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Abstract

This thesis contributes to bridging the gap between music information retrieval (MIR) and
musicology. We present several automated methods for music analysis, which are moti-
vated by concrete application scenarios being of central importance in musicology. In this
context, the automated music analysis is performed on the basis of audio material. Here,
one reason is that for a given piece of music usually many different recorded performances
exist. The availability of multiple versions of a piece of music is exploited in this thesis to
stabilize analysis results. We show how the presented automated methods open up new
possibilities for supporting musicologists in their work. Furthermore, we introduce novel
interdisciplinary concepts which facilitate the collaboration between computer scientists
and musicologists. Based on these concepts, we demonstrate how MIR researchers and
musicologists may greatly benefit from each other in an interdisciplinary collaboration.
Firstly, we present a fully automatic approach for the extraction of tempo parameters
from audio recordings and show to which extent this approach may support musicologists
in analyzing recorded performances. Secondly, we introduce novel user interfaces which
are aimed at encouraging the exchange between computer science and musicology. In
this context, we indicate the potential of computer-based methods in music education by
testing and evaluating a novel MIR user interface at the University of Music Saarbrücken.
Furthermore, we show how a novel multi-perspective user interface allows for interactively
viewing and evaluating version-dependent analysis results and opens up new possibili-
ties for interdisciplinary collaborations. Thirdly, we present a cross-version approach for
harmonic analysis of audio recordings and demonstrate how this approach enables musi-
cologists to explore harmonic structures even across large music corpora. Here, one simple
yet important conceptual contribution is to convert the physical time axis of an audio
recording into a performance-independent musical time axis given in bars.
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Kurzzusammenfassung

Diese Arbeit trägt dazu bei, die Brücke zwischen der automatisierten Musikverarbeitung
und der Musikwissenschaft zu schlagen. Ausgehend von Anwendungen, die in der Musik-
wissenschaft von zentraler Bedeutung sind, stellen wir verschiedene automatisierte Ver-
fahren vor. Die automatisierte Musikanalyse wird hierbei auf der Basis von Audiodaten
durchgeführt. Ein Grund hierfür ist, dass zu einem gegebenen Musikstück üblicherweise
viele verschiedene Aufnahmen existieren. Die Verfügbarkeit mehrerer Versionen zu ein
und demselben Musikstück wird in dieser Arbeit ausgenutzt, um Analyseresultate zu sta-
bilisieren. Wir demonstrieren, inwieweit die vorgestellten automatisierten Methoden neue
Möglichkeiten eröffnen, Musikwissenschaftler in ihrer Arbeit zu unterstützen. Außerdem
führen wir neue interdisziplinäre Konzepte ein, die die Kollaboration zwischen Informatik-
ern und Musikwissenschaftlern erleichtern. Auf der Basis dieser Konzepte zeigen wir,
dass Informatiker und Musikwissenschaftler im Rahmen einer interdisziplinären Kollab-
oration erheblich voneinander profitieren können. Erstens stellen wir ein vollautoma-
tisches Verfahren zur Extraktion von Tempoparametern aus Audioaufnahmen vor und
zeigen, inwieweit dieses Verfahren Musikwissenschaftler bei der Interpretationsanalyse
verschiedener Aufnahmen unterstützen kann. Zweitens führen wir neuartige Benutzer-
schnittstellen ein, die darauf abzielen, den Austausch zwischen der Informatik und der
Musikwissenschaft zu fördern. In diesem Zusammenhang testen und evaluieren wir eine
Benutzerschnittstelle an der Hochschule für Musik Saar und deuten auf diese Weise
das Potential computer-basierter Methoden im Bereich der Musikerziehung an. Weit-
erhin stellen wir eine neuartige Benutzerschnittstelle vor, die es auf interaktive Weise
ermöglicht, verschiedene Sichtweisen auf versionsabhängige Analyseresultate einzunehmen
und diese auszuwerten. Diese Benutzerschnittstelle eröffnet neue Möglichkeiten für inter-
disziplinäre Kollaborationen. Drittens zeigen wir, wie eine cross-version harmonische Anal-
yse es Musikwissenschaftlern ermöglicht, harmonische Strukturen über riesige musikalis-
che Werkzyklen hinweg zu ergründen. In diesem Zusammenhang ist ein einfacher aber
wichtiger konzeptueller Beitrag, die physikalische Zeitachse einer Audioaufnahme in eine
versionsunabhängige musikalische Zeitachse gegeben in Takten zu verwandeln.
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Summary

This thesis aims to bridge the gap between music information retrieval (MIR) and musi-
cology. We present several automated methods for music analysis, which are motivated
by concrete application scenarios being of central importance in musicology. In this con-
text, the automated music analysis is performed on the basis of audio material. Here,
one reason is that for a given piece of music usually many different recorded performances
exist. The availability of multiple versions of a piece of music is exploited in this thesis to
stabilize analysis results. We show how the presented automated methods open up new
possibilities for supporting musicologists in their work. Furthermore, we introduce novel
interdisciplinary concepts which facilitate the collaboration between computer scientists
and musicologists. Based on these concepts, we demonstrate how MIR researchers and
musicologists may greatly benefit from each other in an interdisciplinary collaboration.

Firstly, we present a fully automatic approach for the extraction of tempo parameters
from audio recordings. Recorded performances of a piece of music are characterized by
the individual playing style and the personal interpretation of the performer. The anal-
ysis of performance aspects across different recorded performances, which is referred to
as performance analysis, constitutes an important task in musicology. Here, the different
recorded performances are typically annotated in a manual process, which is prohibitive
in view of large audio collections. The fully automatic approach presented in this thesis
enables performing the analysis of temporal parameters of recorded performances on an
unprecedented scale. In our approach, we exploit score-like MIDI information along with
the audio to be analyzed. Using score-audio synchronization techniques, we automatically
derive temporal information from the audio recording. This information is given in the
form of a tempo curve revealing the relative tempo difference between the audio record-
ing and the MIDI reference on the musically meaningful time axis in bars. As shown
by our experiments on harmony-based Western music, our approach allows for captur-
ing the overall tempo flow and, for certain classes of music, even finer expressive tempo
nuances. Finally, we demonstrate the potential and the limitations of our automated ap-
proach and investigate to which extent it may support musicologists in analyzing recorded
performances.

Secondly, we present novel computer-based interfaces which are aimed at encouraging the
exchange between computer science and musicology. In this context, we report on an
experiment conducted at the University of Music Saarbrücken with the goal of introduc-
ing a novel user interface to music education. Here, we not only tested and evaluated
our interface in a setting of practical relevance, but also indicated the potential of MIR
methods in music education. Furthermore, we introduce various novel functionalities for
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a multi-perspective user interface that opens up new possibilities for viewing, interacting,
and evaluating version-dependent analysis results. Here, we exploit the fact that for a
given piece of music, there typically exist multiple music representations, including differ-
ent recorded performances or score-like MIDI representations. Our interface then allows
a user to interactively generate unifying views of the analysis results across the differ-
ent available versions. In this way, consistencies and inconsistencies across the version-
dependent analysis results can be easily located by the user. The new evaluation and
navigation possibilities of this user interface enable interdisciplinary collaborations, where
musicologists employ their musical knowledge and trained ear to conveniently evaluate
version-dependent analysis results obtained by MIR methods.

Thirdly, we introduce a cross-version approach, which analyzes the harmonic properties of
several audio versions synchronously. The computer-based harmonic analysis is referred
to as chord labeling and is of central importance in the field of MIR. Chord labeling pro-
cedures are typically evaluated on large audio collections by comparing the automatically
extracted chord labels to manually generated ground truth annotations. Here, a piece to
be analyzed is typically represented by a specific audio recording which possesses version-
dependent characteristics. Another major problem arises from the fact that audio-based
recognition results refer to the physical time axis in seconds of the considered audio record-
ing, whereas score-based analysis results obtained by music experts refer to a musical time
axis given in bars. This simple fact alone often makes it difficult to get musicologists in-
volved in the evaluation process of audio-based chord labeling procedures. The presented
cross-version approach for chord labeling aims to overcome the strong dependency of chord
labeling results on a specific version. We show that using a cross-version approach stabi-
lizes the chord labeling result in the sense that inconsistencies indicate version-dependent
characteristics, whereas consistencies across several versions indicate harmonically stable
passages in the piece of music. In particular, we show that consistently labeled passages
often correspond to correctly labeled passages. Our experiments document that the cross-
version labeling procedure significantly increases the precision of the result while keeping
the recall at a relatively high level. Furthermore, we describe how to transform the time
axis of analysis results obtained from audio recordings to a common musical time axis
given in bars. This not only facilitates a convenient evaluation by a musicologist, but also
allows for comparing analysis results across different recorded performances. We introduce
a powerful visualization, which reveals the harmonically stable passages on a musical time
axis specified in bars, and demonstrate how this cross-version visualization may serve mu-
sicologists as a supportive tool for exploring harmonic structures. Finally, analyzing tonal
centers across the entire corpus of Beethoven’s piano sonatas, we show how a cross-version
approach enables large-scale harmonic analyses.



Zusammenfassung

Diese Arbeit trägt dazu bei, die Brücke zwischen der automatisierten Musikverarbeitung
und der Musikwissenschaft zu schlagen. Ausgehend von Anwendungen, die in der Musik-
wissenschaft von zentraler Bedeutung sind, stellen wir verschiedene automatisierte Ver-
fahren vor. Die automatisierte Musikanalyse wird hierbei auf der Basis von Audiodaten
durchgeführt. Ein Grund hierfür ist, dass zu einem gegebenen Musikstück üblicherweise
viele verschiedene Aufnahmen existieren. Die Verfügbarkeit mehrerer Versionen zu ein
und demselben Musikstück wird in dieser Arbeit ausgenutzt, um Analyseresultate zu sta-
bilisieren. Wir demonstrieren, inwieweit die vorgestellten automatisierten Methoden neue
Möglichkeiten eröffnen, Musikwissenschaftler in ihrer Arbeit zu unterstützen. Außerdem
führen wir neue interdisziplinäre Konzepte ein, die die Kollaboration zwischen Informatik-
ern und Musikwissenschaftlern erleichtern. Auf der Basis dieser Konzepte zeigen wir, wie
Informatiker und Musikwissenschaftler im Rahmen einer interdisziplinären Kollaboration
erheblich voneinander profitieren können.

Erstens stellen wir ein vollautomatisches Verfahren zur Extraktion von Tempoparametern
aus Audioaufnahmen vor. Verschiedene Einspielungen eines Musikstückes unterscheiden
sich durch den individuellen Stil und die persönliche Interpretation des Musikers. Die
Analyse von Performance-Aspekten, die auch als Interpretationsforschung bezeichnet wird,
stellt einen wichtigen Forschungsbereich der Musikwissenschaft dar. In diesem Zusam-
menhang werden die verschiedenen Aufnahmen eines Musikstückes üblicherweise manuell
annotiert, was hinderlich im Hinblick auf grosse Audiodatenbestände ist. Das vollautoma-
tisierte Verfahren, das in dieser Arbeit vorgestellt wird, ermöglicht die Analyse zeitlicher
Parameter auf der Basis von Audioaufnahmen in einer bislang nicht möglichen Art und
Weise. In unserem Verfahren nutzen wir zu einer vorhandenen Audioaufnahme parti-
turähnliche MIDI-Information aus. Unter Einsatz von Partitur-Audio Synchronisation-
stechniken leiten wir automatisiert Tempoinformation aus der Audioaufnahme ab. Diese
Information ist als Tempokurve gegeben, die die relativen Tempounterschiede zwischen
der Audioaufnahme und der MIDI-Referenz auf einer musikalischen Zeitachse in Takten
wiedergibt. Unsere Experimente auf der Basis von harmoniebasierter westlicher Musik
zeigen, dass unser Verfahren den globalen Tempoverlauf sowie für bestimmte Klassen von
Musik sogar feinere Temponuancen erfassen kann. Abschließend zeigen wir das Potential
und die Grenzen unseres automatisierten Verfahrens auf und untersuchen, inwieweit es
Musikwissenschaftler bei der Interpretationsanalyse unterstützen kann.

