponding to 50 milliseconds and a tolerance parameter of 25 milliseconds.

One possibility to reduce transient doubling and skipping artifacts in WSOLA is to apply a

transient preservation scheme. In [85], the idea is to first identify the temporal positions of

transients in the input signal by using a transient detector. Then, in the WSOLA process, the

analysis hopsize is temporarily fixed to be equal to the synthesis hopsize whenever an analysis
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frame is located in a neighborhood of an identified transient. This neighborhood, including the

transient, is therefore copied without modification to the output signal, preventing WSOLA from

doubling or skipping it. The deviation in the global stretching factor is compensated dynamically

in the regions between transients.

4.1.4 TSM Based on the Phase Vocoder (PV-TSM)

4.1.4.1 Overview

As we have seen, WSOLA is capable of maintaining the most prominent periodicity in the input

signal. The next step to improve the quality of time-scale modified signals is to preserve the

periodicities of all signal components. This is the main idea of frequency-domain TSM procedures,

which interpret each analysis frame as a weighted sum of sinusoidal components with known

frequency and phase. Based on these parameters, each of these components is manipulated

individually to avoid phase jump artifacts across all frequencies in the reconstructed signal.

A fundamental tool for the frequency analysis of the input signal is the short-time Fourier

transform [74] (Section 4.1.4.2). However, depending on the chosen discretization parameters, the

resulting frequency estimates may be inaccurate. To this end, the phase vocoder1 technique [69,

168] is used to improve on the the short-time Fourier transform’s coarse frequency estimates

by deriving the sinusoidal components’ instantaneous frequencies (Section 4.1.4.3). In TSM

procedures based on the phase vocoder (PV-TSM), these improved estimates are used to update

the phases of an input signal’s sinusoidal components in a process known as phase propagation

(Section 4.1.4.4).

4.1.4.2 The Short-Time Fourier Transform

The most important tool of PV-TSM is the short-time Fourier transform (STFT) that we

introduced in Section 2.2. For the sake of convenience we reformulate its definition at this point

to match our general TSM framework. In this context, the STFT can be seen as the application

of the Fourier transform to every analysis frame of a given input signal. The STFT X of a signal

x is therefore given by

X(m, k) =

N/2−1∑
r=−N/2

xm(r) w(r) exp(−2πikr/N) , (4.12)

1Although the term “phase vocoder” refers to a specific technique for the estimation of instantaneous frequencies,
it is also frequently used in the literature as the name of the TSM procedure itself.
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where m ∈ Z is the frame index, k ∈ [0 : N − 1] is the frequency index, N is the frame length, xm

is the mth analysis frame of x as defined in Equation (4.1), and w is a window function. Given

the input signal’s sampling rate Fs, the frame index m of X(m, k) is associated to the physical

time

Tcoef(m) =
m ·Ha

Fs
(4.13)

given in seconds, and the frequency index k corresponds to the physical frequency

Fcoef(k) =
k · Fs

N
(4.14)

given in Hertz. The complex number X(m, k), also called a time-frequency bin, denotes the

kth Fourier coefficient for the mth analysis frame. It can be represented by a magnitude

|X(m, k)| ∈ R+ and a phase ϕ(m, k) ∈ [0, 1) as

X(m, k) = |X(m, k)| · exp(2πi ϕ(m, k)) . (4.15)

The magnitude of an STFT X is also called a spectrogram which is denoted by Y :

Y = |X| . (4.16)

In the context of PV-TSM, it is necessary to reconstruct the output signal y from a modified

STFT XMod. Note that a modified STFT is in general not invertible [146]. In other words, there

might be no signal y that has XMod as its STFT. However, there exist methods that aim to

reconstruct a signal y from XMod whose STFT is close to XMod with respect to some distance

measure. Following the procedure described in [84], we first compute time-domain frames xMod
m

by using the inverse Fourier transform.

xMod
m (r) =

1

N

N−1∑
k=0

XMod(m, k) · exp(2πikr/N) . (4.17)

From these frames, we then derive synthesis frames

ym(r) =
w(r) · xMod

m (r)∑
n∈Z

w(r − nHs)2
(4.18)

and reconstruct the output signal y by Equation (4.2). It can be shown that, when computing

the synthesis frames by Equation (4.18), the STFT of y (when choosing Ha = Hs) minimizes a

squared error distance measure defined in [84].
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Figure 4.8: Principle of the phase vocoder.

4.1.4.3 The Phase Vocoder

Each time-frequency bin X(m, k) of an STFT can be interpreted as a sinusoidal component

with amplitude |X(m, k)| and phase ϕ(m, k) that contributes to the mth analysis frame of the

input signal x. However, the Fourier transform yields coefficients only for a discrete set of

frequencies that are sampled linearly on the frequency axis, see Equation (4.14). The STFT’s

frequency resolution therefore does not suffice to assign a precise frequency value to this sinusoidal

component. The phase vocoder is a technique that refines the STFT’s coarse frequency estimate

by exploiting the given phase information.

In order to understand the phase vocoder, let us have a look at the scenario shown in Figure 4.8.

Assume we are given two phase estimates ϕ1 = ϕ(m, k) and ϕ2 = ϕ(m+1, k) at the time instances

t1 = Tcoef(m) and t2 = Tcoef(m+ 1) of a sinusoidal component for which we only have a coarse

frequency estimate ω = Fcoef(k). Our goal is to estimate the sinusoid’s “real” instantaneous

frequency IF(ω). Figure 4.8 shows this sinusoidal component (gray) as well as two sinusoids that

have a frequency of ω (red and green). In addition, we also see phase representations at the time

instances t1 and t2. The red sinusoid has a phase of ϕ1 at t1 and the green sinusoid a phase

of ϕ2 at t2. One can see that the frequency ω of the red and green sinusoids is slightly lower

than the frequency of the gray sinusoid. Intuitively, while the phases of the gray and the red

sinusoid match at t1, they diverge over time, and we can observe a considerable discrepancy after
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∆t = t2 − t1 seconds2 (blue oval). Since we know the red sinusoid’s frequency, we can compute

its unwrapped phase advance, i.e. the number of oscillations that occur over the course of ∆t

seconds:

ω ·∆t . (4.19)

Knowing that its phase at t1 is ϕ1, we can predict its phase after ∆t seconds:

ϕPred = ϕ1 + ω ·∆t . (4.20)

At t2 we again have a precise phase estimate ϕ2 for the gray sinusoid. We therefore can compute

the phase error ϕErr (also called the heterodyned phase increment [28]) between the phase actually

measured at t2 and the predicted phase when assuming a frequency of ω:

ϕErr = Ψ(ϕ2 − ϕPred) . (4.21)

Here, Ψ : R→ [−0.5, 0.5) is the principal argument function:

Ψ(a) = a+ γ , (4.22)

with a ∈ R and γ ∈ Z such that a+ γ ∈ [−0.5, 0.5). Note that by mapping ϕErr into the range

[−0.5, 0.5), we assume that the number of oscillations of the gray and red sinusoids differ by at

most half a period. In the context of instantaneous frequency estimation, this means that the

coarse frequency estimate ω needs to be close to the actual frequency of the sinusoid, and that

the interval ∆t should be small. The unwrapped phase advance of the gray sinusoid can then be

computed by the sum of the unwrapped phase advance of the red sinusoid with frequency ω (red

spiral arrow) and the phase error (blue curved arrow):

ω ·∆t+ ϕErr . (4.23)

This gives us the number of oscillations of the gray sinusoid over the course of ∆t seconds. From

this we can derive the instantaneous frequency of the gray sinusoid by

IF(ω) =
ω ·∆t+ ϕErr

∆t
= ω +

ϕErr

∆t
. (4.24)

The frequency ϕErr/∆t can be interpreted as the small offset of the gray sinusoid’s actual

frequency from the rough frequency estimate ω.

2Note that Figure 4.8 does not represent the phase coming from an STFT, where the red and green sinusoids
would be phase-shifted to globally match the gray signal within the respective frame (see also [146, Chapter 8]).
Furthermore, according to the STFT’s definition from Equation (4.12) phases are not measured at the at a frame’s
beginning but at its center. However, this only causes a relative phase offset and does not influence the illustration
of the phase vocoder’s core principle.
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We can use this approach to refine the coarse frequency resolution of the STFT by computing

instantaneous frequency estimates F IF
coef(m, k) for all time-frequency bins X(m, k):

F IF
coef(m, k) = IF(ω) = ω +

Ψ (ϕ2 − (ϕ1 + ω ·∆t))
∆t

. (4.25)

With ω = Fcoef(k), ∆t = Ha/Fs (the analysis hopsize given in seconds), ϕ1 = ϕ(m, k), and

ϕ2 = ϕ(m+ 1, k) we finally get

F IF
coef(m, k) = Fcoef(k) + Ψ

(
ϕ(m+ 1, k)−

(
ϕ(m, k) + Fcoef(k)

Ha

Fs

))
Fs

Ha
. (4.26)

For further details, we refer to [146, Chapter 8].

4.1.4.4 PV-TSM

The principle of PV-TSM is visualized in Figure 4.9. Given an input audio signal x, the first step

of PV-TSM is to compute the STFT X. Figure 4.9a shows the two successive frequency spectra

of the mth and (m+ 1)th analysis frames, denoted here by X(m) and X(m+ 1), respectively.

Our goal is to compute a modified STFT XMod with adjusted phases ϕMod from which we can

reconstruct a time-scale modified signal without phase jump artifacts:

XMod(m, k) = |X(m, k)| · exp(2πi ϕMod(m, k)) . (4.27)

We compute the adjusted phases ϕMod in an iterative process that is known as phase propagation.

Assume that the phases of the mth frame have already been adjusted (Figure 4.9b). As indicated

by Figure 4.9b, overlapping the two frames at the synthesis hopsize Hs may lead to phase jumps.

Knowing the instantaneous frequencies F IF
coef derived by the phase vocoder, we can predict the

phases of the sinusoidal components in the mth frame after a time interval corresponding to Hs

samples. To this end, we set ϕ1 = ϕMod(m, k), ω = F IF
coef(m, k), and ∆t = Hs/Fs (the synthesis

hopsize given in seconds) in Equation (4.20). This allows us to replace the phases of the (m+1)th

frame with the predicted phase:

ϕMod(m+ 1, k) = ϕMod(m, k) + F IF
coef(m, k)

Hs

Fs
(4.28)

for k ∈ [0 : N −1]. Assuming that the estimates of the instantaneous frequencies F IF
coef are correct,

there are no phase jumps any more when overlapping the modified spectra at the synthesis

hopsize Hs (Figure 4.9c). In practice, we start the iterative phase propagation with the frame

index m = 0 and set

ϕMod(0, k) = ϕ(0, k) , (4.29)
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for all k ∈ [0 : N−1]. Finally, the output signal y can be computed using the signal reconstruction

procedure described in Section 4.1.4.2 (Figure 4.9d).

4.1.4.5 Artifacts

By design, PV-TSM can achieve phase continuity for all sinusoidal components contributing

to the output signal. This property, also known as horizontal phase coherence, ensures that

there are no artifacts related to phase jumps. However, the vertical phase coherence, i.e., the

phase relationships of sinusoidal components within one frame, is usually destroyed in the phase

propagation process. The loss of vertical phase coherence affects the time localization of events

such as transients. As a result, transients are often smeared in signals modified with PV-TSM

(Figure 4.10). Furthermore, output signals of PV-TSM often have a very distinct sound coloration
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Figure 4.10: Illustration of a smeared transient as a result of applying PV-TSM. The input signal x has been
stretched by a factor of α = 1.8 to yield the output signal y.

known as phasiness [127], an artifact also caused by the loss of vertical phase coherence. Signals

suffering from phasiness are often described as being reverberant, having “less bite,” or a “loss of

presence” [128].

4.1.4.6 Tricks of the Trade

The phase vocoder technique highly benefits from frequency estimates that are already close

to the instantaneous frequencies as well as from a small analysis hopsize (resulting in a small

∆t). In PV-TSM, the frame length N is therefore commonly set to a relatively large value. In

practice, N typically corresponds to roughly 100 milliseconds in order to achieve a high frequency

resolution of the STFT.

To reduce the loss of vertical phase coherence in the phase vocoder, Laroche and Dolson proposed

a modification to the standard PV-TSM in [128]. Their core observation is that a sinusoidal

component may affect multiple adjacent time-frequency bins of a single analysis frame. Therefore,

the phases of these bins should not be updated independently, but in a joint fashion. A peak in a

frame’s magnitude spectrum is assumed to be representative of a particular sinusoidal component.

The frequency bins with lower magnitude values surrounding the peak are assumed to be affected

by the same component as well. In the phase propagation process, only the time-frequency bins

with a peak magnitude are updated in the usual fashion described in Equation (4.28). The

phases of the remaining frequency bins are locked to the phase of the sinusoidal component

corresponding to the closest peak. This procedure allows to locally preserve the signal’s vertical

phase coherence. This technique, also known as identity phase locking, leads to reduced phasiness

artifacts and less smearing of transients.

A second remarkable finding of Laroche and Dolson is that in case the stretching factor α ∈ N
there exists a very simple version of PV-TSM that even reduces phasiness artifacts and transient
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smearing. In this case, instead of using the phase propagation procedure defined in Equation (4.28)

one can simply compute the modified phase by

ϕMod(m, k) = α · ϕ(m, k) . (4.30)

We discuss this version in more detail in Section 4.3.

Another approach to reduce phasieness artifacts is the phase vocoder with synchronized overlap-

add (PVSOLA) and similar formulations [142, 121, 31, 30]. The core observation of these

methods is that the original vertical phase coherence is usually lost gradually over the course of

phase-updated synthesis frames. Therefore, these procedures “reset” the vertical phase coherence

repeatedly after a fixed number of frames. The resetting is done by copying an analysis frame

unmodified to the output signal and adjusting it in a WSOLA-like fashion. After having reset the

vertical phase coherence, the next synthesis frames are again computed by the phase propagation

strategy.

To reduce the effect of transient smearing, other approaches include transient preservation

schemes, similar to those for WSOLA. In [155], transients are identified in the input signal, cut

out from the waveform, and temporarily stored. The remaining signal, after filling the gaps

using linear prediction techniques, is modified using PV-TSM. Finally, the stored transients are

relocated according to the stretching factor and reinserted into the modified signal.

4.2 TSM Based on Harmonic-Percussive Separation (HP-TSM)

4.2.1 The Procedure

As we have seen in the previous sections, percussive sound components and transients in the

input signal cause issues with most fundamental TSM procedures. In this section, we present a

simple, yet effective method that avoids an explicit detection of transients, but is still capable

of preserving them to a high degree. This contribution was originally presented in [48]. Our

procedure’s core principle is visualized in Figure 4.11. The shown input signal (Figure 4.11a)

consists of a tone played on a violin (harmonic) superimposed with a single click of castanets

halfway through the signal (percussive). The procedure’s core idea is to first decompose the input

signal into a harmonic and a percussive component (Figure 4.11b), using the computationally

efficient algorithm by Fitzgerald [67] that we already discussed in Section 3.1. Here, one main

observation is that the percussive component contains, besides other noise-like sounds, all

the transients. The two components are then modified with two different TSM procedures

(Figure 4.11c). The harmonic component is processed with PV-TSM that yields good TSM

results for harmonic signals but smears sudden events like transients noticeably (see Section 4.1.4).
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PV-TSM 

HPS 

Superposition 

OLA 

Harmonic component Percussive component 
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Figure 4.11: Overview of the proposed TSM approach based on harmonic-percussive separation. (a): Input
audio signal x. (b): Separation in harmonic component xh (left) and percussive component xp (right). (c): TSM
results for the harmonic component using the PV-TSM (left) and for the percussive component using OLA (right).
(d): Superposition of the output signals.

As for the percussive component, we use OLA with a very small frame size. Although OLA is

considered a poor TSM technique in particular for harmonic sounds, it is capable of preserving

the sound of transients without any explicit transient detection (see Section 4.1.2). Finally, the

two modified components are superimposed to form the output of our procedure 3 (Figure 4.11d).

Even though OLA may introduce artifacts in case some harmonic sounds remain in the percussive

component due to an imperfect decomposition, those artifacts are often perceptually masked by

the TSM result of the harmonic component and vice versa.

To evaluate our proposed method, we performed a listening experiment (see Section 4.2.3). The

results suggest that our relatively simple approach is almost always superior to PV-TSM or

WSOLA and can also compete with a commercial state-of-the-art TSM algorithm.

3A conceptually similar strategy for TSM has been proposed by Verma and Meng in [218] where they use
a sines+transients+noise signal model as discussed in Section 3.3.1 to parameterize a given signal’s sinusoidal,
transient, and noise-like sound components. The estimated parameters are then modified in order to synthesize
a time-scaled output signal. However, their procedure still relies on an explicit transient detection in order to
estimate appropriate parameters for the transient sound components.
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4.2.2 Tricks of the Trade

Concerning parameters settings, there are a few points to notice. As discussed in Chapter 3, the

most crucial parameter to influence the harmonic-percussive separation procedure’s result is the

frame length N of the STFT. The larger N , the larger the portion of the signal that is assigned

to the harmonic component xh. This is the case since a transient is an event of very short

temporal duration and its influence on the structure of the magnitude spectrogram Y therefore

decreases when N becomes larger. The length of the median filters 2`h + 1 and 2`p + 1 on the

other hand do not influence the separation too much as long as no extreme values are chosen

(see Section 3.3.2). Our experiments have shown that setting N = 1024 and `h = `p = 5 when

using a sampling rate of 22050 Hz for the original music signals yields decompositions in which

the percussive component contains the transients while showing only very few harmonic residual

sounds. In further experiments it showed that for obtaining such results only the ratio between

the sampling rate and the frame size is important. For example, we obtain perceptually similar

decompositions by setting N = 2048 for signals sampled at 44100 Hz. Systematic experiments on

choosing optimal values for N and ` are left as future work and may further improve the TSM

results of our proposed procedure.

For the phase vocoder, it is important to use large frame sizes N to get a good frequency

resolution in the STFT computation (see Section 4.1.4.6). We therefore use a frame size of

4096 samples for signals sampled at 22050 Hz. Furthermore, we implemented the identity phase

locking strategy presented in [128] to increase the overall quality of the technique.

Finally, as mentioned above, for OLA it is crucial to use a very small frame length N to ensure

the accurate temporal location and sound preservation of the percussive signal elements. In our

implementation we set N to 256 samples.

4.2.3 Evaluation

To evaluate our proposed method, we conducted an online listening experiment (all sources of the

experiment can be found at [47]) where we compared five TSM algorithms: our proposed method

based on harmonic-percussive separation (HP-TSM), the commercial élastique algorithm [231]

(EL-TSM) which is included in a wide range of music software nowadays and can be considered one

of the important state-of-the-art algorithms, the phase vocoder with identity phase locking [128]

(PV-TSM), the phase vocoder with transient preservation by Nagel and Walther as described

in [155] (NW-TSM), and WSOLA [216]. As evaluation dataset we used the ten short audio

excerpts listed in Table 4.1. The set was compiled to cover a wide range of aspects in music signals.

Among the excerpts are purely percussive signals, monophonic as well as highly polyphonic

signals with different instrumentations, simple synthetic sound mixtures as well as professionally

mixed studio recordings. The ten excerpts were stretched with each of the five procedures,
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Item name Description

Bongo Regular beat played on bongos.

CastanetsViolin Solo violin overlayed with castanets.

DrumSolo A solo performed on a drum set.

Glockenspiel Monophonic melody played on a glockenspiel.

Jazz Synthetic polyphonic sound mixture of a trumpet, a piano, a bass and
drums.

Pop Synthetic polyphonic sound mixture of several synthesizers, a guitar
and drums.

SingingVoice Solo male singing voice.

Stepdad Excerpt from My Leather, My Fur, My Nails by the band Stepdad.

SynthMono Monophonic synthesizer with a very noisy and distorted sound.

SynthPoly Sound mixture of several polyphonic synthesizers.

Table 4.1: List of audio excerpts.

once with a moderate stretching factor α = 1.2 and a stronger stretching factor α = 1.8 as

they realistically occur in applications like audio remixing (TSM results for the more extreme

stretching factors α = 0.5 and α = 3 can be found at [47]). This results in 100 test items in total.

In the experiment the test listeners were sequentially presented with groups of five stretched

items of one excerpt together with the original excerpt. They were asked to rate the five output

signals on the five point mean opinion score scale from 1 (bad) to 5 (excellent). Overall 22 people,

most of them with a background in audio signal processing, participated in the experiment. The

results are given in Table 4.2.