Zweitens stellen wir neuartige computerbasierte Benutzerschnittstellen vor, die darauf
ausgerichtet sind, den Austausch zwischen den beiden Gebieten zu fördern. In diesem
Zusammenhang berichten wir über ein an der Hochschule für Musik Saar durchgeführtes
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Experiment, das darauf abzielte eine neue Benutzerschnittstelle in der Musikerziehung
einzuführen. Hierbei haben wir die Benutzerschnittstelle in einem anwendungsrelevan-
ten Umfeld getestet und ausgewertet und darüberhinaus das Potential computerbasierter
Methoden in der Musikerziehung angedeutet. Weiterhin stellen wir neuartige Funktion-
alitäten für eine multi-perspektivische Benutzerschnittstelle vor, die neue Möglichkeiten
eröffnet, versionsabhängige Analyseresultate zu betrachten, auszuwerten und mit ihnen zu
interagieren. Hierbei nutzen wir die Tatsache aus, dass zu einem gegebenen Musikstück
üblicherweise mehrere Musikdarstellungen existieren, wie verschiedene Aufnahmen oder
partiturähnliche MIDI-Darstellungen. Unsere Benutzerschnittstelle ermöglicht es dem
Nutzer, in interaktiver Weise vereinheitlichende Sichtweisen auf die Analyseresultate
über verschiedene Versionen hinweg einzunehmen. Auf diese Weise können Konsistenzen
und Inkonsistenzen in den versionsabhängigen Analyseresultaten leicht durch den Nutzer
lokalisiert werden. Die neuen Evaluations- und Navigationsmöglichkeiten dieser Benutzer-
schnittstelle ermöglichen interdisziplinäre Kollaborationen, in denen Musikwissenschaftler
ihr musikalisches Wissen und ausgebildetes Gehör einsetzen können, um auf angenehme
Art und Weise versionsabhängige Analyseresultate computerbasierter Methoden auszuw-
erten.

Drittens, führen wir ein Cross-Version-Verfahren ein, das die harmonischen Eigenschaften
verschiedener Audioversionen synchron analysiert. Die computer-basierte harmonische
Analyse, die als Chord Labeling bezeichnet wird, ist von zentraler Wichtigkeit in der
automatisierten Musikverarbeitung. Chord Labeling-Verfahren werden üblicherweise auf
großen Audiodatenbeständen ausgewertet, indem die automatisch extrahierten Akkord-
label mit manuell erstellten Ground Truth-Annotationen verglichen werden. Hierbei
wird das zu analysierende Stück üblicherweise durch eine bestimmte Audioaufnahme
repräsentiert, die versionsabhängige Eigenschaften aufweist. Ein weiteres bedeutendes
Problem basiert auf der Tatsache, dass sich audiobasierte Ergebnisse auf die physikalische
Zeitachse der betrachteten Audioaufnahme in Sekunden beziehen, wohingegen die auf dem
Notentext basierenden Analyseresultate eines Musikexperten sich auf eine musikalische
Zeitachse in Takten beziehen. Allein diese Tatsache gestaltet es oft schwierig, Musikwis-
senschaftler in die Evaluierung audiobasierter Chord Labeling-Verfahren einzubeziehen.
Das vorgestellte Cross-Version Chord Labeling-Verfahren ist darauf ausgerichtet, die
starke Abhängigkeit der Chord Labeling-Ergebnisse von einer bestimmten Version zu
überwinden. Wir zeigen, dass der Einsatz eines Cross-Version-Verfahrens das Chord
Labeling-Ergebnis in der Weise stabilisiert, dass Inkonsistenzen auf versionsabhängige
Eigenschaften hindeuten, während Konsistenzen über verschiedene Versionen hinweg har-
monisch stabile Passagen in dem musikalischen Werk repräsentieren. Insbesondere zeigen
wir, dass konsistente Bereiche oft korrekten Bereichen des Analyseresultates entsprechen.
Unsere Experimente belegen, dass unter Verwendung des Cross Version-Verfahrens die
Precision bedeutend ansteigt, wobei der Recall gleichzeitig auf einem relativ hohen
Niveau verbleibt. Weiterhin beschreiben wir, wie die Zeitachse der aus Audioaufnah-
men gewonnenen Analyseresultate in eine gemeinsame musikalische Zeitachse, gegeben in
Takten, umgewandelt werden kann. Dies erleichtert nicht nur eine angemessene Auswer-
tung eines Musikwissenschaftlers sondern ermöglicht außerdem, Analyseresultate über ver-
schiedene Aufnahmen hinweg miteinander zu vergleichen. Wir führen eine mächtige Vi-
sualisierung ein, die die harmonisch stabilen Passagen auf einer musikalischen Zeitachse
in Takten anzeigt, und demonstrieren wie diese Cross-Version-Visualisierung Musikwis-
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senschaftlern als unterstützendes Hilfsmittel dienen kann, um harmonische Strukturen
zu ergründen. Indem wir das Auftreten tonaler Zentren über den gesamten Werkzyklus
von Beethovens Klaviersonaten untersuchen, zeigen wir abschliessend, dass unser Cross-
Version-Verfahren grossangelegte harmonische Analysen ermöglicht.
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Chapter 1

Introduction

This thesis deals with the introduction of novel automated methods for the analysis of
music which are motivated by concrete applications in musicology. In the following, we
first describe our motivation and formulate the general goal of our research (Section 1.1).
In Section 1.2 we indicate the contributions of the particular chapters of this thesis before
presenting in Section 1.3 an overview of the author’s related publications. Finally, the
structure of this thesis is described in Section 1.4.

1.1 Motivation

In the last years, music information retrieval (MIR) has become an active research field.
In this context, numerous novel computer-based methods for extracting musically mean-
ingful information from audio recordings have been developed. However, these methods
often lack the applicability to music sciences. They are rarely geared to the needs of mu-
sicologists and often do not fit into the scientific context of musicology. Although the field
of MIR opens the possibility of performing interdisciplinary research, computer scientists
and musicologists rarely collaborate and benefit from each other. There exists still a large
gap between computer science and musicology.

One reason is a lack of communication and mutual understanding between musicologists
and computer scientists. On the one hand, musicologists are often not aware of novel de-
velopments in MIR. On the other hand, computer scientists often do not have an adequate
musical background to comprehend the musical relevance of the analysis results. Auto-
mated methods usually require a strong background in computer science so that traditional
musicologists have difficulties in applying them. Another source of mutual incomprehen-
sion may be the fact that analysis results obtained from automated methods are often
based on simplifying model assumptions. Finally, methodologies used in computer science
and in musicology fundamentally differ from each other so that novel concepts are needed
allowing for a transfer from one field to the other. For example, many of the automated
procedures are evaluated on the basis of recorded audio material, whereas musicologists
typically work on the basis of symbolic music representations. Here, a major problem
arises from the fact that audio-based results refer to the physical time axis given in sec-
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onds of the considered audio recording, whereas score-based analysis results typically refer
to a musical time axis given in bars. As a consequence, such computer-based analysis
results are only of limited use for musicologists.

This thesis aims at the development of computer-based methods which can be directly
applied to music sciences. Starting from a concrete application scenario of central impor-
tance in musicology, we introduce various automated methods which open new ways for
supporting musicologists in their work.

Furthermore, our goal is to bridge the gap between computer science and musicology.
Collaborating with music experts we contribute to establishing communication between
the two fields and show how computer scientists and musicologists can benefit from each
other in the context of interdisciplinary research. In this context, we introduce various
novel concepts which support interdisciplinary collaborations.

1.2 Contributions

This thesis deals with the development of computer-based methods which are motivated
by concrete application scenarios in musicology. We show in three different areas how
our novel automated methods may support musicologists in their work. In Part I, we
introduce a fully automatic approach for the extraction of tempo parameters from audio
recordings and investigate to which extent this approach may support musicologists in
analyzing recorded performances. In Part II, we present novel user interfaces which open
up new possibilities for interdisciplinary collaborations between computer scientists and
musicologists. Finally, Part III deals with the harmonic analysis of audio recordings, where
we demonstrate how a cross-version approach may support musicologists in exploring
harmonic structures even across large music corpora. In the following, we summarize the
particular chapters and indicate the respective contributions.

The main contributions of Part I which deals with tempo analysis, are contained in Chap-
ter 3. Here, we present a novel approach towards extracting temporal performance at-
tributes from music recordings in a fully automated fashion. We exploit the fact that
for many pieces there exists a kind of “neutral” representation in the form of a musical
score (or MIDI file) that explicitly provides the musical onset and pitch information of all
occurring note events. Using music synchronization techniques, we temporally align these
note events with their corresponding physical occurrences in the music recording. As our
main contribution, we describe various algorithms for deriving tempo curves from these
alignments which reveal the relative tempo differences between the actual performance
and the neutral reference representation. We have evaluated the quality of the automati-
cally extracted tempo curves on harmony-based Western music of various genres. Besides
a manual inspection of a representative selection of real music performances, we have also
conducted a quantitative evaluation on synthetic audio material generated from randomly
warped MIDI files. Our experiments indicate that our automated methods yield accurate
estimations of the overall tempo flow and, for certain classes of music such as piano music,
of even finer expressive tempo nuances.

Part II concerns the topic of user interaction. The main contributions of this part are
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presented in Chapters 5 and 6. In Chapter 5, we report on an investigation with the
objective of introducing a novel MIR interface to music education. In collaboration with
the University of Music Saarbrücken we conducted an experiment consisting of several
steps. First, nine piano students were recorded playing the same piece of music, the first
movement of Beethoven’s Pathétique Sonata Op. 13, on the same piano and under the same
recording conditions. In the next step, the nine audio recordings were temporally aligned
and integrated in a user interface referred to as Interpretation Switcher [16, 54], which
allows for synchronous playback of the different performances. Upon using this interface,
the music students were then asked to analyze the anonymised performances according
to a well-designed questionnaire. There are a number of achievements of our experiment.
Firstly, we tested and evaluated our interface in a setting of practical relevance, thus
indicating the potential of MIR methods in music education. Secondly, we generated
royalty free music recordings without any copyright restrictions, which can be used freely
for research purposes. Thirdly, using a Yamaha Disklavier for our experiments, we also
obtained MIDI data (which was actually not used in the investigation described in this
paper) along with audio recordings. Such MIDI-audio pairs can be used as ground truth
material for various MIR tasks [54]. Finally, we generated many different interpretations
of the same piece, which yields valuable data for tasks such as automated performance
analysis [88].