One can see that the two algorithms HP-TSM and EL-TSM performed significantly better than

the remaining three algorithms. For highly percussive excerpts like Bongo, CastanetsViolin and

DrumSolo, HP-TSM even outperformed all other tested TSM procedures. These good results can

mainly be devoted to the well-preserved transients in the modified signals. Looking for example

at the TSM results of all five algorithms for the CastanetsViolin excerpt in Figure 4.12 this

becomes obvious. For EL-TSM, PV-TSM and WSOLA (Figure 4.12c, d and f) one can observe

stuttering or smearing artifacts at transient positions. NW-TSM (Figure 4.12e) is actually able

to preserve the transients perfectly, but the tolerance region around the actual transients, which

are copied from the original and reinserted into the modified signal, make the TSM result sound

very unnatural (see Section 4.1.4.6). This shows that even when transients are identified correctly,

the re-insertion into the modified signal is another problematic step causing unnatural transitions
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Bongo 4.73 4.32 1.68 2.27 1.64 4.09 3.50 1.36 1.59 1.41

CastanetsViolin 4.41 4.36 1.95 1.68 2.77 3.91 3.68 1.64 1.64 2.27

DrumSolo 4.27 3.77 3.09 1.95 1.68 2.95 3.09 1.77 1.32 1.32

Glockenspiel 3.18 4.45 2.86 1.82 2.18 3.14 3.91 2.64 1.55 2.00

Jazz 4.55 4.09 3.77 2.00 2.14 3.68 3.27 2.23 1.86 1.23

Pop 4.23 4.00 3.73 1.68 1.73 3.59 3.27 2.41 2.14 1.68

SingingVoice 2.59 4.27 3.32 1.73 3.82 2.91 3.77 2.91 1.45 2.32

Stepdad 4.32 3.82 3.64 1.82 2.14 3.86 3.36 2.91 1.73 1.82

SynthMono 2.82 4.05 2.32 1.95 2.82 2.45 3.09 2.50 1.95 2.27

SynthPoly 3.41 4.14 2.55 2.68 3.50 3.09 3.91 2.05 2.91 2.64

∅ 3.85 4.13 2.89 1.96 2.44 3.37 3.49 2.24 1.81 1.90

Table 4.2: Mean opinion scores for all test items.

and also explains the bad performance of NW-TSM in the listening experiment. In contrast,

HP-TSM (Figure 4.12b) succeeds in keeping the transients rather crisp while also preserving the

harmonic component around the transients.

Also for complex sound mixtures with strong percussive components like Jazz, Pop and Stepdad

HP-TSM scored best. This shows, that the harmonic-percussive separation actually performs

well, also on very complex musical signals. Noticeable are the poorer performances of HP-TSM for

the excerpts SynthMono and SingingVoice. For SynthMono, a closer investigation of HP-TSM’s

output signals reveals that the modified harmonic components suffers from phasiness, stemming

from the harmonic component being stretched with PV-TSM (see Section 4.1.4.5). The strong

presence of this artifact can be made responsible for the lower scores. Therefore, by reducing

phasiness artifacts in the TSM results of the harmonic components one may further improve

our proposed procedure. For SingingVoice, it shows that for this excerpt the separation into

a harmonic and a percussive component is problematic. Due to the spectral characteristics of

human voice, which are neither of clearly harmonic nor clearly percussive nature, the portions of

the spectrogram which are assigned to the percussive component still cover large amounts of

harmonic content. Therefore, the assumption that the percussive component is mainly noise-like

is violated and, when modifying this component with OLA, the introduced phase jump artifacts

are too strong to be masked by the modified harmonic component. This also explains why

PV-TSM scores better than HP-TSM for this excerpt. However, HP-TSM performed significantly

better than PV-TSM on average and is comparable in quality to the proprietary and highly
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Time [sec] 

(f) 

(e) 

(d) 

(c) 

(b) 

(a) 

5.1 5.15 5.2 5.25 5.3 

9.15 9.25 9.2 9.3 9.4 9.35 9.5 9.45 9.55 

Figure 4.12: (a): Excerpt of the CastanetsViolin Item. (b)-(f): Output signals for a stretching factor α = 1.8
of (b): HP-TSM. (c): EL-TSM. (d): PV-TSM. (e): NW-TSM. (f): WSOLA.

optimized EL-TSM on the tested dataset. Considering the simplicity of our method, this is quite

remarkable. Our contribution shows that a robust and perceptually transparent preservation of

transients is essential for a “good” TSM result. Furthermore, it shows that to achieve such a

preservation, an explicit detection of transients is not necessary.

Concerning the running time, the harmonic-percussive separation can be implemented efficiently

and the additional computation time is independent of the stretching factor α. For example, for

stretching one minute of input audio material with stretching factors of α = 1.2 and α = 1.8, our

MATLAB implementation of HP-TSM needed four seconds and five seconds, respectively.

4.3 TSM Based on Cascading (Cascade-TSM)

4.3.1 Overview

As mentioned in Section 4.1.4.6, Laroche and Dolsen outline a version of PV-TSM in [128] that

is capable of minimizing phasiness artifacts and transient smearing for the special case that

the stretching factor is an integer, i.e., α ∈ N (Int-PV-TSM). However, when implementing
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this procedure, one needs to account for several pitfalls not discussed in the original paper.

Furthermore, constraining α to be an integer obviously sets some limitations on the usefulness of

the procedure.

In this section, we propose an extension to Int-PV-TSM that allows for arbitrary stretching

factors α ∈ Q+ by cascading it with the previously introduced HP-TSM. We first review the

mathematical foundations of Int-PV-TSM in Section 4.3.2, discuss implementation issues in

Section 4.3.3, and show how to cascade the procedure with HP-TSM in Section 4.3.4.

4.3.2 PV-TSM for Integer Stretching Factors (Int-PV-TSM)

For the case that the stretching factor is an integer α ∈ N, Laroche and Dolson state in [128]

that instead of computing the modified phases ϕMod by phase propagation, one can also compute

them by

ϕMod(m, k) = α · ϕ(m, k) . (4.31)

Note that this implies that, for α ∈ N, it is not necessary to derive instantaneous frequencies. In

order to show this, let us recall the phase propagation formula from Equation (4.28):

ϕMod(m+ 1, k) = ϕMod(m, k) + F IF
coef(m, k)

Hs

Fs
. (4.32)

We can rewrite this recursive definition by

ϕMod(m, k) = ϕMod(0, k) +
m−1∑
n=0

[
F IF

coef(n, k)
Hs

Fs

]
. (4.33)

Note that this formula is in closed form as long as ϕMod(0, k) is defined as some fixed value.

Plugging in the definition of F IF
coef from Equation (4.26) yields

ϕMod(m, k) = ϕMod(0, k) + (4.34)
m−1∑
n=0

[(
Fcoef(k) + Ψ

(
ϕ(n+ 1, k)−

(
ϕ(n, k) + Fcoef(k)

Ha

Fs

))
Fs

Ha

)
Hs

Fs

]
= ϕMod(0, k) + (4.35)

m−1∑
n=0

[
Fcoef(k)

Hs

Fs
+ Ψ

(
ϕ(n+ 1, k)−

(
ϕ(n, k) + Fcoef(k)

Ha

Fs

))
Hs

Ha

]
.
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With α = Hs/Ha we get

ϕMod(m, k) = ϕMod(0, k) + (4.36)
m−1∑
n=0

[
Fcoef(k)

Hs

Fs
+ Ψ

(
ϕ(n+ 1, k)−

(
ϕ(n, k) + Fcoef(k)

Ha

Fs

))
α

]
= ϕMod(0, k) + (4.37)

m−1∑
n=0

[
Fcoef(k)

Hs

Fs
+ Ψ

(
ϕ(n+ 1, k)− ϕ(n, k)− Fcoef(k)

Ha

Fs

)
α

]
.

Using the definition of the principal argument function from Equation (4.22) yields

ϕMod(m, k) = ϕMod(0, k) + (4.38)
m−1∑
n=0

[
Fcoef(k)

Hs

Fs
+

(
ϕ(n+ 1, k)− ϕ(n, k)− Fcoef(k)

Ha

Fs
+ γnk

)
α

]
= ϕMod(0, k) + (4.39)

m−1∑
n=0

[
Fcoef(k)

Hs

Fs
− Fcoef(k)

α ·Ha

Fs
+

(
ϕ(n+ 1, k)− ϕ(n, k) + γnk

)
α

]
,

for a suitable γnk ∈ Z. Since Hs = α ·Ha the equation reduces to

ϕMod(m, k) = ϕMod(0, k) +
m−1∑
n=0

[
(ϕ(n+ 1, k)− ϕ(n, k) + γnk )α

]
(4.40)

= ϕMod(0, k) + α
m−1∑
n=0

[
ϕ(n+ 1, k)− ϕ(n, k) + γnk

]
(4.41)

= ϕMod(0, k) + α
m−1∑
n=0

[
ϕ(n+ 1, k)− ϕ(n, k)

]
+ α

m−1∑
n=0

γnk (4.42)

= ϕMod(0, k) + α

[
ϕ(m, k)− ϕ(0, k)

]
+ α

m−1∑
n=0

γnk . (4.43)

Note that in case α ∈ N, the sum in (4.43) has always an integer value since γnk ∈ Z. It

is therefore irrelevant for the phase value ϕMod(m, k) and can be dropped. When setting

ϕMod(0, k) = α · ϕ(0, k) we get

ϕMod(m, k) = α · ϕ(0, k) + α

[
ϕ(m, k)− ϕ(0, k)

]
(4.44)

= α · ϕ(m, k) (4.45)

which concludes the proof of Equation (4.31).
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𝑑 2𝑑 

𝑑 2𝑑 
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0 −𝑁/2 𝑁/2 − 1 0 −𝑁/2 𝑁/2 − 1 

0 𝑁 − 1 0 𝑁 − 1 

Figure 4.13: Int-PV-TSM for a single frame xm. (a): Original frame xm. Phases are measured at the frame’s
center (dashed blue line). (b): xMod

m for α = 2. (c): Original frame xm. Phases are measured at the frame’s left
border (dashed blue line). (d): xMod

m for α = 2. The transient is cyclically shifted.

Int-PV-TSM has the advantage that the process of computing instantaneous frequencies by using

the phase vocoder can be skipped. This not only simplifies the phase update but also guarantees

that the modified phases are correct—unlike as in PV-TSM where errors in the instantaneous

frequency estimation propagate through all modified phases. It shows that the absence of phase

errors also reduces the effects of transient smearing and phasieness artifacts. However, when

implemented naively the output signals of Int-PV-TSM still suffer from artifacts, which we

discuss next.

4.3.3 Implementation Issues

Multiplying the phases of a frame xm with a factor α ∈ N as defined by Equation (4.31) has

an effect on the localization of sound events within the frame. Loosely speaking, the operation

scales the position of sound events by α with respect to the point in the frame where the phase

was measured. This is visualized in Figure 4.13. In Figure 4.13a we see a frame xm containing a
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transient that is located at a distance of d samples from the frame’s center—the point where

the phases are measured when applying the STFT as defined in Equation (4.12) 4. Updating

the frame’s phases by Equation (4.31) with a stretching factor α = 2 results in the frame xMod
m

shown in Figure 4.13b. Here, the transient’s position was scaled by the factor α, relative to the

frame’s center. In the context of Int-PV-TSM, this relocation is actually desirable. Considering

the whole original input signal x, the transient is initially located at the position Ha ·m+ d by

Equation (4.1). When reconstructing the stretched output signal by Equation (4.2), the modified

transient is located at

Hs ·m+ α · d = α ·Ha ·m+ α · d (4.46)

= α(Ha ·m+ d) (4.47)

in the output signal y and is therefore correctly relocated to α times its original position.

When implementing Int-PV-TSM, the situation is usually slightly different. In programming

languages such as MATLAB [140], audio signals are typically represented as vectors of finite

length. An analysis frame xm may therefore be represented by a vector xm of length N such that

xm(r) = xm(r −N/2) , (4.48)

for r ∈ [0 : N − 1]. Computing the frame’s Fourier transform can be done by multiplying xm with

the (N ×N) discrete Fourier transform matrix

DFTN (r, k) = exp(−2πikr/N) , (4.49)

for r, k ∈ [0 : N−1], see also [146, Chapter 2.4]. The resulting vector of complex values represents

the frame’s Fourier coefficients that also encode the phase information. However, since xm’s

indices run in the interval r ∈ [0 : N − 1] (and not in [N/2 : N/2− 1] as in Equation (4.12)) the

phases are now measured with respect to the frames, beginning, not it’s center. This situation

is visualized in Figure 4.13c that shows the same frame as in Figure 4.13a, but with the index

range [0 : N − 1]. The distance d is therefore given with respect to the frame’s left border. When

updating the frame’s phases according to Equation (4.31) with α = 2, the transient is relocated

to the position α · d, see Figure 4.13d. However, the position α · d is located outside of the

frame and the transient is therefore cyclically shifted. When reconstructing the output signal y

according to Equation (4.2), the transient is therefore not located correctly. In Int-PV-TSM this

may cause artifacts that are similar to transient doubling (see Section 4.1.3.2).

4A time-frequency bin’s phase ϕ(m, k) represents the phase of the sinusoidal component X(m, k) · exp(2πikr/N)
at r = 0. Since frames are centered around zero by Equation (4.1), phase values obtained by the STFT as defined
in Equation (4.12) are measured with respect to the frame’s center.
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Figure 4.14: Strategy to prevent incorrect relocations of sound events in implementations of Int-PV-TSM. (a):
Frame xm. (b): Zero padded frame. (c): Circularly shifted frame. (d): Phase-updated frame. (e): Second
circular shift. (f): Frame with removed zero pad.

To avoid this kind of incorrect relocations of sound events in implementations of Int-PV-TSM, it

is both necessary to measure the phase at the frame’s center as well as to prevent cyclic shifts of

sound events. A strategy to approach both tasks is visualized in Figure 4.14. Figure 4.14a shows

a frame xm that contains two transient sound events. In a first step, the vector representing the

frame is symmetrically padded with α ·N/2 zeros (marked red in Figure 4.14b). The idea behind

this operation is that any sound event in the original frame that would be cyclically shifted by

the phase update is instead moved into the zero-padded region. Since the largest distance a

sound event can have from the frame’s center is N/2 samples, the region must have a size of at

least α ·N/2 in order to prevent sound events from cyclically reentering the original frame. In a

second step the padded frame is circularly shifted by half its length. This operation, also known

as fftshift, moves the frame’s center to its border (Figure 4.14c). When updating the frame’s

phases according to Equation (4.31), sound events are now relocated with respect to the original

frame’s center (indicated by the blue dashed arrows in Figure 4.14). In Figure 4.14d one can
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Figure 4.15: Example of an audio signal stretched with Cascade-TSM by a factor of α = 5.1. (a): Input signal
x. (b): Output signal of Cascade-TSM for the cascade coarse→fine. (c): Output signal of Cascade-TSM for the
cascade fine→coarse. (d): Output signal of HP-TSM.

also see that the second transient is now located in the zero padded region. Finally, the modified

frame is again circularly shifted (Figure 4.14e) and the zero pad is removed (Figure 4.14f). In the

resulting frame, the first transient is relocated correctly while the second one is prevented from

cyclically reentering the frame. Therefore, this strategy allows to overcome the issues discussed

before. Note that the second transient, although not being included in this frame any longer, will

still be contained in the output signal of Int-PV-TSM since it is also contained in other frames

where it will not be removed by the described procedure.

4.3.4 Cascade-TSM

In order to stretch input signals by arbitrary stretching factors α ∈ Q+, we cascade HP-TSM

and Int-PV-TSM. This cascaded procedure constitutes a novel TSM approach that we call

Cascade-TSM. Given an input signal x and a stretching factor α, the core idea is to sequentially

stretch x by a factor of

α(coarse) = max (1, round(α)) = max (1, bα+ 0.5c) , (4.50)

using Int-PV-TSM and by

α(fine) =
α

α(coarse)
, (4.51)
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using HP-TSM. When cascading the two procedures, x is stretched by α(coarse) ·α(fine) = α. Note

that by the definitions of α(coarse) and α(fine), Cascade-TSM reduces to HP-TSM for α < 1.5.

Cascade-TSM yields output signals with high quality, even for rather extreme stretching factors

(α > 3). Figure 4.15a shows an excerpt of our running example—a tone played on a violin

with a single click of castanets at the excerpt’s center. This input signal should be stretched

by a factor of α = 5.1 using Cascade-TSM. To this end, it is first modified with α(coarse) = 5

using Int-PV-TSM and afterwards stretched a second time by α(fine) = 1.02 using HP-TSM.

The output of this cascade is shown in Figure 4.15b. We can see that the transient, although

being slightly prolonged, is still present. When listening to the signal, it shows that the transient

actually has an acceptable quality. Note that instead of first applying Int-PV-TSM for the coarse

stretching and HP-TSM for the fine adjustment afterwards (coarse→fine), it is also possible to

first apply HP-TSM and Int-PV-TSM in the second step (fine→coarse). The output signal of

this cascade is shown in Figure 4.15c. When comparing the two cascade’s output signals, both

visually and acoustically, they are rather similar. However, applying the cascade fine→coarse

is, in this example, about three times faster than applying the cascade coarse→fine in terms of

computation time. The reason for this is that HP-TSM is computationally more demanding than

Int-PV-TSM, mainly due to the harmonic percussive separation. In the cascade fine→coarse,

HP-TSM is applied to a short input signal while being applied to a long input signal in the

cascade coarse→fine. This explains the difference in runtime. As a final comparison, Figure 4.15d

shows the output signal when using only HP-TSM to stretch the signal. Here we see that OLA

introduces significant stuttering into the output signal for such an extreme stretching factor and

is therefore is not capable of preserving the transient properly. This shows that Cascade-TSM is

better suited for modifications with large stretching factors than HP-TSM.

4.4 Applications of TSM

4.4.1 Music Synchronization—Non-linear TSM

In scenarios like automated soundtrack generation [147] or automated DJing [19, 110], it is

often necessary to synchronize two or more music recordings by aligning musically related beat

positions in time. However, music recordings do not necessarily have a constant tempo. In this

case, stretching or compressing the recordings by a constant factor α is insufficient to align their

beat positions. Instead, the recordings’time-scales need to be modified in a non-linear fashion.

The goal of non-linear TSM is to modify an audio signal according to a strictly monotonously

increasing time-stretch function τ : R → R, which defines a mapping between points in time

(given in seconds) of the input and output signals. Figure 4.16 shows an example of such a

function. The first part, shown in red, has a slope greater than one. As a consequence, the red
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Figure 4.16: Example of a non-linear time-stretch function τ .

region in the input signal is mapped to a larger region in the output, resulting in a stretch. The

slope of the function’s second part, shown in blue, is smaller than one, leading to a compression

of this region in the output. One possibility to realize this kind of non-linear modifications is

to define the positions of the analysis frames according to the time-stretch function τ , instead

of a constant analysis hopsize Ha. The process of deriving the analysis frames’ positions is

presented in Figure 4.16. Given τ , we first fix a synthesis hopsize Hs as we did for linear TSM

(see Section 4.1). From this, we derive the synthesis instances sm ∈ R (given in seconds), which

are the positions of the synthesis frames in the output signal:

sm =
m ·Hs

Fs
. (4.52)

By inverting τ , we compute the analysis instances am ∈ R (given in seconds):

am = τ−1(sm) . (4.53)

When using analysis frames indicated by the analysis instances for TSM with a procedure of our

choice, the resulting output signal is modified according to the time-stretch function τ . To this

end, all of the previously discussed TSM procedures (except for Int-PV-TSM and Cascade-TSM)

can also be used for non-linear TSM.

A very convenient way of defining a time-stretch function is by introducing a set of anchor points.

An anchor point is a pair of time positions where the first entry specifies a time position in the
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Figure 4.17: (a): Score of the first five measures of Beethoven’s Symphony No. 5. (b): Waveforms of two
performances. Corresponding onset positions are indicated by red arrows. (c): Set of anchor points (indicated in
red) and inferred time-stretch function τ . (d): Onset-synchronized waveforms of the two performances.

input signal and the second entry is a time position in the output signal. The actual time-stretch

function τ is then obtained by a linear interpolation between the anchor points. Figure 4.17

shows a real-world example of a non-linear modification. In Figure 4.17b, we see the waveforms

of two recorded performances of the first five measures of Beethoven’s Symphony No. 5. The

corresponding time positions of the note onsets are indicated by red arrows. Obviously, the first

recording is longer than the second. However, the performances’ tempi do not differ by a constant

factor. While the eighth notes in the first and third measure are played at almost the same tempo

in both performances, the durations of the half notes (with fermata) in measures two and five

are significantly longer in the first recording. The mapping between the note onsets of the two

performances is therefore non-linear. In Figure 4.17c, we define eight anchor points that map the

onset positions of the second performance to the onset positions of the first performance (plus two

additional anchor points aligning the recordings’ start times and end times, respectively). Based
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Figure 4.18: Pitch-shifting via resampling and TSM. (a): Spectrogram of an input audio signal. (b): Spectrogram
of the resampled signal. (c): Spectrogram after TSM application.

on these anchor points and the derived time-stretch function τ , we then apply the TSM procedure

of our choice to the second performance in order to obtain a version that is onset-synchronized

with the first performance (Figure 4.17d).

4.4.2 Pitch-Shifting

Pitch-shifting is the task of changing an audio recording’s pitch without altering its length—it

can be seen as the dual problem to TSM. While there are specialized pitch-shifting procedures

[91, 186], it is also possible to approach the problem by combining TSM with resampling. The

core observation is that resampling a given signal and playing it back at the original sampling rate

changes the length and the pitch of the signal at the same time5. To pitch-shift a given signal, it

is therefore first resampled and afterwards time-scale modified in order to compensate for the

change in length. More precisely, an audio signal, sampled at a rate of F
(in)
s , is first resampled

to have a new sampling rate of F
(out)
s . When playing back the signal at its original sampling

rate F
(in)
s , this operation changes the signal’s length by a factor of F

(out)
s /F

(in)
s and scales its

frequencies by the term’s inverse. For example, musically speaking, a factor of F
(out)
s /F

(in)
s = 1

2

increases the pitch content by one octave. To compensate for the change in length, the signal

needs to be stretched by a factor of α = F
(in)
s /F

(out)
s , using a TSM procedure.

To demonstrate this, we show an example in Figure 4.18, where the goal is to apply a pitch-shift of

one octave to the input audio signal. The original signal has a sampling rate of F
(in)
s = 44100 Hz

(Figure 4.18a). To achieve the desired pitch-shift, the signal is resampled to F
(out)
s = 22050 Hz

5The same effect can be simulated with vinyl records by changing the rotation speed of the record player.
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Figure 4.19: Frequency spectra for a fixed frame m of different versions of a singing voice recording. The spectral
envelopes are marked in red. (a): Original spectrum X(m) with spectral envelope Γm. (b): Pitch-shifted spectrum
XShift(m) with spectral envelope ΓShift

m . (c): Pitch-shifted spectrum XMod(m) with adapted spectral envelope.

(Figure 4.18b). One can see that the resampling changed the pitch of the signal as well as its

length when interpreting the signal as still being sampled at F
(in)
s = 44100 Hz. While the change

in pitch is desired, the change in length needs to be compensated for. Thus, we stretch the signal

by a factor of α = 44100 Hz/22050 Hz = 2 to its original length (Figure 4.18c).

The quality of the pitch-shifting result crucially depends on various factors. First, artifacts

that are produced by the applied TSM procedure are also audible in the pitch-shifted signal.

However, even when using a high-quality TSM procedure, the pitch-shifted signals generated by

the method described above often sound unnatural. For example, when pitch-shifting singing

voice upwards by several semitones, the modified voice has an artificial sound, sometimes referred

to as the chipmunk effect [226]. Here, the problem is that the spectral envelope, which is the

rough shape of a frequency spectrum, is of central importance for the timbre of a sound. In

Figure 4.19a, we see a frame’s frequency spectrum from a singing voice recording. Due to the

harmonic nature of the singing voice, the spectrum shows a comb-like pattern where the energy

is distributed at multiples of a certain frequency—in this example roughly 250 Hz. The peaks

in the pattern are called the harmonics of the singing voice. The magnitudes of the harmonics
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follow a certain shape which is specified by the spectral envelope (marked in red). Peaks in the

spectral envelope are known as formants. In the example from Figure 4.19a, we see four formants

at around 200 Hz, 2200 Hz, 3100 Hz, and 5900 Hz. The frequency positions of these formants are

closely related to the singing voice’s timbre. In Figure 4.19b, we see the spectrum of the same

frame after being pitch-shifted by four semitones with the previously described pitch-shifting

procedure. Due to the resampling, the harmonics’ positions are scaled. The spectral envelope

is therefore scaled as well, relocating the positions of the formants. This leads to a (usually

undesired) change in timbre of the singing voice.

One strategy to compensate for this change is outlined in [28]. Let X and XShift be the STFTs of

a given input signal x and its pitch-shifted version xShift, respectively. Fixing a frame index m, let

X(m) and XShift(m) be the frequency spectra of the mth frames in X and XShift. Furthermore,

let Γm : [0 : N − 1] → R and ΓShift
m : [0 : N − 1] → R denote the spectral envelopes of X(m)

and XShift(m), respectively. Our goal is to compute modified spectra XMod(m) that have the

frequency content of XShift(m) but the original spectral envelopes Γm. To this end, we normalize

the magnitudes of XShift(m) with respect to its spectral envelope ΓShift
m and then scale them by

the original envelope Γm:

XMod(m, k) = XShift(m, k) · Γm(k)

ΓShift
m (k)

. (4.54)

In Figure 4.19c we see the frame’s spectrum from Figure 4.19b after the envelope adaption,

leading to a signal that sounds more natural.

There exist several approaches to estimate spectral envelopes, many of them either based on

linear predictive coding (LPC) [139] or on the cepstrum (the inverse Fourier transform of the

logarithmic magnitude spectrum) [178, 177]. Generally, the task of spectral envelope estimation

is highly complex and error-prone. In envelope or formant-preserving pitch-shifting methods,

it is often necessary to manually specify parameters (e.g., the pitch range of the sources in the

recording) to make the envelope estimation more robust.

4.4.3 Websources

Various free implementations of TSM procedures are available in different programming languages.

MATLAB implementations of OLA, WSOLA, PV-TSM, and TSM based on HPS, as well as

additional test and demo material can be found in the TSM Toolbox [40, 39]. A further MATLAB

implementation of PV-TSM can be found at [57]. PV-TSM implemented in Python is included

in LibROSA [136]. Furthermore, there are open source C/C++ audio processing libraries that

offer TSM functionalities. For example, the Rubber Band Library [12] includes a transient

preserving PV-TSM and the SoundTouch Audio Processing Library [164] offers a WSOLA-like
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TSM procedure. Finally, there also exist proprietary commercial implementations such as the

élastique algorithm by zplane [231].

4.5 Conclusions and Further Notes

In this chapter, we reviewed time-scale modification of music signals, presented fundamental

principles, and discussed various well-known time and frequency-domain TSM procedures.

Additionally, we pointed out more involved procedures proposed in the literature, which are—to

varying extents—based on the fundamental approaches we reviewed. Beyond discussing technical

details, a main motivation was to give illustrative explanations in a tutorial-like style. We also

aimed to foster a deep understanding of the strengths and weaknesses of various TSM approaches

by discussing typical artifacts and the importance of parameter choices.

As a main contribution of this thesis, we proposed two novel TSM approaches that are both

inspired by the idea of combining TSM strategies. The first method is based on separating

an input signal into a harmonic and a percussive component, which are then modified using

two different fundamental TSM procedures. This approach has the advantage that no explicit

transient detection is necessary to preserve transients in the recombined output signal. The

second method builds upon a TSM approach that yields output signals of high quality, but only

for integer stretching factors. We proposed to cascade this approach with our TSM procedure

based on harmonic-percussive separation in order to be able to modify input signals by arbitrary

stretching factors with high quality.

In future research, we would like to further explore the concept of combining fundamental TSM

strategies in order to overcome recurring artifacts like timbre changes in output signals. An

interesting idea is to decompose a given audio signal not only into a harmonic and a percussive

component, but into a harmonic, a percussive, and a residual component as discussed in Chapter 3.

As stated in Section 3.4, the residual component often captures the “texture” of a sound. This

kind of decomposition might therefore be helpful to better preserve the input signal’s timbre in a

TSM procedure’s output signal.
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Chapter 5

Cascaded Music Signal

Decomposition for Singing Voice

Extraction

In this chapter, we deal with singing voice extraction, the task of separating the singing voice

from accompanying instruments in a music recording. We hereby closely follow our original

contribution presented in [41].

In recent years, a lot of effort has been put into the development of algorithms for extracting

singing voice from music recordings. This interest emerged from both scientific curiosity for

better understanding the characteristics of human singing [116] as well as the commercial need
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Figure 5.1: Schematic overview of dif-
ferent decomposition strategies. Colors
encode sources, shapes depict character-
istics.
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for such techniques in applications such as music remixing, remastering, and production [223].

While the extraction of a specific musical voice from a complex music recording is a difficult

problem in general, the extraction of the singing voice is particularly challenging due to the wide

range of different sounds the human voice is capable of producing. For example, singing voice

can include stable harmonic sounds, transient sounds resulting from plosive or fricative phonemes

in the sung lyrics [124], noise-like breathing sounds, vibrato sounds, and so on.

There exists a large variety of algorithmic approaches to singing voice extraction. A strict

classification of these approaches into specific categories is difficult as many techniques overlap

or combine different ideas. However, to motivate our novel approach for singing voice extraction

described in this chapter, we first take a simplified view on existing procedures and argue that

many of them tend to follow either one of two basic strategies, see Figure 5.1. Approaches

employing a direct decomposition strategy aim to decompose a given music recording directly

into one component that contains the singing voice and one that contains the accompaniment.

These methods are usually based on some observation about a specific characteristic of singing

voice. Examples for such characteristics are the clear and strong harmonic structure of singing

voice [222], its spectral sparseness [104], the high variance of singing voice in contrast to the

repeating structure of accompanying music [174, 68, 138], the presence of vibrato and glissando

in singing voice [207, 113], or the occurrence of specific spectral patterns [137]. Rather than

explicitly extracting the singing voice, these decomposition procedures are designed to extract

the specific characteristic from a given recording. As intended, this usually goes along with

extracting large portions of the singing voice. However, while the resulting decompositions have

an explicit semantic meaning, the procedures are often not designed to also flexibly incorporate

knowledge about additional characteristics.
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Approaches which follow a disassemble and reassemble strategy first decompose the given music

recording into a large set of fine-grained components. Afterwards, all components are classified to

belong to either the singing voice or the accompaniment and reassembled accordingly. Common

techniques to perform this kind of decomposition are non-negative matrix factorization (NMF)

and related formulations [16, 52, 160, 199, 215] or time-frequency decompositions [103]. Although

the fine-grained decomposition yields a high degree of flexibility when reassembling the sources,

the correct classification of the components constitutes a challenging problem. Depending on the

chosen decomposition technique, the components may not even have a semantic interpretation

anymore. The classification can either be done in an unsupervised fashion [16, 103], in a supervised

way [92, 160, 215], or it can be derived from the decomposition process itself [16, 52, 199].

Combining ideas from both strategies, we propose in this chapter a novel approach for singing

voice extraction. Inspired by the disassemble and reassemble strategy, a given music signal

is first split into a set of components. However, contrary to other procedures following this

methodology, we decompose the recording on a coarser granularity level by cascading different

direct decomposition procedures, see Figure 5.1. This yields several advantages. On the one

hand, the resulting mid-level components have an explicit semantic meaning, inherited directly

from the sequence of applied decomposition procedures, which allows for assigning each mid-level

component to either the singing voice or the accompaniment. On the other hand, the cascaded

decomposition is flexible enough to account for multiple characteristics of the singing voice and

the accompaniment. In the end, one mid-level component can, for example, hold sounds stemming

from plosive and fricative phonemes in the singing voice while another mid-level component

holds the harmonic portion of the accompaniment. Because of the explicit interpretation of

all mid-level components, their classification can be done on the semantic level based on the

characteristics which are assumed to be captured by the components. Estimates of the singing

voice and the accompaniment are then reassembled by adding up the respective components.

The remainder of this chapter is structured as follows. In Section 5.1, we first exemplarily

discuss sounds as they typical occur in recordings of singing voice and accompanying instruments

and show in what kind of structures they manifest in spectrograms. A review of the proposed

procedure is then given in Section 5.2, see also Figure 5.4. Our objective and subjective evaluation

is described in Section 5.3 and we conclude this chapter in Section 5.4.

5.1 Characteristics of Singing Voice and Accompaniment

In this section, we motivate the choice of decomposition techniques in the cascade discussed

in Section 5.2 by exemplarily investigating a spectrogram of a singing voice recording and a

spectrogram of a recording of accompanying instruments. Although the investigated example, of

course, does not generalize to all music recordings, it can give a feeling of what kinds of different
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Figure 5.2: Real and depicted spectrograms of the singing voice from Bearlin. (a): Full spectrogram. (b):
Tone with stable pitch. (c): Sound stemming from plosive/fricative phonemes in the sung lyrics. (d): Vibrato
singing, strong formant, and breathing sound.

sounds can be typically expected in singing voice and accompaniment. Furthermore, it illustrates

the spectral structures these sounds are usually associated with.

As mentioned above, the human singing voice has a wide range of different sounds that it

can produce. In Figure 5.2a, we see the spectrogram of the singing voice from the music

recording Bearlin (a pop recording with singing voice, accompanied by drums, piano, guitar,

and bass), taken from the SiSEC dataset [224, 4] (separate tracks for the singing voice and the

accompaniment are available for all recordings in this dataset). The left part of Figure 5.2b shows

a magnified excerpt of the spectrogram. In this excerpt, we see a clear harmonic energy pattern

that is typical for singing voice. Here, the singer sings a long tone with a stable pitch, resulting

in a pattern of parallel horizontal lines. In the right part of Figure 5.2b, we see a pictrogram of

this kind of structure. In the remainder of this chapter, we will often use depicted spectrograms

to sketch the ideas behind our proposed decomposition cascade.
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A second kind of structure that is frequently occurring in spectrograms of singing voice can be

seen in Figure 5.2c. The shown vertical structures stem from plosive or fricative phonemes in the

sung lyrics. These sounds are noise-like and spread over a large frequency range. Looking at

Figure 5.2a, note that although one can identify various instances of these vertical structures,

their exact spectral appearance differs and may depend on the respective phoneme. For example,

compare the narrow vertical structure at around second 2.5 resulting from the plosive in the

sung word “down” with the rather broad structure shortly after second 12, stemming from the

fricative in “must”.

Figure 5.2d shows a third spectral pattern that is typical for singing voice. In contrast to

Figure 5.2b, the harmonics shown in this excerpt of the singing voice’s spectrogram do not

run strictly horizontally, but in a downwards, upwards, or wave-like pattern. These kinds of

structures occur when a singer uses vibrato or glissando to make his singing more expressive.

Furthermore, one can also see diffuse regions of energy. These regions may stem from both

strong formants in the singing voice (energy in-between the harmonics) as well as from breathing

sounds.

In Figure 5.3 we investigate spectral structures as they typically occur in the spectrograms of

musical accompaniments. Again, as an illustrative example, we revert to the music recording

Bearlin. In Figure 5.3a we see the full spectrogram of the accompaniment. Even on this

coarse level, one can already notice that the structures present in this spectrogram differ from

those in the spectrogram of the singing voice in Figure 5.2a. One noticeable difference is that

the spectrogram of the accompaniment shows no vibrato or glissando structures. Figure 5.3b

highlights a region of the full spectrogram where we see a stable harmonic energy distribution

that, in this case, mainly originates from the piano. While the presence of vibrato and glissando

is rather common in singing voice, this is often not the case for accompanying instruments. Many

instruments, such as the piano or the accordion, even do not have a direct possibility to vary the

pitch of played notes in a continuous way.

Besides the horizontal structures stemming from the stable harmonic sounds, we can also see

clear vertical structures throughout the spectrogram shown in Figure 5.3a. As already discussed

in Chapter 3, these kind of structures often originate from percussive sounds. In the context

of musical accompaniment, these are usually produced by the drums (especially snare drum,

toms, and hi-hat), but may also stem from strong onsets of other instruments such as piano. In

contrast to vertical structures in Figure 5.2a, stemming from the plosive or fricative phonemes

sung by the singer, the vertical structures originating from the accompanying instruments show

less variation. Closely looking at Figure 5.3a shows that there are mainly two types of vertical

structures that are present at multiple instances. The one kind, for example visible at around

second 12.5, is a bit broader, while the second kind, that is also visible in Figure 5.3c, is thinner
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Figure 5.3: Real and depicted spectrograms of the accompaniment from Bearlin. (a): Full spectrogram. (b):
Piano and bass. (c): Hi-hat hit. (d): Decaying sound of cymbal.

and less strong. Listening to the recording reveals that the broader structure corresponds to hits

of the snare drum while the weaker structures originate from the hi-hat.

A third kind of spectral structure that is frequently occuring in spectrograms of musical accom-

paniments is shown in Figure 5.3d. Here, we see energy that is distributed rather evenly over the

spectrum, slowly decaying over time. In the shown excerpt, this pattern stems from a cymbal

that produces a noise-like sound. Other sources that may produce this kind of diffuse spectral

structure are distorted guitars or percussion instruments like shakers. Finally, reverberation in

the recording may cause reverb tails of percussive sounds, such as snare drum hits, that have a

similar spectral appearance.
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Figure 5.4: Overview of our disassemble and reassemble approach. Audio material is visualized as stylized
spectrograms. Spectral portions of the singing voice are depicted in red, spectral portions of the accompaniment
in blue.

5.2 Cascaded Audio Decomposition

In this section we briefly review the decomposition techniques which we use in order to disassemble

a given music recording into mid-level components. As shown in Figure 5.4, we start by

applying the harmonic-percussive-residual (HPR) decomposition procedure that we introduced

in Chapter 3. The resulting three components are further processed with a fundamental

frequency informed melody-residual (MR) decomposition procedure, a transient-residual (TR)

decomposition procedure, and a sparse-low rank (SL) decomposition procedure, respectively.

Finally, the resulting components are reassembled to form the estimates of the singing voice and

the accompaniment.

91 PhD Thesis, Jonathan Driedger



CHAPTER 5. CASCADED MUSIC SIGNAL DECOMPOSITION FOR SINGING VOICE EXTRACTION

0 

2000 

4000 

6000 
Fr

eq
ue

nc
y 

[H
z]

 

(a) 

0 

2000 

4000 

6000 

Fr
eq

ue
nc

y 
[H

z]
 

(b) 

0 

2000 

4000 

6000 

Fr
eq

ue
nc

y 
[H

z]
 

(c) 

0 2 4 6 8 10 12 14 
0 

2000 

4000 

6000 

Fr
eq

ue
nc

y 
[H

z]
 

(d) 

Time [sec] 

Figure 5.5: Harmonic-percussive-residual decomposition of Bearlin. (a): Full spectrogram. (b): Spectrogram
of harmonic component. (c): Spectrogram of percussive component. (d): Spectrogram of residual component.

5.2.1 Harmonic-Percussive-Residual Decomposition (HPR)

This procedure, which we carefully introduced in Chapter 3, decomposes an audio signal into a

harmonic component that corresponds to horizontal spectral structures, a percussive component

that corresponds to vertical spectral structures, and a residual component that captures sounds

whose spectral structure is neither clearly horizontal nor vertical. Applied to a music recording

with singing voice, the harmonic component usually contains most of the tonal portion of the

singing voice as well as of the accompaniment. The percussive component holds sounds stemming

from plosive or fricative phonemes in the sung lyrics, drum hits, or pronounced instrument onsets.

In the residual component, one can often hear strong vibrato passages, breathing sounds, and

sounds resulting from strong formants in the singing voice as well as noise-like instrument sounds

as for example the decaying sound of a snare drum or an open hi-hat.
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As an example, Figure 5.5a shows the spectrogram of the music recording Bearlin that we

already used as an example in Section 5.1. Figures 5.5b-d show the spectrograms of the harmonic,

the percussive, and the residual components, respectively. Here, one can for example see

that the transients produced by the snare and hi-hat hits, as well as the plosive and fricative

phoneme sounds of the singing voice are contained in the percussive component, see Figures 5.5c.

Furthermore, one can also observe that the strong vibrato passage of the singing voice between

second six and eight is captured by the residual component, see Figures 5.5d. For a detailed

description and further information about the HPR decomposition method, we refer to Chapter 3

as well as to [46].

5.2.2 Melody-Residual Decomposition (MR)

This procedure, initially proposed in [222] as a singing voice extraction technique on its own, is

based on the observation that singing voice usually has a clear and strong harmonic structure.

Similar as in [73], given the spectrogram of a music recording and the fundamental frequency

track of the sung melody (either manually annotated or automatically estimated), the singing

voice is extracted from a spectrogram of the music recording by considering all time-frequency

instances that correspond to the fundamental frequency track or one of its harmonics. This can

be done by constructing a binary mask from the fundamental frequency track and applying it

to the recording’s spectrogram. This estimate, which may still contain portions of spectrally

overlapping sources, is then refined using a technique known as binary weighted non-negative

matrix factorization, see [222]. By subtracting the resulting melody component from the original

recording, the accompaniment can be estimated as well. Applied to the harmonic component of

the previous decomposition step, the resulting mid-level components hold the harmonic portion

of the singing voice and the harmonic portion of the accompaniment, respectively.

Figure 5.6 shows the melody-residual decomposition applied to our running example Bearlin. In

our proposed cascade, the melody-residual decomposition is applied to the harmonic component

of the previous HPR decomposition step, which is shown in Figure 5.6a. In Figure 5.6b, we

see the binary mask derived from the manually annotated fundamental frequency track of

the singing voice. Finally, Figures 5.6c+d show the resulting spectrograms of the mid-level

components holding the harmonic portion of the singing voice as well as the harmonic portion of

the accompaniment, respectively.