In Chapter 6, we introduce a user interface that facilitates novel ways of viewing, com-
paring, and evaluating analysis results obtained from different methods and computed on
the basis of different music representations. Here, we exploit the fact that for a given
piece of music one often has multiple, closely-related sources of information, including
audio recordings of different performances and score-like representations including MIDI
versions. Our interface combines and extends the functionality of known user interfaces
for inter- and intra-document navigation [9, 11, 21, 80]. The technical backbone of our
interface is the Interpretation Switcher [16], which allows a user to select several record-
ings of the same piece of music and, during playback, to seamlessly switch between these
versions (inter-document navigation). We extended this switcher to additionally visualize
version-dependent annotations such as chord labels or structure blocks, which can be used
for intra-document navigation similar to [21]. As one main contribution, we introduce
different modes for adjusting the version-dependent timelines of the music representa-
tions. Furthermore, our interface allows for interactively generating multi-perspective
views across the different version-dependent analysis results disclosing consistencies and
inconsistencies. This allows a user to conveniently locate, playback, and compare musi-
cally interesting passages, which not only makes evaluation and annotation easier but also
deepens the listener’s understanding of the annotations and the underlying audio mate-
rial. Here, our interface not only allows a technically unexperienced user to interact with
the music analysis results and the audio material, but also opens up new possibilities for
enriching music education using signal processing techniques.

Part III deals with harmonic analysis, where mainly Chapters 8, 9, 10, 11, and 12 present
novel contributions. The computer-based harmonic analysis of audio recordings is one of
the central tasks in MIR and is referred to as chord labeling. The evaluation of chord label-
ing procedures is typically performed on large audio collections, where the automatically
extracted chord labels are compared to manually generated ground truth annotations.
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Here, the piece to be analyzed is typically represented by an audio recording, which pos-
sesses version-dependent characteristics. For example, specific instruments are used, which
have instrument-dependent sound properties, e. g., concerning the energy distributions in
the harmonics. Similarly, room acoustics and other recording conditions may have a sig-
nificant impact on the audio signal’s spectral properties. Finally, by emphasizing certain
voices or suppressing others, a musician can change the sound in order to shape the piece
of music. As a consequence, the chord labeling results strongly depend on specific charac-
teristics of the considered audio recording. Another major problem arises from the fact,
that audio-based recognition results refer to the physical time axis given in seconds of
the considered audio recording, whereas score-based analysis results obtained by music
experts typically refer to a musical time axis given in bars. This simple fact alone makes
it often difficult to get musicologists involved into the evaluation process of audio-based
music analysis. For example, for the evaluation of chord labeling procedures, ground truth
annotations are required. While the manual generation of audio-based annotations is a
tedious and time-consuming process musicians are trained to derive chord labels by means
of printed sheet music. Such labels, however, are only of limited use for the evaluation of
audio-based recognition results. First research efforts have been directed towards the use
of score-based ground truth labels for audio-based chord recognition, where it turned out
that incorporating such ground truth labels may significantly improve machine learning
methods for chord recognition [44, 51].

In Chapter 8, we introduce a cross-version chord recognition approach. By exploiting the
fact that for a musical work there often exist a large number of different audio recordings
as well as symbolic representations, we analyze the available versions independently using
some automated chord labeling procedure and employ a late-fusion approach to merge the
version-dependent analysis results. Here, the idea is to overcome the strong dependency of
chord labeling results on a specific version. We observe that more or less random decisions
in the automated chord labeling typically differ across several versions. Such passages
often correspond to harmonically instable passages leading to inconsistencies. In contrast,
consistencies across several versions typically indicate harmonically stable passages. As
another contribution, we describe how to transform the time axis of analysis results ob-
tained from audio recordings to a common musical time axis given in bars. This not
only facilitates a convenient evaluation by a musicologist, but also allows for comparing
analysis results across different recorded performances. Finally, we introduce a power-
ful visualization which is based on the cross-version chord labeling (another interesting
approach for visualizing harmonic structures of tonal music has been suggested in [74]).
The cross-version visualization indicates the harmonically stable passages in an intuitive
and non-technical way leading the user to passages dominated by a certain key also re-
ferred to as tonal centers. Furthermore, in the case that score-based ground truth labels
are also provided, the visualization allows for an in-depth error analysis of chord labeling
procedures.

In Chapter 9 we show how a cross-version approach serves for the evaluation of two MIDI-
based chord labelers using annotations given for corresponding audio recordings. As main
contribution, we present a qualitative evaluation of the two chord labeling procedures.
Performing an in-depth error analysis we classify possible error sources and, furthermore,
illustrate the respective error source by means of concrete song examples. This qualitative
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error analysis not only indicates limitations of the employed symbolic chord labelers but
also deepens the understanding for the underlying music material.

In Chapter 10, we show that consistently labeled passages across several versions often
correspond to correct labeling results. Consequently, one can exploit the consistency in-
formation to significantly increase the precision of the result while keeping the recall at
a relatively high level, which can be regarded as a stabilization of the labeling proce-
dure. Furthermore, we show that our cross-version approach is conceptually different to
a constraint-based approach, where only chord labels are considered that are particu-
larly close to a given chord model. Unlike our cross-version approach, using such simple
constraints leads to a significant loss in recall.

As our main contribution in Chapter 11, we present a detailed case study on Beethoven’s
Sonata Op. 57, the so-called Appassionata. Here, in a collaboration with musicologists,
our cross-version visualization is used as a helpful tool for exploring harmonic structures
demonstrating how computer-based methods and visualizations may support musicologists
in their work.

In Chapter 12, we demonstrate how our cross-version approach enables for large-scale
analyses of harmonic structures. Performing an analysis of tonal centers across the entire
corpus of Beethoven’s piano sonatas, we reveal commonalities, differences and trends in
the appearance of tonal centers. In this way, we show how our cross-version approach may
support musicologists in investigating tonal centers across large music corpora.

1.3 Related Publications

This thesis is based on various publications, which are listed below in chronological order.
Furthermore, for each publication we indicate how it is related to the thesis.

[37] Verena Konz, Meinard Müller, and Andi Scharfstein, Extracting expressive tempo
curves from music recordings, in Proceedings of the 35th International Conference
on Acoustics (NAG/DAGA), Rotterdam, The Netherlands, 2009.

[61] Meinard Müller, Verena Konz, Andi Scharfstein, Sebastian Ewert, and Michael
Clausen, Towards Automated Extraction of Tempo Parameters from Expressive Mu-
sic Recordings, in Proceedings of the 10th International Conference on Music Infor-
mation Retrieval (ISMIR), Kobe, Japan, 2009, pp. 69–74.

[37] and [61] deal with the automated extraction of tempo parameters from audio
recordings which is discussed in detail in Chapter 3.

[33] Verena Konz and Meinard Müller, Introducing the Interpretation Switcher Interface
to Music Education, in Proceedings of the 2nd International Conference on Computer
Supported Education (CSEDU), Valencia, Spain, 2010, pp. 135–140.

[33] describes an experiment conducted at the University of Music Saarbrücken with
the goal to introduce a novel MIR user interface to music education. This experiment
is presented in Chapter 5 of this thesis.
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[55] Meinard Müller, Michael Clausen, Verena Konz, Sebastian Ewert, and Christian
Fremerey, A Multimodal Way of Experiencing and Exploring Music, Interdisciplinary
Science Reviews (ISR), 35 (2010), pp. 138–153.

In [55] we show how music synchronization techniques can be integrated into novel
user interfaces that allow the user to access and explore music in all its different
facets thus enhancing human involvement with music and deepening music under-
standing. In particular, we discuss three different case studies, where automated
synchronization methods play an important role for supporting the user in expe-
riencing and exploring music. Two of the three case studies are closely related to
this thesis. One case study describes the experiment which is part of Chapter 5. A
second case study shows how synchronization can be used for the automated extrac-
tion of tempo parameters from audio recordings, which is in the center of [61] and
described in detail in Chapter 3.

[35] Verena Konz, Meinard Müller, and Sebastian Ewert, Ein Baseline-Experiment zur
Klassifizierung von Problemen bei der Akkorderkennung, in Proceedings of the 36th
Deutsche Jahrestagung für Akustik (DAGA), Berlin, Germany, 2010.

In [35] a baseline-experiment is conducted with the goal to classify problems ap-
pearing in the context of chord labeling. Compensating for tuning deviations in the
chord labeling procedure turns out to be of particular importance. The baseline-
experiment showing the importance of tuning in the context of chord labeling is
described in Section 7.7.

[36] Verena Konz, Meinard Müller, and Sebastian Ewert, A Multi-Perspective Evaluation
Framework for Chord Recognition, in Proceedings of the 11th International Con-
ference on Music Information Retrieval (ISMIR), Utrecht, The Netherlands, 2010,
pp. 9–14.

The automated extraction of chord labels from audio recordings constitutes a major
task in music information retrieval. To evaluate computer-based chord labeling
procedures, one requires ground truth annotations for the underlying audio material.
However, the manual generation of such annotations on the basis of audio recordings
is tedious and time-consuming. On the other hand, trained musicians can easily
derive chord labels from symbolic score data. In [36] we describe a procedure that
allows for transferring annotations and chord labels from the score domain to the
audio domain and vice versa. Using music synchronization techniques, the general
idea is to locally warp the annotations of all given data streams onto a common
time axis, which then allows for a cross-domain evaluation of the various types of
chord labels. As a further contribution of this paper, we extend this principle by
introducing a multi-perspective evaluation framework for simultaneously comparing
chord recognition results over multiple performances of the same piece of music.
In [36] the idea of cross-version harmonic analysis, which is in the center of Chapter 8,
is introduced for the first time. The procedure for transferring annotations from the
score domain to the audio domain and vice versa is presented in Section 8.1.5.

[60] Meinard Müller, Verena Konz, Nanzhu Jiang, and Zhe Zuo, A Multi-Perspective User
Interface for Music Signal Analysis, in Proceedings of the International Computer
Music Conference (ICMC), Huddersfield, England, UK, 2011, pp. 205–211.
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In [60] we introduce various novel functionalities for a user interface that opens
up new possibilities for viewing, comparing, interacting, and evaluating analysis
results within a multi-perspective framework and that bridges the gap between signal
processing and music sciences. This publication is part of Chapter 6.

[30] Nanzhu Jiang, Peter Grosche, Verena Konz, and Meinard Müller, Analyzing Chroma
Feature Types for Automated Chord Recognition, in Proceedings of the Audio Engi-
neering Society Conference (AES), Ilmenau, Germany, 2011.

In [30], the role of the feature extraction step within the recognition pipeline of vari-
ous chord recognition procedures based on template matching strategies and hidden
Markov models is analyzed. In particular, numerous experiments are described which
show how the various procedures depend on the type of the underlying chroma fea-
ture as well as on parameters that control temporal and spectral aspects. Parts
of [30] are described in Chapter 7. In particular, the experiment in which the depen-
dency of the chord recognition results on the underlying feature type is investigated
is described in detail in Section 7.6.

[59] Meinard Müller and Verena Konz, Automatisierte Methoden zur Unterstützung der
Interpretationsforschung, in Gemessene Interpretation, Heinz von Loesch and Stefan
Weinzierl, eds., vol. 4 of Klang und Begriff, Schott Verlag, 2011, pp. 193–204.