5.2.3 Transient-Residual Decomposition (TR)

Initially designed for the extraction of transient noise from speech signals in [208], the core

observation of this decomposition procedure is that transients produced by a specific instru-

ment, like for example a drum, usually occur many times in a given recording. In a spectral
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Figure 5.6: Melody-residual decomposition of the harmonic component of Bearlin. (a): Spectrogram of the
harmonic component from the HPR decomposition. (b): Binary mask derived from the fundamental frequency
track of the singing voice. (c): Spectrogram of melody mid-level component. (d): Spectrogram of residual
mid-level component.

representation, these transients are similar to each other while the spectral structure of speech

is usually more diverse. In Section 5.1 we have seen that this observation also holds for the

percussive components of music recordings to a certain degree. This motivates us to apply the

transient-residual decomposition proposed in [208] to this component. The procedure works as

follows. Given a spectrogram representation of an audio recording, spectral frames of similar

structure (having a similar spectral envelope) are identified as transient candidates, and the

spectrum of a prototype transient is computed by averaging over all of these candidates. This

prototype is then subtracted from the spectrogram at the identified transient positions, yielding

the spectrogram of the residual component. The transient component is then computed by

subtracting the residual component from the original recording. Since a music recording usually

contains different kinds of frequently occurring transients, as for example the ones produced by
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Figure 5.7: Transient-residual decomposition of the percussive component of Bearlin. (a): Spectrogram of the
percussive component from the HPR decomposition. (b): Spectrogram of transient mid-level component. (c):
Spectrogram of residual mid-level component.

the bass drum, the snare, and the hi-hat, we apply this technique to the percussive component

of the HPR decomposition in an iterative fashion. We thus decompose it into one mid-level

component that typically holds the instrument transients as well as a second one typically holding

plosive and fricative phonemes of the singing voice as well as other singing voice residues.

In Figure 5.7a we see the spectrogram of the percussive component from the HPR decomposition

of Bearlin, as well as the spectrograms of the transient and residual mid-level components in

Figures 5.7b+c. When comparing the transient mid-level component in Figure 5.7b with the

spectrogram of the accompaniment in Figure 5.3a, we can see that most of the transients occurring

in the accompaniment are now captured in the transient mid-level component. Furthermore,

also most of the spectral structures stemming from plosive and fricative phonemes in the singing

voice as shown in Figure 5.2c are now captured in the residual mid-level component of the

transient-residual decomposition.
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Figure 5.8: Sparse-low rank decomposition of the residual component of Bearlin. (a): Spectrogram of
the residual component from the HPR decomposition. (b): Spectrogram of sparse mid-level component. (c):
Spectrogram of low rank mid-level component.

5.2.4 Sparse-Low Rank Decomposition (SL)

This decomposition method, which has already been used in the context of singing voice extraction

for example in [104, 109], is based on robust principle component analysis (RPCA) [15]. This

technique splits a given real-valued matrix into the sum of two real-valued matrices, one being

sparse and the other having a low rank, by solving an optimization problem. Here, sparse

means that the sparse matrix should have a small `1-norm (the sum over all its entries should

be minimal) and low-rank means that the low rank matrix should have a small nuclear norm

(the sum of its singular values should be minimal). In [104], RPCA is applied to the magnitude

spectrogram of a given recording. This results in a matrix representing the sparse structures in

the given magnitude spectrogram, as well as a matrix representing its low-rank spectral structures.

These two matrices are then used to derive binary masks for the original spectrogram, similar

as in Equation (3.7). In our cascade, we apply this procedure to the spectrogram of the HPR

decomposition’s residual component. It shows that in this component, the contained formant

and vibrato sounds tend to have a sparse spectral structure. The diffuse instrument sounds

usually occur many times in a spectrally similar way and can be represented by a spectrogram

having a low rank. Therefore, the sparse-low rank decomposition technique is well-suited to split
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the residual component of the first decomposition stage into a mid-level component that contains

formant and vibrato sounds of the singing voice as well as a second mid-level component that

holds diffuse instrument sounds.

In Figure 5.8 we again revert to our running example Bearlin. Figure 5.8a shows the spectrogram

of the residual component from the HPR decomposition. The spectrograms of the components

resulting from applying the sparse-low rank decomposition procedure to this residual component

are shown in Figures 5.8b+c. One can see that, although the sparse mid-level component captures

many structures that clearly belong to the singing voice (for example the vibrato structures

between seconds six and eight), it also contains some noise-like regions of energy that stem from

the accompaniment (for example directly at the beginning, stemming from a hit of the crash

cymbal). Similarly, one can still see some vibrato structures in the the low rank component

(again between seconds six and eight). However, the desired sounds are captured in the respective

components to a large extend.

5.2.5 Reassembling of Singing Voice and Accompaniment

In a last step, the mid-level components resulting from our decomposition cascade are used to

reassemble the singing voice as well as the accompaniment, see Figure 5.4. The estimate of the

singing voice is computed by adding up the melody mid-level component from the melody-residual

decomposition, the residual mid-level component from the transient-residual decomposition, and

the sparse mid-level component from the sparse-low rank decomposition. Similarly, the estimate

of the accompaniment is reassembled from the remaining mid-level components. Figures 5.9a+b

show the spectrograms of the two estimates. When visually comparing these with the original

track’s spectrograms shown in Figures 5.9c+d, one can see that for our running example Bearlin

the estimates come rather close to the original sources. In the next section, we evaluate the

quality of our proposed decomposition cascade systematically.

5.3 Evaluation

We evaluate our proposed procedure in three ways. First, we compare the performance of our

approach with state-of-the-art singing voice extraction methods on a standard dataset by means

of objective source separation evaluation measures. Then, we discuss the results of a subjective

listening experiment, which shows that the singing voice estimates of our procedure have a high

perceptual quality. Finally, we also provide an accompanying website for this paper where one

can find all audio files used in the objective and subjective evaluation as well as many further

audio examples.
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Figure 5.9: Reassembling of the mid-level components. (a): Spectrogram of the reassembled components that
constitute the singing voice estimate. (b): Spectrogram of the reassembled components that constitute the
estimate of the accompaniment. (c): Spectrogram of the original singing voice. (d): Spectrogram of the original
accompaniment.

5.3.1 Objective Evaluation

To evaluate our proposed method in an objective way and to compare it to other procedures,

we applied it to the well-known dataset of the Signal Separation Evaluation Campaign (SiSEC)

[224, 4]. This dataset consists of five pop music multitrack recordings. For algorithms that

participated in previous rounds of the campaign, separation results along with objective evaluation

measures are available online at [224]. The reported evaluation measures were computed using

the Perceptual Evaluation methods for Audio Source Separation toolkit (PEASS) [61] and

consist of the Signal to Distortion Ratio (SDR), the source Image to Spatial distortion Ratio

(ISR), the Signal to Interference Ratio (SIR), the Signal to Artifacts Ratio (SAR), the Overall

Perceptual Score (OPS), the Target-related Perceptual Score (TPS), the Interference-related
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IBM∗ CD-I CD-B SL REPET∗ VUIMM∗

SDR [dB] 7.9 4.9 3.7 -0.9 4.1 5.6

ISR [dB] 14.9 7.8 6.1 7.2 7.7 7.9

SIR [dB] 11.4 4.6 2.7 -0.8 5.1 9.4

SAR [dB] 14.1 15.2 14.3 13.5 13.1 13.1

OPS 37.9 34.1 32.2 28.2 34.0 31.5

TPS 66.4 53.0 47.6 38.7 56.5 42.8

IPS 74.1 45.2 45.2 54.7 52.8 63.0

APS 30.3 51.0 48.1 37.8 49.2 37.8

Table 5.1: Average PEASS measures for singing voice estimates on the SiSEC dataset. Results marked with (∗)
were reported on the website [224]. Higher numbers indicate better results.

Perceptual Score (IPS), and the Artifacts-related Perceptual Score (APS). To examine the

influence of the fundamental frequency track that is needed for the MR decomposition step (see

Section 5.2.2), we applied our cascaded decomposition procedure to all recordings in the dataset

twice: Once “informed” (CD-I) with a fundamental frequency track manually annotated using

our F0-Annotation Tool presented in Appendix B.1, and once “blind” (CD-B) with a track

automatically extracted using the MELODIA vamp plug-in [183]. Table 5.1 shows the computed

evaluation measures for our singing voice estimates together with those of several state-of-the-art

singing voice extraction algorithms. The measures for the oracle ideal binary mask (IBM),

the REpeating Pattern Extraction Technique (REPET) [174], as well as the Voiced+Unvoiced

Instantaneous Mixture Model technique (VUIMM) [52] were taken directly from [224]. The

results for the Sparse-Low rank decomposition (SL) were computed by ourselves. REPET and

SL are representatives of direct decomposition approaches, while VUIMM employs a disassemble

and reassemble strategy. The first observation is that our proposed procedure yields evaluation

measures in the same order of magnitude as REPET and VUIMM. The IBM can be seen as an

upper limit for separation quality when using binary masking. The performance of SL which is

also part of our decomposition cascade, falls slightly behind. This indicates that our proposed

approach can actually improve on the separation performance of its individual decomposition

procedures. Finally, we can observe that using a manually annotated fundamental frequency

track goes along with slight improvements of the objective evaluation measures.

5.3.2 Listening Experiment

In order to analyze the subjective quality of the singing voice extracted by our procedure, we

conducted a listening experiment. To be able to compare objective and subjective evaluation

results, we considered the same procedures and the same dataset as in the objective evaluation.
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Figure 5.10: Average results of the performed listening experiment. Boxes indicate the interquartile range, black
bars the median, and discs the objective OPS measures.

For each of the five recordings, the mixture of all sources as well as the separate singing voice,

which constituted the reference, was given to the test participants. Their task was then to rate

the overall quality of the different singing voice estimates with respect to the reference on a

scale from 0 (poor) to 100 (excellent). The estimates were presented in a blind test along with a

hidden reference (HR). Overall, 24 persons participated in the experiment from which six were

excluded from the final evaluation during post screening since they were not able to detect the

hidden reference reliably. The results averaged over the five recordings are visualized as boxplots

in Figure 5.10 and Figure 5.11 shows the results for the five recordings separately. In each plot,

one finds the respective OPS measure indicated by a colored disk. This objective measure, also

having a value range from 0 to 100, is designed to predict the overall quality rating of the test

participants. However, one can see from Figure 5.10 that IBM, CD-I, CD-B, and REPET tend

to be underrated by the objective measure, while SL and VUIMM tend to be overrated. This

indicates that the objective evaluation measures only vaguely correspond to human perception

and that listening experiments are still necessary to obtain reliable measurements.

Looking at the detailed evaluation results in Figure 5.11, the subjective evaluation gives various

insights. First, one can observe that VUIMM was rated rather low for all five recordings.

Listening to the respective estimates reveals that here, although the accompaniment is usually

suppressed well, the singing voice often has an unnatural, synthetic sound. This demonstrates

that the reassembling of the singing voice from fine-grained components is a very difficult task.

Also SL falls behind the remaining procedures. It shows that the direct decomposition of a

recording into a sparse and a low rank component leaves the sparse singing voice estimate with

a lot of musical noise which is reflected in the rating. In comparison to these two procedures,

the singing voice estimates of CD-I, CD-B, and REPET are perceived to have a clearly better
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Figure 5.11: Results of the performed listening experiment. Boxes indicate the interquartile range, black bars
the median, and discs the objective OPS measures. Recordings: Bearlin (#1), Tamy (#2), Another Dreamer
(#3), Fort Minor (#4), Ultimate NZ Tour (#5).

quality for recordings #1 and #2. For recording #3, CD-I and CD-B demonstrate the benefit of

not focusing on a single characteristic of singing voice. Here, REPET’s assumption of repeating

patterns in the accompaniment is not satisfied which leads to many accompaniment residues

in the singing voice estimate and therefore to lower ratings. CD-I and CD-B do not rely on

a specific musical structure and therefore receive good ratings for this recording as well. For

recording #4, rapped lyrics over a looped beat, REPET excels all other approaches since its

assumption of a repeating accompaniment is met perfectly. The decomposition cascade of CD-I

and CD-B was however not optimized to capture the spoken “non-singing voice” in rap music.

In particular the MR decomposition fails and yields meaningless decomposition results what

explains the lower ratings. Looking at the results for recording #5, the first observation is that

here even IBM receives rather low ratings. This indicates that the extraction of the singing

voice from recording #5 can be considered difficult. However, while CD-I and CD-B were rated

similarly for recordings #1 to #4, CD-I performs much better than all other procedures on this

recording, even being close to IBM. It turns out that for this recording the blindly estimated

fundamental frequency track has an octave error. Therefore, in the MR decomposition step only

every second harmonic of the singing voice is extracted which leads to a thin sound of the singing

voice estimate of CD-B. However, octave errors can be corrected easily by manual inspection.

This example shows that it is possible to stabilize the performance of our procedure, even for

difficult recordings, with very little user interaction.
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5.3.3 Accompanying Website

The objective and subjective evaluation showed that our proposed method yields good estimates

of the singing voice for the pop music recordings of the SiSEC dataset. One of the advantages of

this method lies in its flexibility in the sense that, contrary to approaches like REPET, it does

not make strong assumptions about the accompanying music material. To demonstrate that our

procedure works on a wide range of musical styles, including genres like classical opera music,

romantic piano music with singing, or even metal, we prepared an accompanying website for this

paper at [38]. On this website, one can find many illustrative audio examples of decomposition

results of our procedure along with the results of the intermediate decomposition steps.

5.4 Conclusions and Further Notes

In this chapter, we have shown how different direct decomposition techniques can be cascaded to

disassemble a given music recording into a set of semantically interpretable mid-level components.

These components can be easily reassembled to yield estimates of the singing voice and the

accompaniment in the recording. Objective and subjective evaluation on a standard dataset

suggest that this approach yields singing voice estimates which are comparable to state-of-the-art

methods. Furthermore, to demonstrate that our procedure works for a large variety of musical

styles and genres going beyond the tested dataset, we also provide an accompanying website

with additional audio material. In future work, one may investigate how further decomposition

procedures (e.g. center channel extraction methods [214]), can be incorporated into our proposed

cascade to further improve the quality of the extracted singing voice.
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Chapter 6

Informed Music Signal

Parametrization

In this chapter, we focus on estimating musically meaningful parameters from music recordings.

First, in Section 6.1, we introduce a framework that allows for parameterizing a music recording’s

time-frequency representation according to the note events specified in the piece’s musical score.

This parametrization can then be used in a source separation scenario where the individual sound

sources correspond to the note events. The resulting note-wise audio events constitute elementary

building blocks of the recording that allow for score-based music editing. Additionally, the source

separation result can give insights into the quality of the parametrization. This section is based

on our original contribution in [37].

In Section 6.2, we then focus on vibrato, a musical effect that is commonly used by musicians

to make their performance more expressive. Vibrato, which is the periodic oscillation in a

musical voice’s pitch, can be parameterized by its rate (the modulation frequency given in Hertz)
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Figure 6.1: Score-informed decomposition of a given music signal into note-wise audio events and a residual
signal.

and its extent (the modulation’s amplitude given in cents). In a music recording’s spectrogram

representation, vibrato is evident in the form of characteristic wave-like spectro-temporal patterns.

By locally comparing a given music recording’s spectrogram with a set of predefined vibrato

templates that resemble the spectro-temporal vibrato patterns, we aim to detect and parameterize

vibrato in the recording. This section is based on our work from [35].

6.1 Score-Informed Parametrization of Note Events

In recent years, the task of separating a mixture of superimposed sound sources into its constituent

components has been a central research topic in the field of digital signal processing. In speech,

for example, these components could be the individual conversations of simultaneously speaking

persons (“Cocktail party scenario”, see [18]). In the context of music, the sources might correspond

to the main melody, a bassline, a drum track or another instrument track [75, 80, 149, 181]. To

guide the source separation process in such a scenario, it has become a common strategy to

provide the algorithm with additional information. Such information can, for example, be given

in the form of user-specified annotations [53, 130, 198], or by a musical score. In score-informed

procedures the explicit timing, pitch and instrument information encoded by the score is utilized

to guide and support the source separation processes.

Most current score-informed approaches are designed for extracting individual instruments as

specified by the score, see [94, 111, 227]. In this section, we go beyond this scenario by introducing

a framework for decomposing a music recording into elementary building blocks or sound events.

More precisely, a musical score can be considered as a composition of elementary events given

by the individual musical notes. These notes have some explicit musical meaning (in terms of

pitch, onset time, and duration) and are directly intelligible by a human. The core idea of this

contribution is to decompose a given music recording x into a set of I note-wise audio events xi,

i ∈ [0 : I − 1], where each audio event is directly associated with a note in the musical score,
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Figure 6.2: Basic concept of non-negative matrix factorization.

see Figure 6.1. Based on this decomposition, we introduce an intuitive interface that allows a

user to directly access the audio recording in a note-wise fashion, which opens up explicit ways

of editing and manipulating audio material. Such an interface also provides novel possibilities

to better understand the quality achieved by the underlying source separation algorithm. For

example, subtracting all note-wise audio events from the original recording yields a residual

signal xres which can be interpreted as the part of the recording that was not captured by the

source separation process (for example because it was not reflected by the given musical score):

x =

(
I−1∑
i=0

xi

)
+ xres . (6.1)

Analyzing this residual can then reveal parts in the original recording where the source separation

algorithm typically fails or where data inconsistencies occur.

The remainder of this section is structured as follows. In Section 6.1.1 we summarize a recent

score-informed source separation approach used in our experiments that is based on non-negative

matrix factorization (NMF). Next, in Section 6.1.2, we show how to derive the note-wise

decomposition of the audio recording and discuss some manipulation strategies. Finally, we

present our prototype user interface for intuitive score-based audio editing (Section 6.1.3) and

source separation analysis (Section 6.1.4).

6.1.1 Constrained NMF-based Source Separation

In the last years, techniques based on non-negative matrix factorization (NMF) have been applied

to decompose a music signal’s magnitude spectrogram into a set of template (column) vectors and

activation (row) vectors [197]. To better control this factorization, additional score information

has been used to constrain NMF and to yield a musically more meaningful decomposition [93].

In this section, we summarize the score-informed procedure as introduced in [63].

Given a matrix V ∈ RN×M≥0 ,N,M ∈ N, the goal of classical NMF is to derive two matrices

W ∈ RN×K≥0 and H ∈ RK×M≥0 , K ∈ N such that some distance measure between V and WH
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is minimized [129, 146], see Figure 6.2. The matrices W and H are typically computed by

iteratively applying multiplicative update rules to initializations W (0) and H(0):

W
(`+1)
nk = W

(`)
nk

∑
mH

(`)
kmVnm/(W

(`)H(`))nm∑
mH

(`)
km

, (6.2)

H
(`+1)
km = H

(`)
km

∑
nW

(`)
nk Vnm/(W

(`)H(`))nm∑
nWnk

, (6.3)

n ∈ [0 : N − 1], m ∈ [0 : M − 1], k ∈ [0 : K − 1], ` ∈ N. In [129], the update rules (6.2) and (6.3)

were shown to be non-increasing under the Kullback-Leibler divergence

(V ||WH) =
∑
nm

Vnm log
Vnm

(WH)nm
− Vnm + (WH)nm . (6.4)

The update process is typically terminated after a fixed number of iterations L ∈ N or when

the distance measure falls below a given threshold. For a more detailed explanation and an

exemplary derivation of update rules we refer to [146, Section 8.3].

In the context of source separation, given an audio recording x with spectrogram X, the goal

is to factor the magnitude spectrogram1 V = |X| into a matrix W of template vectors (every

column corresponding to the prototype spectrum of a certain tone) and a matrix H of activations

(every row encoding when and how loud a corresponding tone is played). In standard NMF the

matrices W and H are typically randomly initialized before applying the update rules (6.2) and

(6.3). However, the resulting factors are often not musically meaningful in this case as discussed

for example in [63].

To overcome this issue, [63] proposed a score-informed approach, where the score information

is used to initialize both matrices W and H to guide the NMF update process in a musically

meaningful direction. More precisely, having the score of the audio recording at hand in form of

a MIDI file, high-resolution synchronization techniques are used to temporally align the MIDI

events with the audio recording [64, 114]. Each of the I note events of the synchronized MIDI

file yields information about the pitch, the onset time and the duration of a corresponding

audio event that should occur in the recording according to the score. For each occurring pitch

in the MIDI file, a harmonic template (column of the matrix W ), which encodes the rough

harmonic structure of the pitch, is initialized. This template is defined to have non-zero entries

at frequency bins that are related to the fundamental frequency and the overtones of the given

pitch and zero entries otherwise. Similarly, the activation matrix H is initialized by the specified

onset times and note durations obtained from the synchronization procedure. For later use,

we link the initialization of H with the corresponding synchronized MIDI events as follows. A

1Note that here we model the magnitude spectrogram V to be a matrix rather than a function with two
arguments as in Section 2.2.
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(a) (b) 

(c) 

(d) 

(e) (f) 

(g) 
(h) 

Figure 6.3: (a) Magnitude spectrogram V . (b) Synchronized MIDI note events. (c) Template matrix W
learned by NMF. (d) Activation matrix H learned by NMF. (e) Note-wise activation matrices Hm. (f) Note-wise
spectrograms Xm. (g) Note-wise audio events xm. (h) Residual signal r.

binary constraint matrix Ci ∈ RK×M is constructed for each i ∈ [0 : I − 1], where Ci is one

at entries that correspond to the pitch and temporal position of the ith MIDI event and zero

otherwise. Each Ci therefore constitutes a link between specific entries in H and a MIDI note

event. The union (OR-sum) of all Ci is then used as initialization of H. At this point, the crucial

observation is that the multiplicative NMF update rules can only change the non-zero entries.

Therefore, applying NMF to the initialized matrices W and H yields a decomposition, where the

relations expressed by the Ci between MIDI note events and entries in the activation matrix H

are preserved, see Figure 6.3a-d. The result after the NMF-learning procedure can be seen as a

refinement of the initially constrained harmonic template and activation matrices.
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6.1.2 Note-Based Audio Decomposition

Let W and H denote the template and activation matrices after applying the NMF learning

procedure. We now use the note-wise constraints given by the matrices Ci to derive the note-wise

audio events xi. To this end, we first compute a note-wise activation matrix

Hi = H � Ci , (6.5)

where the operator � denotes point-wise multiplication. Afterwards, we derive a spectral mask

Mi = (WHi)� (

I−1∑
i=0

WHi + ε) , (6.6)

where � is understood as point-wise division and ε is a small positive constant to avoid a

potential division by zero. The mask Mi can be interpreted as a weighting matrix that reflects

the contribution of the ith note event to the original spectrogram X. Finally, we compute the

note-wise spectrogram

Xi = X �Mi , (6.7)

and apply the inverse short-time Fourier transform to obtain the audio event xi, see Figure 6.3e-h.

The audio events xi represent a decomposition of the original signal x (the music recording)

according to the note events specified by the given musical score. Obviously, this decomposition

becomes problematic in the case that the recorded performance deviates from the musical score.

More generally, synchronization inaccuracies, i. e. deviations in the alignment of the MIDI

events and their expected realization in the music recording, may lead to local errors in the

decomposition. Furthermore, simplifying model assumptions (such as the assumption that the

partials’ relative energy distribution is independent of the loudness), deviations in the expected

tuning, or additional sound components caused by resonance or reverberation may cause artifacts

in the decomposition. Therefore, we also compute a residual signal

xres = x−
I−1∑
i=0

xi . (6.8)

The signal xres holds a lot of valuable information since it does not only give a deeper insight

into the source separation process, but it may also reveal inconsistencies between the musical

score and the audio recording. Therefore, it is a natural idea to analyze xres in more detail. In

the next section we present an interface that supports such an analysis by enabling the user to

study the decomposition and the residual signal more thoroughly.
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Figure 6.4: Top: Score of the first three measures of Op. 28 No. 4 by Frédéric Chopin. Bottom: Our user
interface showing the corresponding part in an audio recording of the piece. Each note-wise audio event can be
accessed separately.

6.1.3 Audio Editing

The decomposition of an audio recording into note-wise audio events can be utilized as a basis for

various applications. To this end, we developed a user interface (see Appendix B.2) which offers

a user-friendly access to such a decomposition (a demo of the proposed interface can be found at

[36]). This interface provides easy-to-use possibilities for manipulating the audio recording in a

musically informed manner. For example dragging a MIDI event in the piano roll representation

shown in Figure 6.4 and dropping it at a different position is an intuitive way of changing the

onset time (horizontal displacement) and the pitch (vertical displacement) of a note. Having

the note-wise audio decomposition at hand, we are able to transfer the same manipulations to

the audio recording. If the user wishes to displace a note with respect to time and pitch, the

corresponding audio event is first subtracted from the original recording and a suitably time-

and pitch-shifted version (using a standard pitch shifting procedure as discussed in Section 4.4.2)

of the event is added afterwards. We keep track of all the applied manipulations such that it

is possible to manipulate a previously edited note again. By using similar strategies it is also

possible to change the duration or the volume of individual notes, to remove notes completely

from the audio recording, or to add additional notes by copying and manipulating existing ones.
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Figure 6.5: Note-wise audio editing. This figure is inspired by [65]. (a): Score of measures 1 and 2 of Op. 28 No.
4 by Frédéric Chopin. The spectrogram of a recording as well as a single note event are shown on the bottom.
(b): The edited recording. The marked notes were modified to change the recording’s key. Modifications made in
the score as well as the resulting changes in the spectrogram and the audio event are highlighted in red.

Figure 6.5 illustrates the process of a musically meaningful modification that was done using

our interface. Figure 6.5a shows the score of the first two measures of Chopin’s Op. 28 No.

4 in E minor for piano. Below the score, we see the spectrogram of a recording of that piece.

Applying our proposed note-wise audio decomposition procedure allows us to manipulate the

individual notes. This makes it very easy to change the key of the piece from E minor to E major

by pitch shifting the note events associated with the notes marked in red in Figure 6.5b upwards

by one semitone. The resulting recording sounds as if the pianist played the piece not in the

minor, but in the major key.

6.1.4 Source Separation Analysis

Analyzing the decomposition of a music recording, and especially the residual signal xres offers

novel possibilities to investigate the behavior of the underlying source separation algorithm.

Positions in the original audio recording where xres shows high energy indicate passages where

the source separation procedure could not assign all of the recording’s energy to the note-wise

audio events. To analyze such positions, our interface has been equipped with a plugin that plots

the color-coded short-time energy of xres in the background of the standard visualization, see

Figure 6.6. This way, one can directly observe temporal relations between bursts of energy in

xres and the synchronized MIDI note events.
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Figure 6.6: Top: Score of measures 16 and 17 of Op. 28 No. 4 by Frédéric Chopin. Bottom: Our user interface
showing the corresponding part in an audio recording of the piece. The short-time energy of the residual signal r
is visualized in a color-coded format in the background.

As an illustrative example how this tool can be used, we consider a short excerpt of Chopin’s

Prelude Op. 28 No. 4 as shown in Figure 6.6. A musical score does often not completely describe

what is actually played by the performing musician. An example for this are ornamental notes

which are not reflected directly by the score (see, e.g., the pink boxes in Figure 6.6). Such

deviations typically lead to local misalignments between the MIDI events and the audio recording.

Even worse, additionally played notes that are not contained in the MIDI file may neither have

an appropriate template vector in W , nor entries in the activation matrix H. It is therefore

impossible for the score-informed source separation procedure to properly capture these notes.

As Figure 6.6 shows, the residual xres can reveal such inconsistencies between the notated score

and the performance.
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Figure 6.7: Template-based vibrato analysis. A matching vibrato template lets us infer the rate f and extent e
of vibrato present in the music signal.

Local energy peaks in the residual are commonly aligned with note onsets (see the green and

orange boxes in Figure 6.6). While smaller peaks, like shown in the lower green box, commonly

emerge from oversimplifications in the musical model of the source separation algorithm (the

derived template vectors in W can often not describe the sound of an onset accurately), more

massive bursts of energy often arise from slightly misaligned MIDI events (e.g., the two bass

notes marked in orange are played slightly earlier than they are encoded in our synchronized

MIDI file).

Another aspect that can not be captured appropriately by the used source-separation procedure

are acoustical phenomena like resonance or reverberation (see the red boxes in Figure 6.6). At

the beginning of measure 17, the performing musician holds the pedal of the piano and all played

notes are therefore sustained until the pedal is released again in the middle of the same measure.

Furthermore, the pressed pedal allows all strings of the piano to resonate with the actually played

notes, thus creating an even more complex sound mixture. This information is not reflected in

the audio decomposition and a large amount of energy migrates to the residual in the source

separation process.
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6.2 Template-Informed Parametrization of Vibrato

The human voice and other instruments often reveal characteristic spectro-temporal patterns

that are the result of specific articulation techniques. For example, vibrato is a musical effect

that is frequently used by musicians to make their performance more expressive. Although a

clear definition of vibrato does not exist [204], it can broadly be described as a musical voice’s

“periodic oscillation in pitch” [191]. It is commonly parameterized by its rate (the modulation

frequency given in Hertz) and its extent (the modulation’s amplitude given in cents2). These

parameters have been studied extensively from musicological and psychological perspectives,

often in a cumbersome process of manually annotating spectral representations of monophonic

music signals, see for example [204, 195, 101, 169, 210].

To approach the topic from a computational perspective, the signal processing community has put

considerable research efforts into developing automated vibrato analysis methods for monophonic,

as well as for more complex music signals with multiple sound sources. While some applications

implicitly exploit spectro-temporal characteristics of vibrato to approach higher-level tasks

such as harmonic-percussive decomposition [163], singing voice detection [132], or singing voice

separation [207], there also exist methods for explicitly detecting and parameterizing vibrato

components in a given music signal. A common approach is to perform the vibrato analysis in

two consecutive steps. In the first step, a fundamental frequency trajectory (F0-trajectory) is

estimated for the musical voice that is most likely to exhibit vibrato. This trajectory is then

analyzed in the second step to detect and parameterize periodic modulation patterns, see for

example [96, 179, 161, 176, 183, 228]. However, computing F0-trajectories for complex signals

with multiple instruments is a highly non-trivial and error-prone task by itself [184]. Therefore,

a trajectory estimated in the first step may not appropriately reflect the relevant modulation

patterns. This in turn renders the vibrato detection and parametrization in the second step

problematic, if not impossible.

To avoid the error-prone F0-estimation step, in this work we propose a novel approach for

automatically analyzing vibrato components in complex music signals. Our core idea is to detect

spectro-temporal vibrato patterns directly in a music signal’s spectrogram by locally comparing

this representation with a set of predefined vibrato templates3 that reflect different vibrato

rates and extents. The measured similarity yields a novel mid-level feature representation—a

vibrato salience spectrogram—in which spectro-temporal vibrato patterns are enhanced while

other structures are suppressed. Figure 6.7 illustrates this idea, showing three different vibrato

templates as well as a spectrogram representation of a choir with a lead singer who starts to sing

2A cent is a logarithmic frequency unit. A musical semitone is subdivided into 100 cents.
3Note that this approach is conceptually similar to the Hough transform [78], a mathematical tool known from

image processing for the detection of parameterized shapes in binary images. However, the Hough transform is
known to be very sensitive to noise and therefore not suitable for detecting vibrato patterns in spectrograms that
are commonly rather noisy.

113 PhD Thesis, Jonathan Driedger



CHAPTER 6. INFORMED MUSIC SIGNAL PARAMETRIZATION

with strong vibrato in the excerpt’s second half. Time-frequency bins where one of the templates

is locally similar to the spectrogram, thus yielding a high vibrato salience, are indicated in red.

As we can see, these time-frequency bins temporally coincide with the annotated vibrato passage

at the top of Figure 6.7. Additionally, a high vibrato salience does not only indicate the presence

of vibrato in the music signal, but also reveals the vibrato’s rate and extent encoded in the

similarity maximizing template.

The remainder of this section is structured as follows. First, we describe our proposed template-

based vibrato analysis approach in detail. We discuss relevant spectrogram representations

(Section 6.2.1) and describe how the vibrato templates are modeled (Section 6.2.2). Both

our choice of spectrogram representation and the vibrato template’s design are motivated by

the correlation-like similarity measure that we use to locally compare the templates with the

spectrogram. We then introduce the derivation of the vibrato salience spectrogram (Section 6.2.3)

and comment on our approach’s computational complexity (Section 6.2.4). Afterwards, we

present our experimental results. In Section 6.2.5, we quantitatively evaluate our proposed

approach in the context of a vibrato detection task. Then, in Section 6.2.6 we demonstrate the

method’s potential for automatically analyzing vibrato rate and extent. Finally, in Section 6.2.7,

we indicate open challenges and potential solutions.

6.2.1 Spectral Representation

Given a discrete music signal x, we first compute the short-time Fourier transform X of x

as described in Section 2.2. Note that w.l.o.g., we assume that X : Z × Z → C (instead of

X : Z × [0 : N − 1] → C) at this point. Figure 6.8a shows an excerpt of our example signal’s

magnitude spectrogram |X| where one can clearly see wave-like vibrato patterns in the lead

singer’s fundamental frequency and its overtones. However, due to the STFT’s linear frequency

sampling, the vibrato patterns’ amplitudes increase with higher overtones.

In the context of our template-based analysis it is desirable that vibrato patterns stemming from

the same frequency modulated tone have the same amplitude that directly reflects the vibrato’s

extent. We therefore compute a log-frequency spectrogram from the STFT X, using a phase

vocoder-based reassignment approach as discussed in Section 2.4. In this representation, which

can be seen in Figure 6.8b, frequency bands are spaced logarithmically and have a constant

logarithmic bandwidth specified in cents. This ensures the desired property in this spectrogram

representation.

In a last step, we normalize the spectrogram in order to achieve two goals. First, we aim

to make the representation independent of the signal’s volume such that we can also detect

vibrato in quiet signal passages. Second, when locally comparing our vibrato templates with the

representation, the resulting similarity measure should yield values in a fixed range. A method
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Figure 6.8: Spectrogram representations of the input signal x. (a): Magnitude spectrogram. (b): Log-frequency
spectrogram. (c): Binarized log-frequency spectrogram Y .

that showed to be simple and effective to achieve both goals is spectrogram binarization, where

we set the ten percent highest values of each frame in the log-frequency spectrogram to one and

all remaining values to zero. This yields a binarized log-frequency spectrogram Y : Z×Z→ {0, 1},
see Figure 6.8c. In our experiments, we choose parameters such that Y has a time resolution of

roughly 150 frames per second and a frequency resolution of ten bands per semitone.

6.2.2 Vibrato Templates

Next, we introduce a set T of templates that reflect spectro-temporal vibrato patterns as expected

in Y . Let us model such a template T ∈ T for vibrato having a rate of f Hertz, an extent of e

cents, and a duration of at least ` seconds. When locally comparing the template T with Y , one

should obtain high similarity values when T is aligned with a matching spectro-temporal vibrato

pattern in Y and low values otherwise. The idea is therefore to have a positive portion in T

that reflects the spectro-temporal vibrato pattern as well as a negative portion that prevents the

template from correlating well with regions in Y that are homogeneously equal to one.
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Figure 6.9: Generation of a vibrato template T with a vibrato rate f = 5 Hertz, extent e = 50 cent, and a
duration of ` = 0.4 seconds. (a): Sinusoidal vibrato trajectory s. (b): Vibrato template T .

Assuming a sinusoidal vibrato, we can describe the vibrato’s trajectory (up to phase) by

s(t) = e sin(2πft) , (6.9)

t ∈ [0, `]. Figure 6.9a shows such a trajectory for f = 5 Hertz, e = 50 cent, and ` = 0.4 seconds.

The trajectory is then discretized such that its time- and frequency resolution matches the

binarized log-frequency spectrogram. Time-frequency bins that are close to s are assigned with

positive values, while bins having a certain distance from s get negative values. To allow for

some tolerance of the width of vibrato patterns in Y , the remaining time-frequency bins are

defined to be zero. Finally, positive and negative entries in T are normalized to sum up to one

and minus one, respectively, see Figure 6.9b.

6.2.3 Vibrato Salience

In order to locate and parameterize vibrato structures in the binarized log-frequency spectrogram

Y , we aim to compute a vibrato salience spectrogram S—a kind of mid-level feature representation—

in which vibrato structures are enhanced while other kinds of structures are suppressed. To

this end, we define the vibrato salience spectrogram ST for a single vibrato template T : [0 :

A− 1]× [0 : B − 1]→ R, A,B ∈ N. The computation process is illustrated in Figure 6.10a. Let

I be the set of all index pairs (a, b) ∈ [0 : A− 1]× [0 : B − 1] such that T (a, b) is positive (the

indices of all red entries in Figure 6.9b). Furthermore, let

Y (µ,κ)(m, k) = Y (m− µ, k − κ) , (6.10)
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Figure 6.10: Vibrato salience spectrogram computation. (a): Process to compute ST . The similarity-maximizing
shift (µ, κ) that maps (m, k) onto an index pair in I is indicated by a green arrow. (b): Vibrato salience
spectrogram S.

µ, κ ∈ Z, denote a version of Y that is shifted by µ and κ indices in time- and frequency direction,

respectively. Intuitively, the vibrato salience ST (m, k) should be high if Y (m, k) is part of a

spectro-temporal vibrato pattern as reflected by T . To this end, we verify if there is a shift

(µ, κ) that aligns Y (m, k) (red dot in Figure 6.10a) with one of the positive entries in the vibrato

template T such that T and Y (µ,κ) are similar (the optimal shift for our example in Figure 6.10a

is indicated by a green arrow). To compute ST (m, k), we therefore maximize the correlation-like

similarity measure

c(T, Y ) =

A−1∑
a=0

B−1∑
b=0

T (a, b)Y (a, b) (6.11)

over all shifts (µ, κ) that map (m, k) onto one of the index pairs in I:

ST (m, k) = max
{(µ,κ):(m,k)−(µ,κ)∈I}

c(T, Y (µ,κ)) . (6.12)
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The full vibrato salience spectrogram can then be computed by maximizing over all vibrato

templates T ∈ T :

S(m, k) = max
T∈T

ST (m, k) . (6.13)

Figure 6.10b shows the vibrato salience spectrogram S resulting from the binarized log-frequency

spectrogram Y shown in Figure 6.10a. Note that by the vibrato template’s design and Y (m, k) ∈
{0, 1}, one obtains S(m, k) ∈ [−1, 1] for all m, k ∈ Z. While the vibrato structures present in Y

are also clearly visible in S, the horizontal structures as well as the glissando at the excerpt’s

beginning do not correlate well with the vibrato templates. They are therefore, as intended,

suppressed in S.

6.2.4 Computational Complexity

The vibrato salience spectrogram’s derivation as defined in the previous section is a compu-

tationally expensive process. When implemented naively, it is necessary to use a quadruply

nested loop to iterate over all combinations of time-frequency bins (m, k) in Y , vibrato templates

T ∈ T , index shifts {(µ, κ) : (m, k)− (µ, κ) ∈ I}, and index pairs (a, b) in T . However, note that

many computations are redundant and that it is therefore possible to optimize the calculation

process, for example by exploiting two-dimensional convolutions. Furthermore, one can speed

up the derivation by considering only a limited frequency range in Y as well as by applying

further heuristics such as only taking into account vibrato salience values above a threshold

τ ∈ [−1, 1]. Although still being computationally demanding, the derivation therefore becomes

feasible enough to be used in practice. For example, deriving S for a music signal with a duration

of 60 seconds takes our MATLAB implementation roughly 40 seconds on a standard computer.

6.2.5 Evaluation: Vibrato Detection

In a first experiment, we considered the task of temporally identifying vibrato passages in a music

signal. We therefore compiled a dataset of nine items (see Table 6.1), which are excerpts of music

signals from the “Mixing Secrets” multitrack dataset [193]. Each item consists of a monophonic

vocal signal xvoc and a polyphonic accompaniment signal xacc. Annotations of vibrato passages

in the vocal signals were created manually to serve as ground truth for the subsequent evaluation

(none of the accompaniment signals xacc has vibrato). To vary the difficulty of the vibrato

detection task, we created three different mixes for each of the items—one were xvoc and xacc

were mixed without modification (-0 dB), one were xvoc was attenuated by -5 dB prior to mixing

the signals, and a third mix with xvoc being attenuated by -10 dB.

To construct an automated vibrato detection procedure based on our proposed template-based

analysis approach, we first computed vibrato salience spectrograms S for all of the resulting 27
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-0 dB -5 dB -10 dB

Lx Lvib TB-A F0-M TB-A F0-M TB-A F0-M BL

Sound On Sound Demo—Mystery 9.79 1.78 0.83 0.93 0.84 0.86 0.73 0.30 0.31

Giselle—You 5.12 2.99 0.91 0.94 0.91 0.88 0.86 0.53 0.73

Leaf—Full 5.36 1.64 0.84 0.86 0.74 0.29 0.82 0.00 0.46

Phre The Eon—Everybody is Falling Apart 2.47 0.47 0.98 0.97 0.96 0.97 0.95 0.00 0.32

Secretariat—Borderline 7.69 1.98 0.79 0.69 0.73 0.76 0.79 0.00 0.41

Sunshine Garcia Band—For I Am The Moon 12.54 3.36 0.63 0.73 0.67 0.62 0.74 0.44 0.42

Angela Thomas Wade—Milk Cow Blues 4.50 2.10 0.44 0.82 0.32 0.63 0.32 0.00 0.63

Triviul—Dorothy 5.22 0.85 0.77 0.88 0.73 0.85 0.65 0.00 0.28

Funny Valentines—Sleigh Ride 7.18 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

∅ 6.65 1.69 0.80 0.87 0.77 0.76 0.76 0.25 0.39

Table 6.1: Quantitative evaluation (F-measure), comparing our proposed template-based detection approach
TB-A, F0-based vibrato detection F0-M (manual vibrato selection in F0-trajectories), and a baseline BL. Lengths of
the signals (Lx) and accumulated lengths of ground truth vibrato passages (Lvib) are given in seconds.

mix signals. Since only high vibrato salience values in S are likely to indicate the presence of

spectro-temporal vibrato patterns, we then chose a threshold τ ∈ [−1, 1]. Time instances where

the maximal vibrato salience in a frame exceeded τ were then labeled as having vibrato while all

other time instances were labeled as having no vibrato. For this experiment we used a set T of 30

templates, reflecting vibrato rates from five to seven Hertz in steps of 0.5 Hertz, as well as extents

from 50 to 100 cents in steps of 10 cents. These parameters were chosen particularly to detect

the vibrato in singing voice as these are typical vibrato rates and extents for human singing,

see [170, 169]. All templates had a length corresponding to ` = 0.4 seconds. The threshold τ

was experimentally set to τ = 0.55, yielding good vibrato detection results for all items in the

dataset.