In [59] the potential and the limitations of automated methods are discussed. In
particular, we exemplarily show to which extent automated methods for extracting
tempo parameters from audio recordings may support a musicologist in analyzing
recorded performances.

[34] Verena Konz and Meinard Müller, A Cross-Version Approach for Harmonic Analysis
of Music Recordings, in Multimodal Music Processing (Dagstuhl Seminar 11041),
Dagstuhl Follow-Ups, 3 (2012), pp. 53–71.

In [34] we present a cross-version approach for harmonic analysis of audio recordings
which is part of Chapter 8. Furthermore, we show that by analyzing the harmonic
properties of several audio versions synchronously one can achieve a stabilization of
the chord labeling results in the sense that inconsistencies indicate version-dependent
characteristics or musically problematic passages, whereas consistencies across sev-
eral versions indicate harmonically stable passages in the piece of music. In particu-
lar, we show that consistently labeled passages often correspond to correctly labeled
passages. Our experiments document that the cross-version labeling procedure sig-
nificantly increases the precision of the result while keeping the recall at a relatively
high level. The stabilization of audio chord labeling is in the center of Chapter 10.

[14] Sebastian Ewert, Meinard Müller, Verena Konz, Daniel Müllensiefen, and Geraint
Wiggins, Towards Cross-Version Harmonic Analysis of Music, IEEE Transactions
on Multimedia, 2012, to appear.

In [14] we realize the idea of cross-version harmonic analysis to automatically evalu-
ate MIDI-based chord labeling procedures using annotations given for corresponding
audio recordings. To this end, one needs reliable synchronization procedures that
automatically establish the musical relationship between the multiple versions of a
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given piece. This becomes a hard problem when there are significant local devia-
tions in these versions. In [14] a novel late-fusion approach that combines different
alignment procedures in order to identify reliable parts in synchronization results
is introduced which is not part of this thesis. The cross-version comparison of the
various chord labeling results is then performed only on the basis of the reliable
parts. Finally, we present a qualitative evaluation of the two symbolic chord la-
belers, where we classify possible error sources and illustrate the respective error
source by means of concrete song examples. This qualitative evaluation not only
indicates limitations of the employed chord labeling strategies but also deepens the
understanding of the underlying music material. The cross-version evaluation of the
two MIDI-based chord labelers is part of Chapter 9.

Under Review

Verena Konz, Meinard Müller and Rainer Kleinertz, A Cross-Version Chord La-
belling Approach for Exploring Harmonic Structures—A Case Study on Beethovens
Appassionata—, submitted to the Journal of New Music Research.

In this paper, we present a case study on Beethoven’s Appassionata in order to
demonstrate how computer-based methods may assist musicologists when perform-
ing harmonic analyses. Using the cross-version visualization we perform a detailed
harmonic analysis of the Appassionata, where it turns out that that the consistencies
in the labeling results across different versions typically correspond to harmonically
stable passages, thus being of musical relevance. This shows that our visualisation
can be used as a supportive tool for exploring harmonic structures and constitutes
a source of inspiration. The case study on Beethoven’s Appassionata is described in
detail in Chapter 11.

1.4 Outline

This thesis is organized as follows. It is structured into three different parts, where Part I
deals with tempo analysis. Here, we first present an overview about music synchronization
which is a concept of fundamental importance for this thesis (Chapter 2). Afterwards, in
Chapter 3, we introduce a fully automatic approach for extracting tempo parameters from
audio recordings using synchronization techniques. Furthermore, we indicate the potential
and the limitations of such automated methods for supporting musicologists in analyzing
recorded performances. The human interaction with computer-based interfaces is in the
center of Part II. In Chapter 5, we describe an experiment conducted at the University of
Music Saarbrücken which aimed at introducing a novel MIR interface to music education.
Then, in Chapter 6, we present a novel multi-perspective user interface which opens up
new possibilities for viewing, comparing, interacting and evaluating analysis results and
that bridges the gap between signal processing and music sciences. Harmonic analysis is
the central topic of Part III. Here, we first give an overview of the chord labeling task,
where we describe typical approaches and feature types used in the context of chord label-
ing as well as two experiments highlighting the importance of features and the significance
of tuning (Chapter 7). Afterwards, in Chapter 8, we introduce the concept of cross-version
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chord labeling. This concept is applied to the cross-version evaluation of two MIDI-based
chord labelers using annotations given for corresponding audio recordings. In Chapter 10,
we show that employing a cross-version approach one can achieve a stabilization of the
chord labeling results. In Chapter 11, we then present a case study on Beethoven’s Ap-
passionata in which the cross-version visualization is exemplarily used for performing a
detailed harmonic analysis of this musical work. Here, our cross-version visualization turns
out to be a helpful tool for supporting musicologists in exploring harmonic structures. In
Chapter 12, we analyze harmonic structures across the entire corpus of Beethoven’s pi-
ano sonatas demonstrating how the cross-version approach allows for large-scale harmonic
analyses. Finally, we conclude in Chapter 13 by reflecting on a meaningful use of auto-
mated methods in the context of interdisciplinary research and indicating our vision of
the development of MIR in the future.
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Part I

Tempo Analysis

11





Chapter 2

Music Synchronization

In this chapter, we describe the concept of music synchronization which is of central
importance for this thesis. In particular, the fully automatic approach for the extraction
of tempo parameters from audio recordings as well as the concept of cross-version harmonic
analysis presented in Chapters 3 and 8, respectively, are based on music synchronization
techniques.

In the following, we follow [55, 61]. A musical work is far from simple or singular. In
particular, there may exist various audio recordings, MIDI files, digitized sheet music, and
other symbolic representations. The general goal of music synchronization is to automati-
cally link the various data streams thus interrelating the multiple information sets related
to a given musical work [29, 54]. More precisely, synchronization is taken to mean a pro-
cedure which, for a given position in one representation of a piece of music, determines
the corresponding position within another representation. The result of a synchronization
process is illustrated by Figure 2.1 in the form of red bidirectional arrows. Here, a MIDI
representation is synchronized with an audio recording. Automated music synchronization
constitutes a challenging research field since one has to account for a multitude of aspects
such as the data format, the genre, the instrumentation, or differences in parameters such
as tempo, articulation and dynamics that result from expressiveness in performances. In
the design of synchronization algorithms, one has to deal with a delicate trade-off between
robustness, temporal resolution, alignment quality, and computational complexity.

In order to synchronize two different music representations, one typically proceeds in
two steps, which are explained next. For details, we refer to [54]. In the first step,
the two music representations are transformed into sequences of suitable features, say
X := (x1, x2, . . . , xN ) and Y := (y1, y2, . . . , yM ), respectively. Here, on the one hand, the
feature representations should show a large degree of robustness to variations that are to
be left unconsidered in the comparison. On the other hand, the feature representations
should capture characteristic information that suffice to accomplish the synchronization
tasks. In this context, chroma-based music features have turned out to be a powerful
tool for synchronizing harmony-based music, see [2, 18, 54, 57]. Here, the chroma refer
to the 12 traditional pitch classes of the equal-tempered scale encoded by the attributes
C,C♯, D, . . .,B. Representing the short-time content of a music representation in each of
the 12 pitch classes, chroma features show a large degree of robustness to variations in

13
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0 1 2 3 4 5 6 7 8 9
−0.4
−0.2

0
0.2
0.4

Figure 2.1. First measure of Beethoven’s Pathétique Sonata Op. 13. The MIDI-audio alignment
is indicated by the arrows.

timbre and dynamics, while keeping sufficient information to characterize harmony-based
music.

In the second step, the derived feature sequences have to be brought into temporal cor-
respondence to account for temporal variations in the two music representations to be
synchronized. An important technique for computing such a correspondence is dynamic
time warping (DTW), which is a well-known technique to find an optimal alignment be-
tween two given (time-dependent) sequences under certain restrictions. Intuitively, the
alignment can be thought of a linking structure indicated by red bidirectional arrows as
shown in Figure 2.1. These arrows encode how the sequences are to be warped (in a
non-linear fashion) to match each other. Therefore, from the feature sequences, an N×M
cost matrix C is built up by evaluating a local cost measure c for each pair of features,
i. e., C(n,m) = c(xn, ym) for n ∈ [1 : N ] := {1, 2, . . . , N} and m ∈ [1 : M ]. Each tu-
ple p = (n,m) is called a cell of the matrix. A (global) alignment path is a sequence
(p1, . . . , pL) of length L with pℓ ∈ [1 : N ] × [1 : M ] for ℓ ∈ [1 : L] satisfying p1 = (1, 1),
pL = (N,M) and pℓ+1 − pℓ ∈ Σ for ℓ ∈ [1 : L− 1]. Here, Σ = {(1, 0), (0, 1), (1, 1)} denotes
the set of admissible step sizes. The cost of a path (p1, . . . , pL) is defined as

∑L
ℓ=1C(pℓ).

Then, a cost-minimizing alignment path, which constitutes the final synchronization re-
sult, is computed from C via dynamic programming.

For a detailed account on DTW and music synchronization we refer to [29, 54] and the
references therein. Based on this general strategy, we employ a multiscale synchronization
algorithm based on high-resolution audio features as described in [13]. This approach,
which combines the high temporal accuracy of onset features with the robustness of chroma
features, generally yields robust music alignments of high temporal accuracy.



Chapter 3

Extracting Tempo Parameters

from Audio Recordings

A performance of a piece of music heavily depends on the musician’s or conductor’s in-
dividual vision and personal interpretation of the given musical score. As basis for the
analysis of artistic idiosyncrasies, one requires accurate annotations that reveal the exact
timing and intensity of the various note events occurring in the performances. In the case
of audio recordings, this annotation is often done manually, which is prohibitive in view
of large music collections. In this chapter, we present a fully automatic approach for ex-
tracting temporal information from a music recording using score-audio synchronization
techniques. This information is given in the form of a tempo curve that reveals the rela-
tive tempo difference between an actual performance and some reference representation of
the underlying musical piece. As shown by our experiments on harmony-based Western
music, our approach allows for capturing the overall tempo flow and for certain classes
of music even finer expressive tempo nuances. The results presented in this chapter have
been published in [37, 59, 61].

The chapter is organized as follows. First, we present an overview of related work (Sec-
tion 3.1). Then, we introduce various algorithms for extracting tempo curves from expres-
sive music recordings (Section 3.2). Our experiments are described in Section 3.3, before
we discuss the potential and the limitations of automated methods (Section 3.4). Finally,
we conclude with prospects on future work (Section 3.5).

3.1 Related Work

Musicians give a piece of music their personal touch by continuously varying tempo, dy-
namics, and articulation. Instead of playing mechanically they speed up at some places
and slow down at others in order to shape a piece of music. Similarly, they continu-
ously change the sound intensity and stress certain notes. Such performance issues are of
fundamental importance for the understanding and perception of music. The automated
analysis of different interpretations, also referred to as performance analysis, has become
an active field of research [39, 73, 88]. Here, one goal is to find commonalities between

15
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Figure 3.1. Automated analysis of performance aspects in music recordings.

different interpretations, which allow for the derivation of general performance rules. A
kind of orthogonal goal is to capture what is characteristic for the style of a particular
interpreter. Before one can analyze a specific performance, one requires the information
about when and how the notes of the underlying piece of music are actually played, see
Figure 3.1. Therefore, as the first step of performance analysis, one has to annotate the
performance by means of suitable attributes that make explicit the exact timing and inten-
sity of the various note events. The extraction of such performance attributes constitutes
a challenging problem, in particular in the case of audio recordings.

Many researchers manually annotate the audio material by marking salient data points in
the audio stream. Using novel music analysis interfaces such as the Sonic Visualiser [80],
experienced annotators can locate note onsets very accurately even in complex audio ma-
terial [73, 87]. However, being very labor-intensive, such a manual process is prohibitive
in view of large audio collections. Another way to generate accurate annotations is to use
a computer-monitored player piano. Equipped with optical sensors and electromechanical
devices, such pianos allow for recording the key movements along with the acoustic audio
data, from which one directly obtains the desired note onset information [87, 88]. The
advantage of this approach is that it produces precise annotations, where the symbolic
note onsets perfectly align with the physical onset times. The obvious disadvantage is
that special-purpose hardware is needed during the recording of the piece. In particular,
conventional audio material taken from CD recordings cannot be annotated in this way.
Therefore, the most preferable method is to automatically extract the necessary perfor-
mance aspects directly from a given audio recording. Here, automated approaches such
as beat tracking [10] and onset detection [3] are used to estimate the precise timings of
note events within the recording. Even though great research efforts have been directed
towards such tasks, the results are still unsatisfactory, in particular for music with weak
onsets and strongly varying beat patterns. In practice, semi-automatic approaches are
often used, where one first roughly computes beat timings using beat tracking software,
which are then adjusted manually to yield precise beat onsets.
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Figure 3.2. Automated extraction of tempo curves using synchronization techniques illustrated
by means of the first bar of Beethoven’s Piano Sonata Op. 13 (Pathétique). From the score an
uninterpreted MIDI representation is derived, which is synchronized with the considered audio
recording. Then, the MIDI-audio alignment is used to derive a tempo curve.

3.2 Computation of Tempo Curves

The feeling of pulse and rhythm is one of the central components of music and closely
relates to what one generally refers to as tempo. In order to define some notion of tempo,
one requires a proper reference to measure against. For example, Western music is often
structured in terms of bars and beats, which allows for organizing and sectioning musical
events over time. Based on a fixed time signature, one can then define the tempo as
the number of beats per minute (BPM). Obviously, this definition requires a regular and
steady musical beat or pulse over a certain period in time. Also, the very process of
measurement is not as well-defined as one may think. Which musical entities (e. g., note
onsets) characterize a pulse? How precisely can these entities be measured before getting
drowned in noise? How many pulses or beats are needed to obtain a meaningful tempo
estimation? With these questions, we want to indicate that the notion of tempo is far
from being well-defined. Different representations of timing and tempo are presented in
[28].

Figure 3.2 now shows a schematic overview of the automated procedure for computing
tempo curves. Here, we assume that we are given a “neutral” MIDI file, where the notes
are played with a constant tempo in a purely mechanical way. Such a MIDI file can be
generated from a score using a fixed global tempo (measured in BPM), see Figure 3.2 (top).
In the following, we refer to this MIDI file as reference representation of the underlying
piece of music. Assuming that the time signature of the piece is known, one can recover
bar and beat positions from MIDI time positions. Given a specific performance to be
analyzed in the form of an audio recording, we first use music synchronization techniques
to compute a MIDI-audio alignment path as described in Section 2. From this path we



18 CHAPTER 3. EXTRACTING TEMPO PARAMETERS

derive a tempo curve that describes for each time position within the MIDI reference (given
in seconds or bars) the tempo of the performance (given as a multiplicative factor of the
reference tempo or in BPM), see Fig 3.2 (bottom). Figure 3.5 and Figure 3.6 show some
tempo curves for various performances.

Intuitively, the value of the tempo curve at a certain reference position corresponds to the
slope of the alignment path at that position. However, due to discretization and alignment
errors, one needs numerically robust procedures to extract the tempo information by using
average values over suitable time windows. In the following, we describe three different
approaches for computing tempo curves using a fixed window size (Section 3.2.1), an
adaptive window size (Section 3.2.2), and a combined approach (Section 3.2.3).

3.2.1 Fixed Window Size

Recall from Section 2 that the alignment path p = (p1, . . . , pL) between the MIDI reference
and the performance is computed on the basis of the feature sequences X = (x1, . . . , xN )
and Y = (y1, . . . , yM ). Note that one can recover beat and bar positions from the indices
n ∈ [1 : N ] of the reference feature sequence, since the MIDI representation has constant
tempo and the feature rate is assumed to be constant.

To compute the tempo of the performance at a specific reference position n ∈ [1 : N ],
we basically proceed as follows. First, we choose a neighborhood of n given by indices n1

and n2 with n1 ≤ n ≤ n2. Using the alignment path, we compute the indices m1 and m2

aligned with n1 and n2, respectively. Then, the tempo at n is defined as quotient n2−n1+1
m2−m1+1 .

The main parameter to be chosen in this procedure is the size of the neighborhood. Fur-
thermore, there are some technical details to be dealt with. Firstly, the boundary cases
at the beginning and end of the reference need special care. To avoid boundary problems,
we extend the alignment path p to the left and right by setting pℓ := (ℓ, ℓ) for ℓ < 1 and
pℓ := (N + ℓ− L,M + ℓ − L) for ℓ > L. Secondly, the indices m1 and m2 are in general
not uniquely determined. Generally, an alignment path p may assign more than one index
m ∈ [1 : M ] to a given index n ∈ [1 : N ]. To enforce uniqueness, we chose the minimal
index over all possible indices. More precisely, we define a function ϕp : Z → [1 : M ] by
setting

ϕp(n) := min{m ∈ [1 : M ] | ∃ℓ ∈ Z : pℓ = (n,m)}.

We now give the technical details of the sketched procedure for the case that the neigh-
borhoods are of a fixed window (FW) size w ∈ N. The resulting tempo curve is denoted
by τFWw : [1 : N ] → R≥0. For a given alignment path p and an index n ∈ [1 : N ], we define

n1 := n−
⌊

w−1
2

⌋

and n2 := n+
⌈

w−1
2

⌉

. (3.1)

Then w = n2 − n1 + 1 and the tempo at reference position n is defined by

τFWw (n) =
w

ϕp(n2)− ϕp(n1) + 1
. (3.2)

The tempo curve τFWw crucially depends on the window size w. Using a small window
allows for capturing sudden tempo changes. However, in this case the tempo curve becomes
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Figure 3.3. Left: Cost matrix and cost-minimizing alignment path for the Beethoven example
shown in Figure 3.2. The reference representation (MIDI) corresponds to the horizontal and the
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Figure 3.4. Ground truth tempo curve (step function) and various computed tempo curves. (a)
τFWw using a fixed window size with small w (left) and large w (right). (b) τAWv using an adaptive
window size with small v (left) and large v (right).

sensible to inaccuracies in the alignment path and synchronization errors. In contrast,
using a larger window smooths out possible inaccuracies, while limiting the ability to
accurately pick up local phenomena. This effect is also illustrated by Figure 3.4 (a), where
the performance is synthesized from a temporally warped MIDI reference. We continue
this discussion in Section 3.3.

3.2.2 Adaptive Window Size

Using a window of fixed size does not account for specific musical properties of the piece
of music. We now introduce an approach using an adaptive window size, which is based
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on the assumption that note onsets are the main source for inducing tempo information.
Intuitively, in passages where notes are played in quick succession one may obtain an
accurate tempo estimation even when using only a small time window. In contrast, in
passages where only few notes are played one needs a much larger window to obtain a
meaningful tempo estimation.

We now formalize this idea. We assume that the note onsets of the MIDI reference are
given in terms of feature indices. Furthermore, for notes with the same onset position
we only list one of these indices. Let O = {o1, . . . , oK} ⊆ [1 : N ] be the set of onset
positions with 1 ≤ o1 < o2 < . . . < oK ≤ N . The distance between two neighboring onset
positions is referred to as inter onset interval (IOI). Now, when computing the tempo
curve at position n ∈ [1 : N ], the neighborhood of n is specified not in terms of a fixed
number w of feature indices but in terms of a fixed number v ∈ N of IOIs. This defines an
onset-dependent adaptive window (AW). More precisely, let τAWv : [1 : N ] → R≥0 denote
the tempo function to be computed. To avoid boundary problems, we extended the set O
to the left and right by setting ok := o1+ k− 1 for k < 1 and ok := oK + k−K for k > K.
First, we compute τAWv for all indices n that correspond to onset positions. To this end,
let n = ok. Then we define

k1 := k −
⌊

v−1
2

⌋

and k2 := k +
⌈

v−1
2

⌉

.

Setting n1 := ok1 and n2 := ok2 , the tempo at reference position n = ok is defined as

τAWv (n) :=
n2 − n1 + 1

ϕp(n2)− ϕp(n1) + 1
. (3.3)

Note that, opposed to (3.2), the window size n2−n1+1 is no longer fixed but depends on
the sizes of the neighboring IOIs around the position n = ok. Finally, τAWv (n) is defined
by a simple linear interpolation for the remaining indices n ∈ [1 : N ] \ O. Similar to the
case of a fixed window size, the tempo curve τAWv crucially depends on the number v of
IOIs, see Figure 3.4 (b). The properties of the various tempo curves are discussed in detail
in Section 3.3.

3.2.3 Combined Strategy

So far, we have introduced two different approaches using on the one hand a fixed window
size and on the other hand an onset-dependent adaptive window size for computing average
slopes of the alignment path. Combining ideas from both approaches, we now present a
third strategy, where we first rectify the alignment path using onset information and then
apply the FW-approach on the rectified path for computing the tempo curve. As in
Section 3.2.2, let O = {o1, . . . , oK} ⊆ [1 : N ] be the set of onsets. By possibly extending
this set, we may assume that o1 = 1 and oK = N . Now, within each IOI given by two
neighboring onsets n1 := ok and n2 := ok+1, k ∈ [1 : K−1], we modify the alignment path p
as follows. Let ℓ1, ℓ2 ∈ [1 : L] be the indices with pℓ1 = (n1, ϕp(n1)) and pℓ2 = (n2, ϕp(n2)),
respectively. While keeping the cells pℓ1 and pℓ2 , we replace the cells pℓ1 + 1, . . . , pℓ2 − 1
by cells obtained from a suitably sampled linear function having the slope n2−n1+1

ϕp(n2)−ϕp(n1)+1 .

Here, in the sampling, we ensure that the step size condition given by Σ is fulfilled, see
Section 2. The resulting rectification is illustrated by Figure 3.3 (right). Using the rectified
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Figure 3.5. Tempo curves of four different interpretations played by different pianists of the first
ten bars (slow introductory theme marked Grave) of Beethoven’s Pathétique Sonata Op. 13. (a)
Score of bars 4 and 5. (b) Tempo curves τFWR

w for w ∝ 3 seconds. (c) Tempo curves τAWv for
v = 10 IOIs.

alignment path, we then compute the tempo curve using a fixed window size w ∈ N as
described in Section 3.2.1. The resulting tempo curve is denoted by τFWR

w . This third
approach, as our experiments show, generally yields more robust and accurate tempo
estimations than the other two approaches.

3.3 Experiments

In this section, we first discuss some representative examples and then report on a sys-
tematic evaluation based on temporally warped music. In the following, we specify the
window size w in terms of seconds instead of samples. For example, by writing w ∝ 3 sec-
onds, we mean that w ∈ N is a window size with respect to the feature rate corresponding
to 3 seconds of the underlying audio.