One of this experiment’s main objectives was to compare our template-based method’s perfor-

mance with F0-based strategies as discussed initially. To emulate such an approach, we used

MELODIA [183]—a state-of-the-art algorithm for estimating F0-trajectories of predominant

musical voices in complex music signals—to estimate trajectories for all mix signals. Instead of

automatically analyzing the extracted trajectories in a second step, we then manually inspected

them for passages that reflect vibrato. This was done to obtain an upper bound on the perfor-

mance an automated procedure could achieve in this second step when detecting vibrato solely

based on the estimated F0-trajectory.

We then computed precision (P), recall (Re), and F-measure (F) for the detection results of our

automated template-based procedure (TB-A), for the procedure based on the manually inspected

F0-trajectory (F0-M), as well as for a baseline approach that simply labels every time instance as
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having vibrato (BL):

P =
TP + ε

TP + FP + ε
, R =

TP + ε

TP + FN + ε
, F =

2PR

P + R
. (6.14)

Here, TP is the number of true positives, FP the number of false positives, FN the number of

false negatives, and ε > 0 ∈ R is some small number to prevent division by zero. Note that all

music signals and annotations used in the experiment can be found at this paper’s accompanying

website [34].

The evaluation’s results are summarized in Table 6.1 which shows for each item its name, the

music signal’s length, the accumulated duration of vibrato in this signal, as well as the F-measures

of TB-A and F0-M for the three different mixes (-0 dB, -5 dB, and -10 dB). The F-measure for the

baseline BL is indicated in the last column and the table’s last row indicates mean values. Here

we can observe a clear trend. For mixes where xvoc was not attenuated (-0 dB), both TB-A and

F0-M yield average F-measures (F = 0.80 and F = 0.87) clearly above the baseline BL (F = 0.39).

For this mixing condition, F0-M outperforms our template-based approach. However, recall that

F0-M constitutes an upper bound on the performance of F0-based vibrato detection approaches.

Automating the vibrato detection step may therefore result in lower scores.

For mixes where xvoc was attenuated by -5 dB, the average F-measure of TB-A only slightly

decreases to F = 0.77, while the performance of F0-M drops to F = 0.76. This tendency becomes

even more extreme when considering vocal signals attenuated by -10 dB where TB-A’s performance

stays almost constant (F = 0.76) while F0-M’s average F-measure goes down to F = 0.25, many

of the individual items scoring F-measures of zero.

The reason for this trend becomes obvious when investigating individual items. Figure 6.11

depicts the vibrato detection results of both TB-A and F0-M in all mixing conditions for the item

Leaf—Full. In the condition -0 dB, the results of TB-A (Figure 6.11a) and F0-M (Figure 6.11b)

coincide well with the ground truth (Figure 6.11c), leading to high F-measures (F = 0.84 and

F = 0.86). Here, our template-based analysis approach detects most of the spectro-temporal

vibrato patterns in the signal’s spectrogram (time-frequency bins where the vibrato salience

exceeds the threshold τ are indicated in red in Figure 6.11a). F0-M also achieves a good result

since the F0-trajectory extracted by MELODIA (indicated in blue in Figure 6.11b) captures the

singing voice’s fundamental frequency well in this mix. However, this changes when attenuating

the vocal signal by -5 dB. While TB-A still identifies many vibrato patterns, therefore detecting

the vibrato present in the mix (F = 0.74), the F0-estimation becomes problematic and MELODIA

retrieves only a small segment of the singing voice’s F0-trajectory correctly, leading to a poor

vibrato detection (F = 0.29). When attenuating xvoc by -10 dB, the F0-trajectory’s estimation

fails completely (F = 0.00) since MELODIA’s assumption of a predominant melodic voice is

120



6.2. TEMPLATE-INFORMED PARAMETRIZATION OF VIBRATO

300 

600 

1200 

2400 

300 

600 

1200 

2400 

3.5 4 4.5 5 3.5 4 4.5 5 3.5 4 4.5 5 
Time [sec] Time [sec] Time [sec] 

Fr
eq

ue
nc

y 
[H

z]
 

Fr
eq

ue
nc

y 
[H

z]
 

(a) 

(b) 

(c) 

-0 dB -5 dB -10 dB 

No vibrato Vibrato No vibrato Vibrato No vibrato Vibrato 

Figure 6.11: Comparison of TB-A and F0-M for the item Leaf—Full. (a): TB-A. Automatically derived vibrato
passages are indicated in red. (b): F0-M. Manually annotated vibrato passages in the trajectory are indicated in
blue. (c): Ground truth annotation.

violated. On the other hand, our proposed detection procedure is capable of detecting the vibrato

in the mix.

As a final remark, note that our proposed approach also succeeds to recognize that the item

Funny Valentines—Sleigh Ride does not contain any vibrato at all.

6.2.6 Evaluation: Vibrato Analysis

As we have seen in the previous section, the vibrato salience spectrogram S can be used to

determine when vibrato is present in a music signal. Additionally, when computing S, we also

implicitly obtain information about the vibrato’s parameters. The rate and extent of vibrato

present in the music signal are encoded by the similarity-maximizing vibrato templates T in

Equation (6.13). In Figure 6.12a, we see the log-frequency spectrogram of a mixture of piano

music (no vibrato) and three consecutive artificial vibrato tones. The tones have vibrato rates

of seven, five, and ten Hertz and extents of 40, 200, and 70 cents, respectively. Time-frequency

bins where the vibrato salience exceeds τ are indicated in red. Note that for this experiment

we used a much larger template set T , consisting of 285 templates that reflected vibrato rates

from four to eleven Hertz in steps of 0.5 Hertz, as well as extents from 30 to 210 cents in steps of
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Figure 6.12: Vibrato rate and extent analysis. (a): Log-frequency spectrogram. Time-frequency bins (m, k) with
S(m, k) > τ are indicated in red. (b)/(c): Vibrato rate and extent of the template T with the highest vibrato
salience per frame.

10 cents. Figures 6.12a/b indicate the vibrato rate and extent of the vibrato template T that

maximized the vibrato salience per frame. The two plots correctly reflect the tones’ vibrato

rates and extents, while showing only a few outliers. Note that values in the plots are quantized

since our approach can only give estimates for rates and extents as they are reflected by one

of the templates in T . This kind of vibrato analysis could be helpful in scenarios like informed

instrument identification when it is known that different instruments in a music signal perform

with different vibrato rates or extents.

6.2.7 Challenges

In general, our proposed procedure yields useful analysis results for the music examples discussed

in the previous sections. We now want to discuss a few difficult examples.

One potential source for incorrect analysis results are false positives as visualized in Figure 6.13a,

which shows a log-frequency spectrogram excerpt of Sunshine Garcia Band—For I Am The Moon

from our dataset. In this excerpt, one of our vibrato templates T is similar enough (with respect

to our similarity measure) to a non-vibrato spectro-temporal pattern to yield vibrato salience
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Figure 6.13: Error sources for our template-based vibrato analysis. (a): Spurious template matches. (b): Vibrato
does not have a sinusoidal form.

values above the threshold τ . This could cause incorrect vibrato detection results or meaningless

vibrato parametrizations. However, we experienced such spurious template matches to often

occur in an isolated fashion. Here, one could exploit additional cues such as multiple template

matches at the same time instance due to overtone structures of instruments to reinforce the

vibrato analysis’ results.

The opposite situation is visualized in Figure 6.13b. It shows a log-frequency spectrogram

excerpt of “Gute Nacht”, a song from Schubert’s “Winterreise” for piano and tenor. In this

excerpt, the singer sings a long note with strong vibrato. However, although there is a template

reflecting an appropriate vibrato rate and extent in our template set T , the vibrato is not

detected by our procedure. This is the case since by our vibrato template’s design—as described

in Section 6.2.2—we generally assumed vibrato to have a sinusoidal spectro-temporal structure.

This assumption is violated in the shown vibrato pattern. However, our approach is conceptually

not limited to sinusoidal vibrato templates and one could further improve the templates’ design

in order to also capture these kind of vibrato patterns.

6.3 Conclusions and Further Notes

In Section 6.1, we presented a framework that allows for decomposing a given audio recording

into score-based, and therefore musically meaningful audio events. Furthermore, we showed

how this decomposition can be used for audio editing and analysis purposes. As discussed in

Section 6.1.4, the residual signal xres provides valuable information about deviations between a

performance and a corresponding score as well as about misalignments of the MIDI events with

the audio recording. As for future work, building a classifier that can automatically distinguish

between different kinds of error sources may not only be beneficial for the source separation

procedure itself, but could also aid in performance analysis applications or in improving alignment
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techniques. A further challenge is to investigate to which extend our decomposition may serve

as an instance of object-oriented sound representation with applications to parametric audio

coding and interactive remixing, see [95]. Finally, it showed that the perceptual quality of the

individual audio events can be improved by post-processing them individually [26] which is

especially interesting in music editing scenarios.

In Section 6.2, we presented a novel approach for analyzing vibrato in complex music signals. By

locally comparing a signal’s spectrogram with a set of predefined vibrato templates, we derived

a vibrato salience spectrogram—a kind of mid-level feature representation—in order to locate

and parameterize spectro-temporal vibrato patterns. Our approach has the advantage that the

analysis does not rely on the estimation of a (possibly erroneous) F0-trajectory. Experiments

indicated that our proposed procedure allows for a more robust vibrato detection than F0-based

approaches, in particular for complex music signals.

In future work we would like to further explore the use of vibrato templates in various application

scenarios. For example, deriving spectral masks from the vibrato salience spectrogram S could

open up novel ways of decomposing a music signal into vibrato and non-vibrato components.

Furthermore, we believe that the use of vibrato templates could be beneficial for tasks like

F0-tracking [201, 183] or performance analysis [2].

Finally, we would like to extend the experiments performed in Section 6.2.5. Instead of manually

annotating the F0-trajectories estimated by MELODIA, one possibility to construct an automated

F0-based vibrato analysis procedure would be to exploit the Tempogram Toolbox [89]. This

MATLAB toolbox—originally developed for tempo analysis of music signals—can be used to

perform a Fourier-like analysis of a one-dimensional signal by locally comparing it with a set of

sinusoidal prototype signals [88]. In case this signal is a novelty curve as introduced in Section 2.5,

this yields a representation called a Fourier-based tempogram, which is a time-tempo plot of the

given signal. In the context of F0-based vibrato analysis, the exact same method could be used

to derive a time-rate representation from an F0-trajectory.

We can easily compute a similar representation with our proposed template-based vibrato analysis

approach. For each frame in the vibrato salience spectrogram S, we can count the number of

similarity-maximizing templates for a fixed vibrato rate, considering only salience values above a

threshold τ . Doing this for all rates as reflected by our templates yields a histogram of vibrato

rates for each frame. The sequence of histograms constitutes the desired time-rate representation.

Figure 6.14 shows the results of a first experiment in that direction, where we compare to

the automated F0-based time-rate representation derived by using the Tempogram Toolbox

with the histogram representation derived from S. In Figure 6.14a, we see the log-frequency

spectrogram of the item Sound On Sound Demo—Mystery from our dataset (considering the

mix with no attenuation of the singing voice). Figures 6.14b/c show the F0-trajectory of the

excerpt as estimated by MELODIA, as well as the vibrato salience Spectrogram S. From these
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Figure 6.14: Automated F0-based vibrato analysis based on the Tempogram Toolbox. (a): Log-frequency
spectrogram of Sound On Sound Demo—Mystery. (b): F0-trajectory estimated by MELODIA. (c): Vibrato
salience spectrogram. Only values above a threshold τ are shown. (d): “Tempogram” derived from the F0-trajectory.
(e): Histogram of the similarity-maximizing vibrato templates’ rates.

representations, we derive a “tempogram” based on the F0-trajectory, as well as the histogram of

vibrato rates from S as explained above (Figures 6.14d/e). One can see that the two time-rate

representations capture similar information. Although the rate resolution in the tempogram

representation is rather blurred, dark passages roughly correspond to vibrato passages in the

trajectory—as it is also the case with the histogram representation. However, the tempogram

representation seems to be much more sensitive to short frequency modulations in the singing

voice that are usually not considered to be vibrato. For example, see the short trajectory

segment in Figure 6.14b briefly after second four that causes a clear indication in the tempogram

representation in Figure 6.14d. A closer investigation of this general approach is left as future

work.

125 PhD Thesis, Jonathan Driedger



126



Chapter 7

NMF-Inspired Audio Mosaicing for

Music Signals

This chapter deals with the task of audio mosaicing and is mainly based on our work presented

in [50].

Using the sounds in a recording of buzzing bees to recreate a recording of the song “Let it be” by

the Beatles is a typical example of an audio mosaic. In this example, the recording of the bees

serves as source, while the Beatles recording is called the target. Ultimately, one should be able

to identify the target recording when listening to the mosaic, but at the same time perceive the

timbre of the source sounds. Therefore, the audio mosaic of “Let it be” with the bee recording

could give the impression of bees being musicians, buzzing the song’s tune.

Audio mosaicing is an interesting audio effect which has found its way into both artistic work as

well as academic research. Artists like John Oswald used thousands of manually selected source
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Figure 7.1: Schematic overview of our proposed
audio mosaicing method. The sparse diagonal
structures in the activation matrix are important
in order to preserve the timbre of the source in the
mosaic.
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audio snippets to create new musical compositions1 and real-time audio mosaicing has been used

by musicians as an instrument in live performances [212, 23]. Over the years, many different

systems for audio mosaicing were proposed [189, 20, 7, 185, 120, 112, 24, 203]. The core idea

of most automated systems is to split the source into short audio segments, which are suitably

concatenated afterwards to match spectral and temporal characteristics of the target [190, 203].

In this chapter, we propose a novel way to create audio mosaics. Our idea is to learn an activation

matrix that, when multiplied with the spectrogram of the source recording, approximates the

spectrogram of the target recording (see Figure 7.1). The source spectrogram hereby serves as a

template matrix which is fixed throughout the learning process. This way, as opposed to many

previous automated mosaicing approaches, a frame of the target can be re-synthesized as the

superposition of several spectral frames of the source, thus allowing “polyphony” of the source

sounds.

As a first contribution, we propose an audio mosaicing procedure which is inspired by well-known

algorithms for non-negative matrix factorization (NMF) [129]. Keeping the template matrix

fixed (the source’s magnitude spectrogram), this basic procedure learns an activation matrix by

iteratively applying a standard NMF update rule to a randomly initialized matrix. Experiments

show that in case the source recording offers an appropriate amount of different sounds, this

procedure can closely approximate the spectrogram of the target recording. However, the source’s

timbre is often barely recognizable in the resulting mosaics. The reason is that the procedure

1Especially on his album Plexure [159].
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recreates every target frame independently, thus destroying temporal characteristics of the source

in the final audio mosaic. Furthermore, the method can superimpose an arbitrary number of

spectral frames from the source to construct a good numerical approximation of a single target

frame. A superposition of a large number of source sounds may however result in a timbre that

is no longer similar to the actual timbre of the source. Therefore, an exact approximation of the

target’s spectrogram cannot be our procedure’s sole goal.

As our main technical contribution, we therefore propose an extended set of update rules that

supports the development of sparse diagonal structures in the activation matrix during the

learning process (see the activation matrix in Figure 7.1). Rather than single frames, diagonal

structures activate whole frame sequences in their original order. This preserves the source’s

temporal characteristics in the resulting mosaic. Furthermore, the extended set of update rules

also limits the number of simultaneous activations, making the learned activation matrix sparse

and reducing the problem of too many source sounds being audible simultaneously. This way, we

trade some approximation quality for a better preservation of the source’s timbre.

The idea of activating sequences of frames is inspired by methods like non-negative matrix factor

deconvolution (NMFD) and related formulations [197, 200], where template sequences of frames

from a dictionary are activated by single activation values. However, our approach is conceptually

different. Instead of changing the NMF problem formulation, our approach stays in the standard

NMF setting, supporting the activation of whole frame sequences directly in the activation matrix

with additional update rules. Besides being computationally very efficient and easy to implement,

this also has the advantage that we do not need to choose a maximal length of the sequences

as in NMFD. Similarly, the sparseness constraint imposed by our procedure is not enforced by

penalty terms in the problem formulation (as for example in [56, 102, 115, 221]), but also by

additional update rules.

The remainder of this chapter is structured as follows. In Section 7.1 we introduce the basic

concept of using NMF-inspired update rules for the task of audio mosaicing. In Section 7.2

we present the extended set of update rules that supports the development of sparse diagonal

structures in a learned activation matrix. The effects of these update rules on the audio mosaics

are discussed and demonstrated in Section 7.3.

7.1 Basic NMF-Inspired Audio Mosaicing

As discussed in Section 6.1, non-negative matrix factorization (NMF) has been applied very

successfully in a large variety of music processing tasks and beyond. For the sake of convenience,

we state the basic concept again at this point. Given a non-negative matrix V ∈ RN×M≥0 , the

goal of NMF is to decompose this matrix into two factors W ∈ RN×K≥0 and H ∈ RK×M≥0 , where
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Figure 7.2: Basic NMF-inspired audio mosaicing. (a): Magnitude spectrogram of “Let it be” V (target).
(b): Magnitude spectrogram of a recording of bees W (source). (c): Activation matrix H. (d): The product WH
(mosaic).

N,M,K ∈ N. The distance between the product WH and the matrix V is minimized with

respect to some distance measure, for example the Kullback-Leibler divergence

(V ||WH) =
∑
nm

Vnm log
Vnm

(WH)nm
− Vnm + (WH)nm. (7.1)

In the context of music processing, the matrix V is usually a magnitude spectrogram of a

music recording, the matrix W is interpreted as a set of spectral templates, and the matrix H

constitutes an activation matrix. Non-zero values in a row of H activate the associated template

in W at the respective time instance. The two factors W and H are usually learned by iteratively

applying multiplicative update rules to two suitably initialized matrices [129].

Fixing the template matrix W to be the magnitude spectrogram of the source recording, the

basic idea of our proposed audio mosaicing approach is to learn only the activation matrix H.

More precisely, we proceed as follows. Given the target recording xtar and the source recording

xsrc, we first compute the complex valued spectrograms Xtar and Xsrc by applying the short-time

Fourier transform (STFT) to both recordings. Afterwards, we set V := |Xtar|, W := |Xsrc|, and

randomly initialize H(1) ∈ (0, 1]K×M . Fixing a number of iterations L, we then iteratively update
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H with

H
(`+1)
km = H

(`)
km

∑
nWnkVnm/(WH(`))nm∑

nWnk
, (7.2)

for k ∈ [1 : K], m ∈ [1 : M ], and the iteration index ` ∈ [1 : L− 1]. Finally, we set H := H(L).

The learned activation matrix H is then multiplied with the complex valued Xsrc, yielding the

complex valued spectrogram of the audio mosaic Xmos := XsrcH. To compute the audio mosaic

xmos, we apply an “inverse” STFT to the spectrogram Xmos which also adjusts the phases such

that artifacts from phase discontinuities are reduced [84].

Figure 7.2 shows this basic procedure applied to our running example. In Figure 7.2a we see an

excerpt of the magnitude spectrogram of the song “Let it be”. Our goal is to create an audio

mosaic of this song, using the recording of buzzing bees, which can be seen in Figure 7.2b. To

increase the range of different pitches occurring in our source, we used a pitch-shifting algorithm

[40] to create differently pitched versions of the bee recording and concatenated them. Figure 7.2c

shows an excerpt of the activation matrix H, derived by applying the basic procedure described

above. A first observation about H is the predominance of horizontal activation structures.

These patterns correspond to single spectral frames in the source which are activated repeatedly

to mimic the stable spectral structures in the target. Although the resulting mosaic, shown in

Figure 7.2d, closely resembles these spectral structures, one can hear a “stuttering” effect when

listening to the reconstructed audio recording. This stuttering originates from the same frame of

the source being repeated over and over again. In Section 7.2.1, we aim to prevent the learning

process from activating the same frame in fast repetition with an additional update rule.

A second observation is that the matrix H usually activates many source frames simultaneously.

The learning process can thus closely approximate the spectral shapes of the target frames.

However, in the context of audio mosaicing, this has several drawbacks. Since H is multiplied

with the complex spectrogram Xsrc, phase cancellation artifacts may arise when superimposing

many complex spectral frames. This way, especially low pitched sounds tend to cancel each other

out and are not audible in the final audio mosaic. Furthermore, since a sound’s timbre is also

closely related to the energy distribution in its frequency spectrum, adapting the spectral shapes

may change the timbre of the source. An update rule which sets a limit on the maximal number

of simultaneous activations is presented in Section 7.2.2.