In our first example, we consider Beethoven’s Pathétique Sonata Op. 13. The first ten bars
correspond to the slow introductory theme marked Grave. For these bar, Figure 3.5 (b)
shows the tempo curves τFWR

w for four different performances using the combined strategy
with a window size w ∝ 3 seconds. From these curves, one can read off global and local
tempo characteristics. For example, the curves reveal the various tempi chosen by the
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Figure 3.6. Tempo curves of 13 different performances of the beginning of the Schubert Lied Der
Lindenbaum. (a) Score of bars 1 to 7. (b) Tempo curves τFWR

w for w ∝ 3 seconds.

pianists, ranging from roughly 20 to 30 BPM. One of the pianists (red curve) significantly
speeds up after bar 5, whereas the other pianists use a more balanced tempo throughout
the introduction. It is striking that all four pianists significantly slow down in bar 8, then
accelerate in bar 9, before slowing down again in bar 10. Musically, the last slow-down
corresponds to the fermata at the end of bar 10, which concludes the Grave. Similarly,
the curves indicate a ritardando in all four performances towards the end of bar 4. In
this passages, there is a run of 64th notes with a closing nonuplet, see Figure 3.5 (a).
Using a fixed window size, the ritardando effect is smoothed out to a large extent, see
Figure 3.5 (b). However, having many consecutive note onsets within a short passage, the
ritardando becomes much more visible when using tempo curves with an onset-dependent
adaptive window size. This is illustrated by Figure 3.5 (c), which shows the four tempo
curves τAWv with v = 10 IOIs.

As a second example, we consider the Schubert Lied Der Lindenbaum (D. 911 No. 5).
The first seven bars (piano introduction) are shown in Figure 3.6 (a). Using the combined
strategy with a window size w ∝ 3 seconds, we computed tempo curves for 13 different
interpretations, see Figure 3.6 (b). As shown by the curves, all interpretations exhibit
an accelerando in the first few bars followed by a ritardando towards the end of the
introduction. Interestingly, some of the pianists start with the ritardando in bar 4 already,
whereas most of the other pianists play a less pronounced ritardando in bar 6. These
examples indicate that our automatically extracted tempo curves are accurate enough for
revealing interesting performance characteristics.
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Figure 3.7. Piecewise linear ground-truth tempo curve (red) and computed tempo curves (black).

In view of a more quantitative evaluation, we computed tempo curves using different
approaches and parameters on a corpus of harmony-based Western music of various genres.
To allow for a reproduction of our experiments, we used pieces from the RWC music
database [22]. In the following, we consider 15 representative pieces, which are listed in
Table 3.1. These pieces include five classical piano pieces, five classical pieces of various
instrumentations (full orchestra, strings, flute, voice) as well as five jazz pieces and pop
songs. To automatically determine the accuracy of our tempo extraction procedures,
we temporally modified MIDI files for each of the 15 pieces. To this end, we generated
continuous piecewise linear tempo curves τGT, referred to as ground-truth tempo curves.
These curves have a constant slope on segments of roughly 10 seconds of duration, where
the slopes are randomly generated either using a value v ∈ [1 : 2] (corresponding to an
accelerando) or using a value v ∈ [1/2 : 1] (corresponding to a ritardando). These values
cover a range of tempo changes of ±100% of the reference tempo. Intuitively, the ground-
truth tempo curves simulate on each segment a gradual transition between two tempi
to mimic ritardandi and accelerandi. For an example, we refer to Figure 3.7. We then
temporally warped each of the original MIDI files with respect to a ground-truth tempo
curve τGT and generated from the modified MIDI file an audio version using a high-quality
synthesizer. Finally, we computed tempo curves using the original MIDI files as reference
and the warped audio versions as performances.

To determine the accuracy of a computed tempo curve τ , we compared it with the cor-
responding ground-truth tempo curve τGT. Here, the idea is to bar deviations by scale
rather than by absolute value. Therefore, as distance function, we use the average mul-
tiplicative difference and standard deviation (both measured in percent) of τ and τGT.
More precisely, we define

µ(τ, τGT) = 100 ·
1

N
·

N
∑

n=1

(

2|log2(τ(n)/τ
GT(n))| − 1

)

.

Similarly, we define the standard deviation σ(τ, τGT). For example, one obtains
µ(τ, τGT) = 100% in the case τ = 2 · τGT (double tempo) and in the case τ = 1

2 · τGT

(half tempo). Similarly, a computed tempo of 110 BPM or 90.9 BPM would imply a mean
error of µ = 10% assuming a ground-truth tempo of 100 BPM.

In a first experiment, we computed the curves τFWw and τFWR
w with w ∝ 4 seconds as

well as τAWv with v = 10 IOIs for each of the 15 pieces. Table 3.1 shows the mean error
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FW AW FWR
RWC ID (Comp./Int., Instr.) µ σ µ σ µ σ

C025 (Bach, piano) 3.29 7.30 2.60 5.05 1.59 2.86
C028 (Beethoven, piano) 3.24 6.98 6.36 21.14 2.66 6.72
C031 (Chopin, piano) 3.32 7.72 2.77 4.76 1.75 3.42
C032 (Chopin, piano) 2.54 4.17 3.05 4.67 1.56 2.34
C029 (Schumann, piano) 4.52 8.86 4.18 5.97 2.44 5.13
C003 (Beethoven, orchestra) 4.20 5.39 10.58 22.97 3.56 4.79
C015 (Borodin, strings) 2.44 2.85 4.68 9.85 2.25 2.71
C022 (Brahms, orchestra) 1.70 1.95 2.41 2.96 1.31 1.66
C044 (Rimski-K., flute/piano) 1.62 2.59 2.47 4.27 1.61 2.58
C048 (Schubert, voice/piano) 2.61 3.27 3.95 7.76 2.07 2.98
J001 (Nakamura, piano) 1.44 1.87 1.44 2.43 1.03 1.59
J038 (HH Band, big band) 2.24 2.96 3.20 5.41 1.91 2.74
J041 (Umitsuki, sax/bass/perc.) 1.88 2.40 3.75 4.69 1.72 2.34
P031 (Nagayama, electronic) 2.01 2.42 8.35 14.89 1.94 2.39
P093 (Burke, voice/guitar) 2.50 3.26 6.21 14.74 2.34 3.13
Average over all 2.64 4.27 4.40 8.77 1.98 3.16

Table 3.1. Tempo curve evaluation using the approaches FW and FWR (with w ∝ 4 seconds) and
AW (with v = 10 IOIs). The table shows for each of the 15 pieces the mean error µ and standard
deviation σ (given in percent) of the computed tempo curves and the ground truth tempo curve.
For generating the ground-truth tempo curves, MIDI segments of 10 seconds were used.

µ and standard deviation σ between the computed tempo curves and the ground truth
tempo curves. For example, for the Schubert Lied Der Lindenbaum with identifier C048,
the mean error between the computed tempo curve τFWw and the ground-truth tempo τGT

amounts to 2.61%. This error decreases to 2.07% when using the FWR-approach based on
the rectified alignment path. Looking at the average mean error over all pieces, one can
notice that the error amounts to 2.64% for the FW-approach, 4.40% for the AW-approach,
and 1.98% for the FWR-approach. For example, assuming a tempo of 100 BPM, the last
number implies a mean difference of less than 2 BPM between the computed tempo and
the actual tempo.

In general, the FWR-approach yields the best tempo estimation, whereas the AW-
approach often produces poorer results. Even though the onset information is of crucial
importance for estimating local tempo nuances, the AW-approach relies on accurate align-
ment paths that correctly align the note onsets. Synchronization approaches as described
in [13] can produce highly accurate alignments in the case of music with pronounced note
attacks. For example, this is the case for piano music. In contrast, such information is
often missing in string or general orchestral music. This is the reason why the purely
onset-based AW-strategy yields a relatively poor tempo estimation with a mean error of
10.58% for Beethoven’s Fifth Symphony (identifier C003). On the other hand, using a
fixed window size without relying on onset information, local alignment errors cancel each
other out, which results in better tempo estimations. E. g., the error drops to 3.56% for
Beethoven’s Fifth Symphony when using the FWR-approach.

Finally, we investigated the dependency of the accuracy of the tempo estimation on the
window size. We generated strongly fluctuating ground-truth tempo curves using MIDI
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FW FWR AW
w [sec]

µ σ µ σ
v [IOI]

µ σ

1 10.62 49.88 5.58 12.47 2 14.50 31.00
2 5.37 14.21 3.58 6.16 4 9.54 23.44
3 4.39 6.90 3.42 5.34 6 7.34 17.34
4 4.62 6.52 3.99 5.74 8 6.18 12.99
5 5.48 7.08 5.06 6.63 10 5.65 10.66
6 6.79 8.02 6.52 7.74 12 5.46 9.48
7 8.40 9.19 8.22 9.00 16 5.54 8.20
8 10.15 10.51 10.03 10.38 20 5.98 8.09

Table 3.2. Tempo curve evaluation using the approaches FW, AW, and FWR with various window
sizes w (given in seconds) and v (given in IOIs). The table shows the average values over all 15
pieces, see Table 3.1. For generating the ground-truth tempo curves, MIDI segments of 5 seconds
were used.

segments of only 5 seconds length (instead of 10 seconds as in the last experiment). For
the corresponding synthesized audio files, we computed tempo curves for various window
sizes. The mean errors averaged over all 15 pieces are shown in Table 3.2. The numbers
show that the mean error is minimized when using medium-sized windows. E. g., in
the FWR-approach, the smallest error of 3.42% is attained for a window size of w ∝ 3
seconds. Actually, the window size constitutes a trade-off between robustness and temporal
resolution. On the one hand, using a larger window, possible alignment errors cancel each
other out, thus resulting in a gain of robustness. On the other hand, sudden tempo changes
and fine agogic nuances can be recovered more accurately when using a smaller window.

3.4 Potential and Limitations of Automated Methods

The presented automated approach for extracting tempo parameters from audio recordings
(see Section 3.2) yields accurate and robust estimations of the overall tempo progression.
However, when dealing with automated methods one generally has to take into account
limitations of the employed methods. A meaningful use of automated methods requires
the knowledge about such weaknesses and limitations. In particular, in an interdisci-
plinary context, where musicologists apply automated methods to musicological tasks, the
awareness of limitations of the underlying methods is indispensable. In this section, we
investigate to which extent our approach for extracting temporal information may sup-
port musicologists in analyzing recorded performances. Performing a case study on the
first movement of Beethoven’s Sonata Op. 57, the so-called Appassionata, we exemplar-
ily demonstrate in which cases automated procedures for extracting temporal parameters
reach their limits.

Figure 3.8 shows the automated extraction of tempo curves in a schematic overview,
where three different recorded performances (played by the pianists Duis, Barenboim and
Brendel) of the first four bars of Beethoven’s Appassionata are considered. For the tempo
computation in this case study we choose the FWR-approach (described in Section 3.2.3),
where first the alignment path is rectified by using onset information and then the tempo
curve is computed using a fixed window size w ∝ 8 seconds.
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Figure 3.8. Schematic overview of the automated procedure for extracting tempo curves for three
different recorded performances of the first movement of Beethoven’s Appassionata (bb. 1-3).