A third problem connected with the activation matrix shown in Figure 7.2c is the loss of temporal

characteristics of the source. The typical “buzzing sound” of the bees, which results from pitch

modulations (see Figure 7.2b), is lost in the mosaic (see Figure 7.2d). This is the case since the

spectral frames of the source are activated independently of their order in the source spectrogram.

To preserve some temporal characteristics, the update rule presented in Section 7.2.3 supports

the development of diagonal structures in the activation matrix.
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Figure 7.3: (a): Activation matrix H(`). (b): Repetition restricted activation matrix R(`). The horizontal
neighborhood is indicated in red. (c): Polyphony restricted activation matrix P (`). For each column, the highest
value is indicated in red. (d): Continuity enhancing activation matrix C(`). The diagonal kernel is indicated in
red.

7.2 Learning Sparse Diagonal Activations

The core idea to overcome the issues of the basic NMF-inspired audio mosaicing procedure is to

impose specific constraints on the learned activation matrices by adapting the iterative update

process. As discussed in the previous section, we identified three main problems of the mosaics

generated by the basic procedure, all related to properties of the the derived activation matrices.

First, horizontal activation patterns cause stuttering artifacts in the mosaics. Second, too many

simultaneous activations lead to phase cancellations and overfitting of the spectral shapes. Third,

the source’s temporal characteristics are destroyed by activating source frames independently of

each other. We therefore introduce additional update rules to approach these issues, see also

Figure 7.3.

7.2.1 Avoiding Repeated Activations

To avoid activating the same spectral frame of the source in subsequent time-instances, the idea

is to only keep the highest activations in a horizontal neighborhood of the matrix H, suppressing
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the remaining values. However, we do not want to interfere too much with the actual learning

process in the first few update iterations. The amount of suppression applied to the smaller

values is therefore dependent on the iteration index `. Given the activation matrix H(`), the

size of a horizontal neighborhood r, and the number of iterations L, we compute a repetition

restricted activation matrix R(`) by

R
(`)
km =

{
H

(`)
km if H

(`)
km = µ

r,(`)
km

H
(`)
km(1− (`+1)

L ) otherwise
, (7.3)

with ` ∈ [1 : L− 1] and µ
r,(`)
km being the maximum value of H(`) in a horizontal neighborhood

µ
r,(`)
km = max(H

(`)
k(m−r), . . . ,H

(`)
k(m+r)) . (7.4)

Note that the suppression of smaller values becomes strict in the last update iteration for

` = L− 1. Intuitively, the parameter r defines the minimal horizontal distance (and therefore

the minimal time interval) between two activations of the same source frame. Figure 7.3b shows

the repetition restricted activation matrix R(`) derived from the toy example activation matrix

shown in Figure 7.3a, using r = 2, ` = 8, and L = 10. As opposed to H(`), there are no two

dominant values next to each other in R(`).

7.2.2 Restricting the Number of Simultaneous Activations

Next, we address the problem of too many simultaneous activations. Setting a limit p ∈ N on the

number of activations in one column of the activation matrix, we compute a polyphony restricted

activation matrix P (`) in a similar manner as R(`) by

P
(`)
km =

{
R

(`)
km if k ∈ Ω

p,(`)
m

R
(`)
km(1− (`+1)

L ) otherwise
, (7.5)

where Ω
p,(`)
m contains the indices of the p highest values in the mth column of R(`). The parameter

p can be directly interpreted as the desired degree of polyphony in the mosaic. For example,

setting p = 1 results in a mosaic where the source sounds are not heavily superimposed but

mainly concatenated to mimic the most dominant features of the target. In Figure 7.3c, we see

the polyphony restricted activation matrix P (`) derived from R(`), using p = 1. One can see that

in P (`) there is (at most) one single dominant value left in every column.
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7.2.3 Supporting Time-Continuous Activations

To support the development of diagonal structures that activate successive frames of the source,

we now compute a continuity enhancing activation matrix C(`). The idea here is to convolve

the matrix P with a diagonal kernel. Choosing c ∈ N, which defines the length of the kernel, we

compute

C
(`)
km =

c∑
i=−c

P
(`)
(k+i)(m+i) . (7.6)

Intuitively, the length 2c + 1 of the kernel defines the minimal number of source frames that

we would like to successively activate. Figure 7.3d shows the matrix C(`) for our toy example,

computed with c = 2. Note that in C(`) the number of simultaneous dominant activations may

locally exceed the limit which was imposed in the computation of the polyphony restricted

activation matrix P (`). In practice, this is however not a problem and even desirable since

this way, the diagonal structures can overlap with each other to some degree. Therefore, the

corresponding audio segments of the source are overlapped in the final mosaic as well, leading to

smooth transitions between them.

7.2.4 Adapting the Activations to Fit the Target

Finally, we perform the standard NMF update step to let the mosaic adapt to the target again.

Similarly to Equation (7.2), we compute the activation matrix for the next iteration by

H
(`+1)
km = C

(`)
km

∑
nWnkVnm/(WC(`))nm∑

nWnk
. (7.7)

In summary, a single update step of the activation matrix H is computed by applying Equa-

tions (7.3), (7.5), (7.6), and (7.7) sequentially.

Note that in one update iteration, the three intermediate update rules (7.3), (7.5), and (7.6)

are insensitive to the target and therefore may increase the distance measure of Equation (7.1).

However, as already discussed above we are not interested in minimizing this measure, but trade

some approximation accuracy for a better preservation of the source’s timbre. In practice, our

procedure usually yields an activation matrix that, when multiplied with the source spectrogram,

approximates the target spectrogram to a sufficient degree, while preserving the source’s timbre

in the mosaic much better than the basic procedure described in Section 7.1.

Figure 7.4 shows an excerpt of the activation matrix H of our running example “Let it be” for

several iteration indices `. Here, we set the repetition restriction parameter to r = 3, the limit

of simultaneous activations to p = 10, the kernel parameter to c = 3 (resulting in a diagonal

kernel of length 7), and the number of update iterations to L = 10. Figure 7.4a shows the
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Figure 7.4: The activation matrix H for the mosaic of “Let it bee” with a recording of bees in different states.
(a): H(1). (b): H(3). (c): H(6). (d): H(10). The repetition restricting neighborhood is indicated in red.

random initialization of the activation matrix H(1). After two iterations, one can already notice

diagonal patterns in H(3), see Figure 7.4b. Figure 7.4c shows the activations after another three

update iterations. The diagonal patterns in H(6) are even more prominent and one can observe

that separate diagonal structures start to emerge, leaving regions of lower values inbetween

them. In Figure 7.4d, the activation matrix H(10) is shown. In this final activation matrix,

four clear diagonal structures have emerged. The remaining activations are outside the visible

range. Looking at the two upper diagonals, one can see that although they seem to be rather

close together, they obey the repetition restricting horizontal neighborhood indicated in red.

Furthermore, it is noteworthy that the length of the diagonals greatly exceeds the length of the

diagonal kernel. For example, while we used a diagonal kernel of length 7, the lowest diagonal

has a length of 25 non-zero activations, corresponding to an audio segment in the source of

roughly one second. This means that the procedure uses a whole one-second patch of source

audio material to recreate the target between second 17 and 18.

Figure 7.5 exemplarily shows the progression of the Kullback-Leibler divergence (7.1) of the

target’s and the different mosaics’ magnitude spectrograms over the course of L = 20 update

iterations for our running example. The divergence values for the different mosaics resulting

from the respective activation matrices are indicated by different symbols, see the legend of
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Figure 7.5: Progression of the Kullback-Leibler divergence of the target and mosaic magnitude spectrograms for
different activation matrices over the course of L = 20 update iterations. The application sequence of update rules
is indicated once with red arrows.

Figure 7.5. Note that in Figure 7.5 the activation matrix of the basic NMF-inspired mosaicing

approach (see Section 7.1) is denoted by H̃(`) in order to distinguish it from the activation

matrix resulting from applying the extended set of update rules H. Since H(1) and H̃(1) are

initialized randomly, the divergence values for ` = 1 are very large for all activation matrices and

outside of the plot’s visible range. In the subsequent update iterations of the basic NMF-inspires

procedure (solid black line for ` > 1) the divergence values are steadily decreased, as expected.

The repeated application of our proposed extended set of update rules has a different effect on

the divergence values. After one full update iteration (solid red line for ` = 2), the mosaic’s

magnitude spectrogram is still rather similar to the one of the basic procedure in terms of its

Kullback-Leibler divergence to the target’s magnitude spectrogram. The repetition restriction as

well as the restriction of the polyphony only have a mild effect on the divergence (the values of

(V ||WP (2)) and (V ||WR(2)) are only slightly higher than (V ||WH(2))). This is the case, since

the suppression of activation values by the update rules (7.3) and (7.5) is rather small for the

first update iterations. The update rule (7.6) is independent of the update iteration ` and the

diagonal convolution therefore leads to a larger increases of the the divergence measure. As

intended, the application of the update rule (7.7) then leads to an adaption of the mosaic to the

target and therefore decreases the divergence measure again. Over the course of iterations, the

repetition and polyphony restriction constraints become more and more strict. The application

of the respective update rules therefore increases the divergence measure by larger amounts.

While the divergence measure for H(`) is decreasing over the course of the first few iterations,
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it starts to increase again at around iteration 9. Interestingly, the divergence stabilizes around

iteration 14. The applications of the repetition restricting, as well as the polyphony restricting

update rule do not influence the divergence measure any more, although their constraints become

more and more strict. This indicates, that the iterative update procedure led to a state in which

the repetition- as well as the polyphony restriction constraints were satisfied, even before the

update iterations were fully completed. In this state, only the continuity enhancing update rule

(7.6) influences the divergence measure. However, its effect is always compensated for by the

standard NMF-update. As expected, the overall Kullback-Leibler divergence of the target and

the mosaic resulting from using the extended set of update rules is larger than the divergence

for the mosaic resulting from the basic NMF-inspired approach (see Figure 7.5 for ` = 20). As

discussed before, this is acceptable since the extended set of update rules allows for a better

preservation of the source’s timbre in the mosaic as we will see in the next section.

7.3 Experiments and Examples

In this section, we both visually and acoustically demonstrate the effectiveness of our proposed

method. As discussed in previous sections, the main drawbacks of the basic audio mosaicing

approach described in Section 7.1 were both the loss of temporal characteristics and spectral

shapes of the source sounds in the resulting audio mosaics. The idea was to approach these

problems by supporting the development of sparse diagonal structures in the activation matrix

with an extended set of update rules. In the following, we exemplify how these structures can

preserve the source’s desired characteristics in the audio mosaic.

7.3.1 Preserving the Source’s Temporal Characteristics

In Figure 7.6, we once again revert to our running example. Here, spectrogram excerpts of

the target recording “Let it be” as well as the source recording of buzzing bees are shown in

Figures 7.6a and 7.6b, respectively. The spectrogram of the target recording exhibits sounds

with very stable pitches, resulting from the solo piano at the song’s beginning. In contrast, the

buzzing of the bees leads to rather strong amplitude modulations that are characteristic for

the sound. Figure 7.6c shows an excerpt of the activation matrix H as derived by the basic

NMF-inspired audio mosaicing procedure. In this excerpt of H, only two different spectral frames

of the source are activated repeatedly by the procedure to mimic the stable pitch of the piano

sound. The resulting spectrogram of the audio mosaic, shown in Figure 7.6e, approximates

the target’s spectrogram quite precisely. However, the characteristic pitch modulations of the

buzzing bee sound are lost almost completely. Looking at Figure 7.6d, one can see the activation

matrix H derived by our proposed procedure based on the extended set of update rules. The
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Figure 7.6: The effect of diagonal activation patterns. (a): Spectrogram of the target recording “Let it be”. (b):
Spectrogram of the source recording of buzzing bees. (c): Activation matrix H derived with the basic approach.
(d): Activation matrix H derived with the extended set of update rules. (e): Spectrogram of the audio mosaic
resulting from the basic approach. (f): Spectrogram of the audio mosaic resulting from the extended procedure.

diagonal patterns shown activate segments of the source that have a duration of roughly half a

second. As can be seen by comparing the regions marked in red in the source (Figure 7.6b) and

the mosaic spectrogram (Figure 7.6f), the temporal structures of these segments are preserved in

the mosaic. While the mosaic computed with the extended set of update rules exhibits a lot of

pitch modulations, which reflect the preserved timbre of the buzzing bee sound, the tonal content

as well as rhythmic structures of the target are still maintained. For example, the two strong

partials of the target recording at around 270 Hz and 300 Hz in Figure 7.6a are also visible in the

audio mosaic in Figure 7.6f, only this time pitch modulated. Similarly, the onset in the target at

second 2.6 is present in the mosaic as well.
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Figure 7.7: Comparison of spectral shapes. (a): A single spectral frame of the target recording (“Let it be”).
Harmonics are indicated by red circles. (b): The spectral frame of the mosaic computed with the basic procedure
at the same temporal position. Harmonics which are present in both the original frame as well as in the mosaic
are indicated by red circles. (c): The spectral frame of the mosaic computed by using the extended set of update
rules.

7.3.2 Preserving the Source’s Spectral Shapes

In Figure 7.7, we investigate typical spectral shapes of the target as well as the mosaic for our

running example. Figure 7.7a shows the spectral frame of the target’s spectrogram at second 4.6

as a frequency-magnitude plot. One can see the harmonic structure with several clear partials in

this frame, resulting from the piano sound in the target. The corresponding spectral frame of

the mosaic computed by the basic procedure shown in Figure 7.7b shows a very similar spectral

structure. Most of the harmonics visible in the target are also present in this frame (indicated by

the red circles) and even the relations between peak heights are often preserved. In contrast,

the spectral frame of the mosaic computed with the extended set of update rules only roughly

corresponds to the spectral shape of the target frame, see Figure 7.7c. However, some of the

dominant peaks in the target frame are still present in the mosaic, leading to a sound that

captures only the dominant tonal characteristics of the target. The noisy timbre of the buzzing

bees, visible by the increased noise level in the frame, is therefore preserved.
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Target’s name Description of the target Source’s name Description of the source

LetItBe An excerpt of the song “Let it be” by
the Beatles (piano & singing).

Bees Recording of a buzzing
swarm of bees.

GuteNacht An excerpt of “Gute Nacht” by Franz
Schubert which is part of the roman-
tic Winterreise song cycle, taken from
[152].

Wind Recording of howling wind.

FunkJazz An excerpt from a jazz piece performed
by the band “Music Delta” (saxophone,
synthesizer, bass, and drums), taken
from [9].

Whales Recording of whale songs
and whale sounds.

Stepdad Excerpt from the song “My leather, my
fur, my nails” by the pop band Stepdad
(synthesizers, drums, and singing).

Chainsaw Recording of a chainsaw’s
sawing and engine sounds.

Freischütz Excerpt from the opera “Der Freischütz”
by Carl Maria von Weber (full orchestra,
applause at the end).

AirRaid Recording of an air raid
siren.

Vermont An excerpt of the song “Vermont” by
the band “The Districts” (singing, gui-
tar, bass, and drums), taken from [9].

RaceCars Recording of engine sounds
of starting race cars.

Table 7.1: List of target and source recordings used in our experiments.

7.3.3 Audio Examples

In order to also give an auditory demonstration of our method, we set up an accompanying

website for this chapter at [49]. On this website, one finds the target recordings as well as source

recordings listed in Table 7.1. To ensure that each source recording offers an adequate pitch

range, we computed several pitch-shifted versions of it (using a pitch-shifting algorithm from [40])

and concatenated them. For each pair of target and source, we then generated an audio mosaic

using both the basic mosaicing procedure described in Section 7.1 as well as the procedure based

on the extended set of update rules proposed in Section 7.2. For these experiments, we used

music recordings sampled at 22050 Hz, an STFT frame length of 2048 samples and a hop size of

1024 samples to compute the spectrograms. In order to derive the activation matrices for both

procedures, we performed L = 20 iterations of the respective update steps. For the extended set

of update rules, we set the repetition restriction parameter to r = 3, the limit of simultaneous

activations to p = 10, and the kernel parameter to c = 3. To reconstruct time-domain signals

from the derived complex valued mosaic spectrograms, we finally performed 20 iterations of the

STFT inversion procedure proposed in [84].
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7.4 Conclusions and Further Notes

In this chapter, we presented a novel approach for automatically generating an audio mosaic of a

target recording using the sounds from a source recording. The core idea of this NMF-inspired

procedure was to learn an activation matrix that, when multiplied with the spectrogram of

the source recording, yields the spectrogram of the mosaic recording. As our main technical

contribution, we proposed an extended set of update rules that supports the development of

sparse diagonal structures in the activation matrix during the learning process. Our experiments

showed that these diagonal activation structures correspond to the activation of whole sequences

of spectral frames and help to preserve timbral characteristics of the source in the mosaic.

In future work we want to investigate if our proposed procedure can also be applied in scenarios

beyond audio mosaicing. One possibility is to examine whether supporting the development

of diagonal structures in the activation matrix can also be beneficial when learning not only

the activation matrix, but also the template matrix. Such an NMF procedure could be applied

for learning and identifying repeating patterns in feature sequences, similar to [225] who used

techniques based on NMFD for this task. In this context, we hope that our approach may yield

a simpler implementation as well as more flexibility since the maximal length of sequences does

not need to be fixed.
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Chapter 8

Summary and Future Work

In this thesis, we explored the idea of processing music signals using audio decomposition

techniques. Looking back, we saw various recurring key concepts which we now summarize.

A core principle which we applied in various settings throughout this thesis was to use decompo-

sition techniques, such as our harmonic-percussive-residual decomposition procedure (Chapter 3),

to split music signals into a set of mid-level components with an explicit interpretation. We

were the able to use this information about the components as prior knowledge in subsequent

processing tasks. For example, we cascaded various audio decomposition techniques in order

to disassemble a music recording of singing voice and accompanying instruments into a set

of semantically interpretable signal components (Chapter 5). These components could then

easily be reassembled to form estimates of the isolated singing voice and accompaniment, since

the components’ explicit interpretation made it obvious whether a sound component was part
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of the singing voice or the accompaniment. We also harnessed the explicit interpretation of

mid-level components to design our TSM procedures (Chapter 4) where we could apply specialized

modification methods to a signal’s harmonic and percussive sound components.

A guiding strategy in this thesis was to avoid explicit decisions at early stages in processing

pipelines—instead, we aimed to handle problems rather implicitly. For example, our proposed

TSM procedures (Chapter 4) avoided explicit transient detection in a given input signal—in

contrast with other state-of-the-art TSM methods. Since when applying a harmonic-percussive

decomposition technique, the signal’s transients were typically contained in the percussive

component, we could implicitly preserve them by modifying this component with OLA (see

Section 4.1.2). Another example is our proposed singing voice extraction method (Chapter 5).

In the context of this application, an important observation was that artifacts audible in the

individual component signals were often perceptually masked in the reassembled source estimates—

thus rendering attempts to reduce computational artifacts in the individual component signals

unnecessary. Finally, our template-based vibrato parametrization approach (Section 6.2) followed

the same strategy by avoiding the explicit extraction of an F0-trajectory prior to the actual vibrato

analysis. For this application, however, it turned out that the robustness gained by avoiding the

F0-estimation comes at the cost of efficiency. In future work, we therefore want to investigate

whether combining ideas from our template-based approach with explicit F0-estimation could

yield a trade-off between robustness and efficiency.

Throughout our work, it became evident that the very process of decomposing audio signals

often gave us deeper insights into the music processing tasks at hand. For example, investigating

our note-wise audio decomposition method’s residual signal (Section 6.1) not only revealed

shortcomings of our musical model (such as assuming that a small set of template vectors can

sufficiently describe all onsets occurring in a music recording), but also enabled us to infer

passages in a recording where a musician deviated from the given score—a valuable information

that could be used in applications far beyond this decomposition scenario. A second example

is the audio mosaicing procedure (Chapter 7) where applying the basic NMF-inspired method

lead to perceptually unsatisfactory audio mosaics. However, investigating the learned activation

matrices revealed that the reason for these poor mosaics were dense, horizontal activation

structures. Due to this insight we could develop an extended set of update rules that supports

the development of sparse diagonal activation structures. While these update rules greatly

helped to improve the quality of audio mosaics, it remains as future work to investigate this

concept’s relationship to established decomposition techniques such as non-negative matrix factor

deconvolution (NMFD) [197, 200] and to establish a theoretical foundation for them.

Throughout this thesis, we often exploited explicit musical knowledge in order to hand-craft

solutions for specific problems. This informed approach had the advantage that we were often

able to achieve good results without needing large amounts of training data. In contrast, a
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current trend in music processing is to use deep learning—a well established machine learning

paradigm [108]—in order to learn relevant processing steps directly from large amounts of audio

data. Deep learning has been successfully applied in a large variety of signal processing and music

information retrieval scenarios such as singing voice extraction [105], downbeat tracking [51],

chord recognition [196], singing voice activity detection [131], or tempo estimation [10]. An

interesting research direction to address in future work is therefore to apply deep learning

techniques in order to decompose music recordings into mid-level components as considered in

this thesis.
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Appendix A

TSM Toolbox

In the context of our publication [40] we released the TSM toolbox, which is freely available at

the website [39] under a GNU-GPL license. This self-contained toolbox serves various purposes.