The tempo curves reveal global and local characteristics of the different recorded perfor-
mances. For example, it is obvious that Barenboim plays in the first bars much slower
than the two other pianists. Furthermore, the tempo curves show that all pianists signifi-
cantly slow down towards the end (bb. 3-4). In fact, the score reveals the musical reasons
for this ritardando: In bar 4 the first appearance of the main theme ends with a half ca-
dence, where the diminished seventh chord (b. 3) resolves into the dominant (b. 4), which
is supported by the ritardando of all pianists.

As a further example Figure 3.9 shows tempo curves for five different recorded perfor-
mances of the beginning of the Appassionata (bb. 1-24). Obviously, the overall tempi of
the different performances extremely vary. While Gieseking plays the first movement with
an average tempo of approximately 100 BPM, Gould chooses a much slower overall tempo,
namely 60 BPM. Besides the overall tempo, the tempo curves reveal local tempo variations
of the pianists. For example, all pianists accelerate in bar 17. This agogic freedom can
be explained by the ascending chord line which reaches its climax in bar 18, significantly
contributing to the F minor character of the main theme.

As the examples show, automatically derived tempo curves reflect very well the approx-
imate tempo of the considered recorded performance. However, in which cases do such
automated methods reach their limits? Figure 3.10 shows tempo curves for the first
movement of the Appassionata where two different recorded performances (Gieseking and
Zilberstein) are considered. Here, for each recorded performance an automatically derived
tempo curve (red) as well as a manually generated tempo curve (black) are visualized. Ob-



3.4. POTENTIAL AND LIMITATIONS OF AUTOMATED METHODS 27

Figure 3.9. Automatically derived tempo curves for five different recorded performances of the
first movement of Beethoven’s Appassionata (bb. 1-24).
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Figure 3.10. Tempo curves for recorded performances of Gieseking (top) and Zilberstein (bottom)
of the first movement of Beethoven’s Appassionata. For each recorded performance an automati-
cally derived tempo curve (red) as well as a manually generated tempo curve (black) is visualized.

viously, the tempo curves for Gieseking and Zilberstein behave very similar. Both pianists
seem to share a common tendency of tempo shaping. However, differences appear in the
use of agogics, which is characteristic for the personal style of the performer. Such agogic
deviations of the tempo are often expressed in fine tempo nuances. In particular, captur-
ing these tempo nuances is difficult for automated methods. This becomes apparent if one
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Figure 3.11. Excerpt of the tempo curves for Gieseking’s performance (bb. 10-20). An automati-
cally derived tempo curve (red) as well as a manually generated tempo curve (black) is visualized.

compares the automatically derived tempo curves with the manually generated curves.
While the global tempo is reflected well by the automatically derived tempo curve, local
tempo deviations, which are visible in the manually generated curve, are not precisely
captured by the automatically derived curve.

In the following, we exemplarily discuss by means of two excerpts of Gieseking’s recording
in which situations automated methods for deriving tempo curves tend to fail. Figure 3.11
shows an excerpt of the tempo curves for bars 10-20. One directly notices that the manually
generated curve exhibits large deviations of the global tempo which can be explained by
the following musical reasons: For example, the slow down from 90 to 70 BPM in bars
12-13 refers to the fading fate motif, being commented in the score with poco ritardando.
Subsequently, bars 13-14 are characterized by a rapid increase in tempo from 70 to 135
BPM, followed by a decrease of tempo in bars 14-16 from approximately 135 to 75 BPM.
The fate motif leads into a rapidly executed 16th figuration (commented with a tempo),
which leads into a half cadence with fermata in bar 16. Then, a variant of the main theme
entries being accompanied by an increase in tempo from approximately 75 to 120 BPM in
bars 16-17. While these sudden tempo deviations (ranging from 70 to 135 BPM) can be
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Figure 3.12. Excerpt of the tempo curves for Gieseking’s performance (bb. 132-152). An au-
tomatically derived tempo curve (red) as well as a manually generated tempo curve (black) is
visualized.

directly observed in the manually generated curve, they are completely smoothed out in
the automatically derived curve (indicating a medium tempo of approximately 100 BPM).

This is a fundamental problem when dealing with automated methods. As already de-
scribed in Section 3.3, the window size constitutes a delicate tradeoff between accuracy
and robustness. Choosing a relatively large window w ∝ 8 seconds in the present case
study, the fine agogic nuances in bars 10-20 can not be captured by the automatically
derived tempo curve.

As a second problem one has to deal with inaccuracies in the underlying synchronization
procedure which may result in inaccuracies in the tempo computation. Synchronization
problems often appear in the case that the respective musical passage has a uniform or
repetitive character, for example if the same harmony is present for a long section or if a
note repetition appears, e. g., in the form of a basso ostinato. In such cases the MIDI-audio
synchronization may fail due to the uniformity of the musical material. Figure 3.12 shows
an example, where inaccuracies in the underlying synchronization lead to inaccurate values
in the tempo curve. The automatically derived curve obviously oscillates around the man-
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ually generated curve. This typically indicates a failure of the underlying synchronization
procedure. A closer look at the score reveals that here indeed the previously described
uniformity of the musical material exists. In bars 130-131 the constantly present tremolo
of the right hand is alternately complemented to a dominant seventh chord on C and a
dominant seventh chord on E♭ by the fate motif of the left hand. Bars 132 and 133 are
merely filled with a C appearing as basso ostinato, before over this bass the recapitulation
enters with the main theme in octaves. Similarly, the subsequent bars are characterized
by a basso ostinato over which constantly present harmonies sound. This explains the
inaccuracies in the underlying synchronization which are reflected as subsequent errors in
the automatically derived tempo curve.

3.5 Conclusions

In this chapter, we have introduced automated methods for extracting tempo curves from
expressive music recordings by comparing the performances with neutral reference rep-
resentations. In particular when using a combined strategy that incorporates note onset
information, we obtain accurate and robust estimations of the overall tempo progression.
Here, the window size constitutes a delicate trade-off between susceptibility to alignment
errors and sensibility towards timing nuances of the performance. In practice, it becomes
a difficult problem to determine whether a given change in the tempo curve is due to an
alignment error or whether it is the result of an actual tempo change in the performance.
Here, one idea for future work is to use tempo curves as a means for revealing problematic
passages in the music representations where synchronization errors may have occurred with
high probability. Furthermore, it is of crucial importance to further improve the temporal
accuracy of synchronization strategies. This constitutes a challenging research problem in
particular for music with less pronounced onset information, smooth note transitions, and
rhythmic fluctuation.

Finally, we exemplarily indicated the potential of the presented automated methods for
the musicological analysis of recorded performances. By the automatization of measur-
ing and annotation procedures computer science may efficiently support musicologists, in
particular, in view of large music data collections. However, every process of automatiza-
tion has certain limitations. As a consequence, the critical treatment of the automatically
computed results is indispensable for musicologists when using computer-based methods.
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Chapter 4

Interfaces in MIR

4.1 Related Work

In the field of MIR, the development of technologies and interfaces for music exploration
and analysis has been an active research area [9, 11, 20, 21, 54, 80]. In the following,
we give a short overview of some selected MIR user interfaces. The Sonic Visualiser is a
system for viewing and analyzing the contents of music audio files [80]. For example, it
enables for loading audio files and viewing the waveform or other visualizations as e. g.
the spectrogram along with the audio. There exist various Vamp plugins for the Sonic
Visualiser. The first to be mentioned here is the MATCH plugin, a system for temporally
aligning several versions of a piece of music [11]. MATCH allows for switching from one
version to the other and in this way for comparing different recorded performances of the
same piece of music. Furthermore, the Chordino plugin allows for extracting chords from
an audio file and displaying the harmonic information along with it [7]. The SmartMu-
sicKiosk represents an interface for intra-document navigation [20, 21]. It automatically
detects the chorus or other key parts of a pop song resulting in a visualisation of the song
structure. This enables the user to directly jump to the desired part of the song. The
Songle interface is a web service which allows users to retrieve, browse and annotate songs
on the web [23]. The interface displays automatically derived annotations along with a
given song. By navigating within the song the user has the possibility to correct errors in
the automatically derived annotations. Finally, the sheet music interface described in [9]
automatically aligns note events within a sheet music representation to corresponding note
events within an audio recording. In this way, the interface highlights the corresponding
bars within the sheet music while playing back the audio recording. Furthermore, the user
can jump to a certain position in the audio by clicking on the corresponding bar.

4.2 The Interpretation Switcher

The SyncPlayer system is an advanced audio player for multimodal presentation, brows-
ing, and retrieval of music data [16]. One of the available plugins for the SyncPlayer,
referred to as Interpretation Switcher, is the MIR interface which is of central importance
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Figure 4.1. Instance of the Interpretation Switcher plugin of the SyncPlayer for synchronous
playback of different audio recordings of the same piece of music. In this example, nine different
recordings of the exposition of Beethoven’s Pathétique Sonata are opened.

in Chapters 5 and 6, see Figure 4.1. It provides a similar functionality as the previously
described MATCH plugin for the Sonic Visualiser. The Interpretation Switcher allows
the user to select several recordings of the same piece, which have previously been syn-
chronized [54]. Each of the selected recordings is represented by a slider bar indicating
the current playback position with respect to the recording’s particular time scale. The
audio recording that is currently used for playback, in the following referred to as ref-
erence recording, is represented by a red marker. The slider of the reference recording
moves at constant speed while the sliders of the other recordings move according to the
relative tempo variations with respect to the reference. The reference recording may be
changed at any time simply by clicking on the respective marker located on the left of
each slider. The playback of the new reference recording then starts at the time position
that musically corresponds to the last playback position of the former reference. In this
way, the user may listen to a specific recording by activating a slider bar and then, at
any time during playback, seamlessly switch to any of the other versions (inter-document
navigation). One can also jump to any position within any of the recordings by directly
selecting a position of the respective slider, which automatically triggers a switch of the
reference to the respective recording. Note that the SyncPlayer provides many more func-
tionalities comprising plugins for inter- and intra-document browsing and retrieval as well
as data visualization and analysis.



Chapter 5

Introducing the Interpretation

Switcher Interface to Music

Education

In the field of MIR, great efforts have been directed towards the development of tech-
nologies and interfaces that allow users to access and explore music on an unprecedented
scale. On the other hand, musicians and music teachers are often still skeptical about the
benefits of computer-based methods in music education. In this chapter, we report on an
experiment conducted at the University of Music Saarbrücken with the goal to introduce
a novel MIR user interface, referred to as Interpretation Switcher, to music education and
to get feedback from music experts. To this end, we asked nine music students to analyze
different performances of the same piece of music according to a well designed question-
naire, using the novel switching functionality of our interface. Doing so, we not only tested
and evaluated our interface in a setting of practical relevance, but also indicated the po-
tential of MIR methods in music education. The results presented in this chapter have
been published in [33, 55].

This chapter is organized as follows. First, we give an overview on related work (Sec-
tion 5.1). Afterwards, we describe the setup of our experiment (Section 5.2) before pre-
senting the evaluation in Section 5.3 and concluding in Section 5.4.