First, it delivers basic tools to work in the field of TSM. The toolbox includes well-documented

reference implementations for some of the most important classical TSM procedures within

a unified framework. This not only allows users and researchers to get a better feeling for

TSM results by experimenting with the algorithms, but also gives insights into implementation

details and potential pitfalls. Second, to give an example of how those fundamental procedures

can be combined to improve TSM results, the toolbox also supplies the code of our recently

proposed TSM approach based on harmonic-percussive separation (see Section 4.2), as well as

the code of the harmonic-percussive separation procedure itself. Third, the toolbox provides

a MATLAB wrapper function for a commercial, proprietary, and widely used TSM algorithm.

Because of its ‘state-of-the-art’ character, this is particularly interesting when conducting listening

experiments which are the most common method for judging the perceptual quality of TSM

results. Finally, the toolbox provides additional code for various example applications. Such
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Filename Main parame-
ters

Optional parameters Description

wsolaTSM.m x, α synHop=̂Hs, win=̂w,
tolerance=̂∆max

Application of OLA & WSOLA.

pvTSM.m x, α synHop=̂Hs, win=̂w,
phaseLocking

Application of the phase vocoder (with
or without identity phase locking).

hpTSM.m x, α hpsFilLenHarm=̂`h,
hpsFilLenPerc=̂`p,
pvSynHop, pvWin,
olaSynHop, olaWin

Application of TSM based on HPSS.

elastiqueTSM.m x, α – MATLAB wrapper for the élastique al-
gorithm.

win.m `, β – Generates a sinβ window function of
length `.

stft.m x anaHop, win Short-time Fourier transform of x.
istft.m spec synHop, win Inversion of a short-time Fourier trans-

form, see [84].
hpSep.m x filLenHarm=̂`h,

filLenPerc=̂`p

Harmonic-percussive source separa-
tion.

pitchShiftViaTSM.m x, n algTSM Pitch-shifting the signal x by n cents.

visualizeWav.m x fsAudio, timeRange Visualization of TSM results.
visualizeSpec.m spec fAxis, tAxis,

logComp
Visualization of a short-time Fourier
transform.

visualizeAP.m anchorpoints fsAudio Visualization of a set of anchorpoints.

Table A.1: Overview of the main MATLAB functions contained in the TSM toolbox [39] and the most important
parameters.

applications include the automated generation of interfaces for comparing TSM results, the non-

linear synchronization of audio recordings, and the pitch-shifting of audio signals. Although there

already exist MATLAB implementations of individual TSM algorithms (for example [83, 57]),

we believe that supplying an entire collection of different TSM approaches along with example

applications within a unifying framework can be highly beneficial for both researchers as well as

educators in the field of audio processing.

A.1 Code Example

The TSM procedures discussed in Chapter 4 (except for Int-PV-TSM and CascadeTSM) form

the core of our toolbox. Table A.1 gives an overview of the main MATLAB functions along

with the most important parameters. Note that there are many more parameters and additional

functions not discussed here. However, for all parameters there are default settings such that

none of the parameters need to be specified by the user.

To demonstrate how the TSM procedures contained in the TSM toolbox can be applied, we

now discuss the code example shown in Table A.2, which is also contained in the toolbox as

script demoTSMtoolbox.m. Our example starts in lines 1-4 with specifying an audio signal as well
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1 filename = ’CastanetsViolin.wav’;
2 alpha = 1.8;
3
4 [x,sr] = wavread(filename);
5
6 paramOLA.tolerance = 0;
7 paramOLA.synHop = 128;
8 len = 256; beta = 2;
9 paramOLA.win = win(len,beta);

10 yOLA = wsolaTSM(x,alpha,paramOLA);
11
12 paramWSOLA.tolerance = 512;
13 paramWSOLA.synHop = 512;
14 len = 1024; beta = 2;
15 paramWSOLA.win = win(len,beta);
16 yWSOLA = wsolaTSM(x,alpha,paramWSOLA);
17
18 paramPV.phaseLocking = 0;
19 paramPV.synHop = 512;
20 len = 2048; beta = 1;
21 paramPV.win = win(len,beta);
22 yPV = pvTSM(x,alpha,paramPV);
23
24 paramPVpl.phaseLocking = 1;
25 paramPVpl.synHop = 512;
26 len = 2048; beta = 1;
27 paramPVpl.win = win(len,beta);
28 yPVpl = pvTSM(x,alpha,paramPVpl);
29

30 paramHP.hpsFilLenHarm = 10;
31 paramHP.hpsFilLenPerc = 10;
32 paramHP.pvSynHop = 512;
33 len = 2048; beta = 1;
34 paramHP.pvWin = win(len,beta);
35 paramHP.olaSynHop = 128;
36 len = 256; beta = 2;
37 paramHP.olaWin = win(len,beta);
38 yHP = hpTSM(x,alpha,paramHP);
39
40 % To execute elastique, you will need
41 % an access id from http://www.sonicapi.com.
42 % Furthermore, you need to download ’curl’
43 % from http://curl.haxx.se/download.html.
44 % yELAST = elastiqueTSM(x,alpha);
45
46 paramVis.timeRange = [5.1 5.3];
47 visualizeWav(x,paramVis);
48 paramVis.timeRange = [5.1 5.3] * alpha;
49 visualizeWav(yOLA,paramVis);
50 wavwrite(yOLA,sr,’Output OLA.wav’);

Table A.2: Code example for computing TSM results of various TSM algorithms, generating the visualizations,
and writing the TSM results to the hard disk.

as a stretching factor α. Furthermore, the audio signal is loaded from the hard disk using the

MATLAB function wavread and stored in the variable x while its sampling rate is stored in sr.

The first TSM procedure which is applied to the loaded signal is OLA in lines 6-10. Since OLA

is a special case of WSOLA, this is done by calling the wsolaTSM.m function with a specialized

set of parameters. In line 6, the analysis frame position tolerance ∆max of WSOLA is set to 0,

turning WSOLA into OLA. Afterwards, the synthesis hopsize Hs is set to 128 samples in line

7. In lines 8 and 9, a sinβ-window of length N = 256 samples and β = 2 (effectively a Hann

window as defined in Equation (4.3)) is generated by calling win.m. The size of the generated

window specifies at the same time the size of the analysis and synthesis frames. Together with

the synthesis hopsize of 128 samples, this means that in the output of the TSM procedure the

synthesis frames will have a half-overlap of 128 samples. Finally the actual TSM procedure is

applied to the input signal x with the stretching factor α and the specified set of parameters in

line 10. The resulting waveform is stored in the variable yOLA.

Next, in lines 12-16, the WSOLA algorithm is applied. We first set the analysis frame position

tolerance ∆max to 512 in line 12. Since WSOLA works optimally for medium sized frames which

are half-overlapped, we set the synthesis hopsize Hs to 512 in line 13 and chose a sinβ-window of

length N = 1024 samples and β = 2 in lines 14 and 15. Finally, the function wsolaTSM.m is called

in line 16.
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Figure A.1: TSM results of different algorithms for an audio recording of a violin and castanets. (a): Original
waveform. (b): OLA. (c): WSOLA. (d): PV-TSM. (e): PV-TSM with identity phase locking. (f): TSM based on
harmonic-percussive separation. (g): TSM based on the commercial élastique algorithm.

In lines 18-22 the standard phase vocoder PV-TSM is applied by a call of pvTSM.m. To this end,

we first specify that no phase locking should be applied (line 18). Being a frequency-domain

TSM algorithm, the phase vocoder is dependent on a high frequency resolution of the used

Fourier transform and therefore on a large frame size. Furthermore, also a large overlap of the

synthesis frames is beneficial for the quality of the output signal as well as a sin-window function.

We therefore set the synthesis hopsize Hs to 512 (line 19) and chose a sinβ-window of length

N = 2048 samples and β = 1 (lines 20 and 21), resulting in a 75% frame overlap. The actual

function call is then executed in line 22. For the application of the phase vocoder with identity

phase locking in lines 24-28, the only difference is the phaseLocking parameter set to one (line

24).

The TSM algorithm based on harmonic-percussive separation, which is applied in lines 30-38,

is a combination of multiple techniques. First, we set the length of the median filters `h and

`p used in the separation procedure both to 10 (lines 30 and 31). Then, the synthesis hopsizes

and windows, which are used in the two TSM algorithms OLA and phase vocoder with identity

phase locking, are set separately in lines 32-37. In line 38 the algorithm is then executed by a

call of hpTSM.m.

The last TSM algorithm is the MATLAB wrapper for élastique [231]. Since this function requires

a sonicAPI access id as well as the additional tool curl, the function call in line 44 is commented

out by default. However, when supplying the additional sources the algorithm can be applied by
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Figure A.2: Screenshot of the interface generated using the function demoGenerateTSMwebsite.m of the TSM
toolbox.

a call to elastiqueTSM.m. Since élastique is a proprietary procedure it is not possible to tweak

the algorithm with additional parameters.

In lines 46 and 47, the visualization of the original input signal takes place. First, the segment

of the input audio signal to be visualized is set to the section of the waveform between second

5.1 and 5.3 (line 46). Afterwards the visualization function visualizeWav.m is applied to x in

line 47. To visualize the corresponding stretched audio segment, the segments boundaries are

just multiplied with the stretching factor α in line 48. Afterwards, the visualization function is

called again exemplarily for OLA’s TSM result in line 49. Finally, in line 50, the TSM result of

OLA is also written to the hard disk using the MATLAB function wavwrite. The visualizations

generated by this demo script can be seen in Figure A.1.

A.2 Additional Functionality and Content

In addition to pitch-shifting functionality (demoPitchShift.m) and the possibility to perform

non-linear TSM (demoNonlinearTSM.m) as discussed in Sections 4.4.2 and 4.4.1, respectively, the

TSM toolbox also allows to automatically generate interfaces that can be used in the context of

151 PhD Thesis, Jonathan Driedger



APPENDIX A. TSM TOOLBOX

Item name Description

Bongo Regular beat played on bongos.

CastanetsViolin Solo violin overlayed with castanets.

DrumSolo A solo performed on a drum set.

Glockenspiel Monophonic melody played on a glockenspiel.

Jazz Synthetic polyphonic sound mixture of a trumpet, a piano, a bass and drums.

Pop Synthetic polyphonic sound mixture of several synthesizers, a guitar and drums.

SingingVoice Solo male singing voice.

Stepdad Excerpt from My Leather, My Fur, My Nails by the band Stepdad.

SynthMono Monophonic synthesizer with a very noisy and distorted sound.

SynthPoly Sound mixture of several polyphonic synthesizers.

Table A.3: List of audio items included in the TSM toolbox.

listening experiments. Listening experiments are the most common way of comparing the quality

of different TSM algorithms. To this end, one usually generates time-stretched versions of several

audio items using different TSM procedures and stretching factors. This results in large amounts

of audio data. To be able to compare the generated TSM results, interfaces which allow a user

to order and access the audio signals in a convenient way are of great help. With the script

demoGenerateTSMwebsite.m, the toolbox provides the code for generating such a HTML-based

interface automatically (see FigureA.2). The toolbox also includes the set of audio items listed in

Table A.3, which has been already used for evaluation purposes in the context of TSM in [48, 47].
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Appendix B

User Interfaces for Music Signal

Analysis and Editing

In this appendix, we present prototypes of MATLAB user interfaces that we developed in the

context of this thesis. These interfaces serve as demonstrators for some of our proposed techniques.

In Appendix B.1, we present a tool for the interactive estimation of fundamental frequency

trajectories that we originally proposed in [43]. Then, in Appendix B.2, we discuss the interface

for score-based music editing based on our publication [37]. Finally, in Appendix B.3, we present

an interface that focuses on the modification of singing voice in a music recording, based on our

singing voice extraction procedure proposed in [41].
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Figure B.1: Screenshot of the F0-Annotation Tool.

B.1 F0-Annotation Tool

As noted in Section 2.4.2, the automated estimation of melody- or predominant F0-trajectories

from complex music recordings is a difficult task that is far from being solved, see also [184, 183].

To this end, when the goal is to generate trajectories of high quality, it is helpful to integrate a

user in the estimation process. In [43] we proposed a user interface that, based on the salience

spectrogram introduced in Section 2.4.2, allows a user to estimate a melody trajectory interactively.

Figure B.1 shows a screenshot of our interface. In addition to standard audio player functionalities

(see the buttons for starting, pausing, and stopping the playback of the loaded music recording

at the bottom of the interface), the salience spectrogram is our interface’s central element.

When playing back the music recording, the respective time position is indicated by a vertical

dashed playback bar in the salience representation. This way, salient structures in the visual

representation can be directly compared to the auditory cues in the recording. Now, a user can

indicate the rough location of partial melody trajectories in the salience spectrogram by drawing

constraint regions—the blue rectangles in the screenshot. Our tool then automatically uses

techniques based on dynamic time warping (DTW) [173, 145, 146] to find a plausible trajectory

through the specified region of the salience spectrogram—visualized by the red trajectory inside

of the constraint regions. Now, when playing back the recording again, the estimated trajectory
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is sonified using a sinusoidal synthesizer. This way, the user can check the correctness of the

current trajectory by listening. Previously drawn constraint regions can then be edited to correct

errors in the melody trajectory. To account for extremely fine-grained corrections, the user can

even use a draw option to draw the trajectory free hand. The user can also influence the salience

spectrogram itself—for example by applying a logarithmic compression—to visually enhance

interesting structures and therefore to simplify the tracking process. Finally, it is possible to

save the current state of the interactive melody estimation at any given time to either use the

trajectory as it currently is or to resume the interactive estimation at a later stage.

There exist various other software programs—both commercial and academic—that can be

used for the interactive computation of melody trajectories. Melodyne is a product by the

company Celemony for the decomposition of music recordings into note-like audio events (so-

called Blobs) [17]. In the decomposition process, the software computes a melody trajectory for

each of those blobs. The decomposition itself can be influenced by changing the parameters that

are used for the signal analysis or by providing prior information about the musical piece such as

its key. This also influences the derived melody trajectories. However, these trajectories serve

only visualization purposes and cannot be exported.

Other examples of tools for the interactive derivation of melody trajectories are Tony by Mauch et

al. [141] or the interface by Pant et al. [162]. After having analyzed a given music recording, these

programs offer a choice of different melody trajectories. A user can then select the trajectory

that matches the recording best in his or her opinion. This approach is very time-efficient since

the set of possible melody trajectories is rather limited and it is therefore not necessary for the

user to verify the correctness of the trajectory on a fine-grained level. However, especially when

dealing with complex music recordings that are highly polyphonic, it may happen that none

of the offered melody trajectories appropriately reflects the recording’s actual melody. Using

our proposed tool is in general more time-consuming since a user needs to estimate a melody

trajectory from scratch by manually defining constraint regions. Especially for complex music

recordings it is very likely that the number of constraint regions that are necessary to yield

an appropriate melody trajectory is high. On the other hand, this approach allows a user to

generate melody trajectories of high quality, even for polyphonic recordings.

Another software program that is very popular in academia is Praat [11]. This tool was

particularly developed for the phonetic analysis of speech and also offers the possibility to

estimate F0-trajectories. A user can influence the estimation process, for example by specifying

the trajectory’s expected frequency range. However, Praat does not seem to be suitable for the

analysis of complex music recordings as the underlying F0 estimation procedure is particularly

designed for monophonic recordings (this task is commonly termed as monopitch estimation,

see [97, 98]).
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Figure B.2: Screenshot of the Source Separation Audio Player.

B.2 Source Separation Audio Player

In the course of our work for [37], we developed a MATLAB user interface which offers a

user-friendly access to note-wise audio decompositions as introduced in Section 6.1. Figure B.2

shows a screenshot of this interface. Besides standard audio player functionalities, it is equipped

with a set of additional tools.

In its current state, our interface provides a piano roll representation of the musical score. While

playing back the audio recording, the synchronized MIDI events are displayed and allow a user

to directly access and manipulate every single corresponding note-wise audio event. By dragging

a note object in the piano roll representation and dropping it at a different position, the note

event’s onset time (horizontal displacement) as well as its pitch (vertical displacement) can be

manipulated in an intuitive way. Furthermore, it is also possible to change the duration or the

volume level of note events, to remove them completely from the audio recording, or to add

additional events by copying and manipulating existing ones. This allows for a music editing

workflow that is similar to Melodyne [17], a commercial music editing tool by Celemony that we

already discussed in Appendix B.1. However, unlike the blobs in Melodyne that only roughly

correspond to individual notes, the note events displayed by our interface exactly represent the

notes as they occur in the musical score (reflected by the MIDI).
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(a) (b) (c) 

Figure B.3: Screenshots of the Voice Separation Audio Player. (a): The standard interface. (a): Pitch-shifted
singing voice. (a): Singing voice with amplified vibrato.

Additionally, the interface also provides a set of plugins that can be used to analyze and visualize

the note-wise audio events, see Figure B.2. To this end it is, for example, possible to analyze

the residual signal xres, as defined in Equation (6.8), directly in the interface. A demo of the

proposed interface can be found at [36].

B.3 Voice Separation Audio Player

In this section, we present the Voice Separation Audio Player, an interface that combines several

techniques discussed in this thesis. Similar as the Source Separation Audio Player presented in

Appendix B.2, this interface offers standard audio player functionalities to start, pause, and stop

the playback of a loaded music recording. Additionally, it focuses on providing tools that allow a

user to edit the singing voice in the music recording independently of the musical accompaniment.

As in the F0-Annotation Tool (Appendix B.1), the interface’s main element is a salience

spectrogram representation (see Section 2.4.2) of the loaded music signal. Given a MIDI file

that was synchronized with the recording, the MIDI events related to the singing voice are used

to derive constraint regions in the salience representation (blue boxes in Figure B.3a). The

singing voice’s F0-trajectory is then automatically derived inside of these constraint regions,

using dynamic time warping techniques [173, 145, 146] (red trajectories in Figure B.3a). We

then apply our singing voice extraction method that we presented in Chapter 5 to separate the

singing voice from the musical accompaniment, utilizing the automatically derived F0-trajectory.

The singing voice signal is finally temporally segmented according to the MIDI note events. Each

of the blue rectangles in the interface’s visualization as shown in Figure B.3a therefore represents

a singing voice audio event that corresponds to the respective MIDI note event.
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This representation allows a user to manipulate and edit the singing voice in the recording in an

intuitive way. For example, marking several note events and moving them vertically indicates

that the user would like to change these notes’ pitches, see Figure B.3b. We then use the

formant-preserving pitch shifting method as discussed in Section 4.4.2 to apply the indicated

pitch modification to the singing voice audio events. The formant preservation significantly

improves the quality of the resulting edited music recording since it allows to avoid the chipmunk

effect [226].

Another tool provided by our interface allows a user to manipulate vibrato in the singing voice.

After having selected individual notes, the slider on the right side of the interface can be used

to either amplify or decrease the extent of vibrato present in the singing voice, see Figure B.3c.

Again, the desired modifications are then applied to the respective singing voice audio events by

utilizing pitch shifting techniques.
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and Alexis Benichoux. The 2011 signal separation evaluation campaign (SiSEC2011): Audio source

separation. In LVA/ICA, pages 414–422, 2012.

[5] Mark A. Bartsch and Gregory H. Wakefield. Audio thumbnailing of popular music using chroma-

based representations. IEEE Transactions on Multimedia, 7(1):96–104, 2005.

[6] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury, Mike Davies, and Mark Sandler.

A tutorial on onset detection in music signals. IEEE Transactions on Speech and Audio Processing,

13(5):1035–1047, 2005.

[7] Gilberto Bernardes. Composing Music by Selection: Content-Based Algorithmic-Assisted Audio

Composition. PhD thesis, Faculty of Engineering, University of Porto, 2014.

[8] Josef Bigun and Gösta H. Granlund. Optimal orientation detection of linear symmetry. In Proceedings

of the IEEE First International Conference on Computer Vision, pages 433––438, London, UK,

1987.

[9] Rachel M. Bittner, Justin Salamon, Mike Tierney, Matthias Mauch, Chris Cannam, and Juan Pablo

Bello. Medleydb: A multitrack dataset for annotation-intensive MIR research. In Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR), pages 155–160, Taipei,

Taiwan, October 2014.

159 PhD Thesis, Jonathan Driedger



BIBLIOGRAPHY
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[175] Emmanuel Ravelli, Gaël Richard, and Laurent Daudet. Union of MDCT bases for audio coding.

IEEE Transactions on Audio, Speech, and Language Processing, 16(8):1361–1372, November 2008.

[176] Lise Regnier and Geoffroy Peeters. Singing voice detection in music tracks using direct voice vibrato

detection. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), pages 1685–1688, Taipei, Taiwan, 2009.
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