5.1 Related Work

Computers have become an indispensable tool for storing, processing, and generating
music. Even though computer-based methods and interfaces are ubiquitously used for
music synthesis, there is still a reluctance in using computers for music analysis and
music education. Research in computer-assisted music education already started at the
end of the 1960s mainly in the USA and the United Kingdom [5, 31, 79, 81, 25]. For
example, computers have served as a tool for creative music-making. Furthermore, the
method of Computer-Assisted-Instruction (CAI), where students are taught a particular
skill by a computer, has been applied in areas like music theory or aural training. Various
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studies have been conducted to investigate the effect of CAI-based methods within music
education [79, 31], and the usefulness of such methods seems to be a controversial issue.

In the field of music information retrieval (MIR), the development of technologies and
interfaces for music exploration and analysis has been an active research area [9, 11,
20, 54, 80]. However, these technologies and interfaces are often evaluated in the own
lab environment, where people are familiar with computers. Though, for building up
MIR systems of practical relevance one needs broader feedback, in particular from music
experts. Hence, for a user-centered analysis, it is necessary to conduct “real” user studies
that ensure a natural setting [42].

There are many applications in the context of music education that may benefit from the
above mentioned MIR-based technologies and interfaces. However, musicians and music
teachers are often still reluctant in using novel computer-assisted methods and novel MIR
interfaces in their lessons. Furthermore, many of the available MIR interfaces are still too
complicated lacking the necessary user-friendliness and robustness to be operable by non-
experts. Under such circumstances, it remains a challenge to raise the interest of music
educators for using, testing, and participating in the development of novel MIR interfaces
and for discussing possible application scenarios.

5.2 Experimental Setup

5.2.1 Piece of Music

For our experiment, we chose the first movement of Beethoven’s Pathétique Sonata Op. 13.
This piece of music appeared to be a good choice for various reasons. Firstly, for the
Pathétique Sonata numerous detailed descriptions and scientific literature exists. Secondly,
being a very popular and famous work, the Pathétique belongs to the standard repertoire
of many pianists. Hence, there are numerous audio recordings for this piece. The third
and most important reason for choosing the Pathétique is that it is very rich in contrast
concerning tempo as well as dynamics.

To make the latter point clear, we describe the Pathétique’s exposition in more detail.
Beginning with the slow introductory theme marked Grave (bb. 1-10, see Figure 5.1 (a)),
the work starts very dramatically. The introduction is characterized by its contrasts in
dynamics—fortissimo passages are followed by subito piano and vice versa. This con-
trast in dynamics is underlined by contrasts in rhythmics, articulation, and atmosphere.
Ending with the chromatic run, the introduction leads in the first theme (bb. 11-27, see
Figure 5.1 (b)) of the sonata which is characterized by the tremolo in octavos in the left
hand giving it a dramatic touch. In contrast to the dramatic first theme, the second theme
(bb. 51-88, see Figure 5.1 (c)) sounds more playful. It is based on the call and response
principle and is characterized by a play with articulation.

As described above, one can find many contrasting elements in the exposition of the first
movement of the Pathétique: Contrasts in the shaping of the two themes, contrasts in
dynamics, and contrasts in atmospheres. In addition, there is an abrupt change in tempo
at the beginning of the first theme (b. 11), where the introductory Grave leads in the
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Figure 5.1. First movement of Beethoven’s Pathétique Sonata Op. 13 (score obtained from
(Mutopia Project, 2009)). (a) Beginning of the introduction (Section A, bb. 1 ff.) (b) First theme
(bb. 11 ff.) (c) Second theme (bb. 51 ff.) (d) Section B (bb. 89 ff.)

actual exposition marked Allegro di molto e con brio. Because of its musical richness, the
Pathétique offers the pianist a wide range of possibilities for shaping the piece with respect
to dynamics, tempo, and agogics. Therefore, this piece is very well suited in view of the
musical evaluation within our experiment.

5.2.2 Performance and Recording Setup

The recordings of our experiment were performed at the University of Music Saarbrücken.
Nine students of different study paths from the piano class of Prof. Thomas Duis were
asked to play the first movement of the Pathétique. Being in several training states, they
were on different performance levels. All students played on the same instrument under
the same recording conditions on two different days (Friday, 06.02.2009 and Monday,
09.02.2009). In the recording sessions, only the performer, the technical staff, and the
scientific investigators were present in the room—the other performers were not allowed
to listen to their fellow students. Using two microphones, we did not achieve the quality
of a recording studio. However, we obtained audio recordings of a sufficient quality in
view of our experiments. Furthermore, using a Yamaha Disklavier, we also generated
MIDI data along with the audio recordings. Actually, the MIDI files were not used in our
experiments, but as mentioned before they are useful for later projects.
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5.2.3 MIR User Interface

The MIR interface used in the following experiment is the Interpretation Switcher, which
is described in Section 4.2. In our experiment, we restrict ourself basically to the switching
functionality with the motivation to keep the interface as simple and intuitive as possible
to avoid any rejections from the users. As Figure 4.1 shows, the Interpretation Switcher
looks like a standard audio player with the only difference that more than one slider control
bar is available. After a short explanation of the main switching functionality, none of the
students reported on difficulties in using our interface.

5.2.4 Survey and Questionnaire

Subsequent to the last recording session, the nine different performances were aligned and
integrated in our Interpretation Switcher. Then, we conducted our survey in the evening of
the second recording day (Monday, 09.02.2009). Eight music students participated in the
survey, seven of whom were also among the nine performers. The different interpretations
were anonymised within the interface and the participants listened to the recordings for
the first time.

Each participant was provided with a computer running the Interpretation Switcher and
with earphones. After a short introduction of the interface’s switching functionality, the
participants received a questionnaire having one hour for answering the questions. This
questionnaire consisted of two main parts. In the first part, the students had to listen, to
compare, and to rate the nine different interpretations with respect to various performance
aspects. Here, the questions were designed in such a way that the students naturally
started to use the switching functionality of the interface, thus getting familiar with the
Interpretation Switcher in a concrete application of musical relevance. In the second part,
they were then asked to give feedback on the usefulness and operability of the interface
itself.

The questions of the first part of the questionnaire referred to different sections of the first
movement of the Pathétique. As a kind of warming up, we started with a short section
(Section A), which only consisted of the first three bars, see Figure 5.1 (a). This section
was cut out from the nine aligned performances and presented to the students by the
Interpretation Switcher interface. Even being rather short, Section A already offers the
pianists a wide range of interpretation so that the comparison of the different performances
constitutes a musically interesting task. In the first question (A1), the participants had to
rate the nine different interpretations of Section A with respect to the three musical aspects
dynamics, articulation, and agogics. Here, the rating scale ranged between 1 and 10, where
1 means poor and 10 excellent. In addition, they had to rate their total impression of this
section’s performances using the same scale. Afterwards, in question A2, they had to
identify their own interpretation (if applicable) only by means of Section A. Then, the
performances of Section A were closed and a different section (Section B) was presented
by the Interpretation Switcher to them. Here, Section B consisted of the technically more
involved bb. 89-100, see Figure 5.1 (d). The students then had to answer corresponding
questions (B1, B2).
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At the beginning of the questionnaire, the students were confronted with different perfor-
mances of relatively short sections. Here, only switching between the performances was
required to properly answer the questions—jumping back and forth within a performance
was not necessary. In this way, the students became familiar with the basic switching
functionality of the interface. In the next stage, they were presented with the nine perfor-
mances of the entire exposition. They now had to rate their total impression of the first
theme (bb. 11 ff., see Figure 5.1 (b)), of the second theme (bb. 51 ff., see Figure 5.1 (c)),
and of the entire exposition (questions E1, E2 and E5). Here the new challenge concern-
ing the use of the Interpretation Switcher was not only to switch between the different
performances but also to find the corresponding entry points of the two themes within
the recordings. Another task (E3), was to order the nine different interpretations with
respect to the tempo (beginning with the slowest, ending with the fastest) in the second
theme. With this task the students had to constantly switch between and jump within
the performances, being forced to use the functionality of the interface extensively. In
question E4, again, they had to identify their own performance (if applicable) now having
the entire exposition at their disposal.

After finishing the questions on music aspects, in the second part of the questionnaire
the participants were asked to evaluate the Interpretation Switcher interface. Here, the
idea was to let the participants first use the interface in an application scenario to gather
practical experience without knowing about the final interface evaluation. In the first
question (S1), they should rate the user-friendliness and the degree of usability of the
Interpretation Switcher on the above described scale from 1 to 10. We then wanted to
know if there were any problems while using the interface (S2). Furthermore, the students
were asked to comment on possible improvements and to propose additional functionalities
they would have liked when working on the first part of the questionnaire (S3). In a last
question (S4), they should sketch possible application scenarios where they could imagine
to use MIR user interfaces such as the Interpretation Switcher.

5.3 Evaluation

5.3.1 Performance Evaluation

In the first part of the questionnaire, the participants had to analyze and compare the
different performances against each other. Table 5.1 presents the results of question A1,
where they had to rate the nine different performances of Section A with regard to dy-
namics, articulation, agogics, and in total. The first row of Table 5.1 shows the number of
the respective performance; the values of each column correspond to the respective per-
formance. The second row shows the ratings with regard to dynamics averaged over the
eight participants. For example, the first performance was rated with a score of µ = 6.63
on average. The third row shows the standard deviation, which is σ = 1.19 for the first
performance. The following rows of Table 5.1 are to be read in the same fashion. For ex-
ample, the participants rated the sixth performance on average with µ = 6.88 (σ = 1.36)
with respect to articulation, whereas the overall impression of this performance amounts to
µ = 6.38 (σ=1.51). As we can see, the eighth performance was ranked highest with respect
to dynamics (µ = 6.75), whereas the second one with respect to articulation (µ = 7.00).
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Table 5.1. Evaluation results of question A1 (Figure 5.1 (a)). The average ratings µ along with
the standard deviations σ are shown for the nine performances of Section A with regard to various
musical aspects.

1 2 3 4 5 6 7 8 9

Dynamics µ 6.63 6.25 6.38 6.13 5.75 6.38 5.38 6.75 6.63
σ 1.19 1.49 1.69 1.36 1.67 1.69 1.77 1.49 1.60

Articulation µ 6.13 7.00 6.25 6.38 6.13 6.88 5.38 5.88 6.00
σ 1.81 1.69 1.83 1.30 1.64 1.36 2.20 1.36 1.41

Agogics µ 6.13 6.50 5.13 6.38 5.63 6.50 4.75 5.75 6.13
σ 1.73 1.69 2.53 1.92 1.41 1.41 2.12 1.28 0.99

Overall µ 6.25 6.25 6.00 6.25 5.88 6.38 5.25 6.13 6.00
σ 1.58 1.67 2.14 1.28 1.25 1.51 1.58 1.55 1.20

Table 5.2. Evaluation results of question B1 (Figure 5.1 (d)).

1 2 3 4 5 6 7 8 9

Dynamics µ 5.38 6.38 7.13 6.38 5.63 7.13 5.88 4.75 4.13
σ 1.41 1.69 1.55 1.69 1.41 1.13 1.36 2.12 1.36

Articulation µ 5.38 6.00 6.25 6.38 4.88 6.25 5.13 4.63 4.75
σ 1.85 1.20 1.04 1.60 1.89 1.58 1.89 1.69 2.19

Agogics µ 5.13 6.00 6.88 6.75 5.13 6.75 5.38 4.88 4.00
σ 2.42 0.76 0.99 1.39 1.81 1.28 1.51 1.64 1.51

Overall µ 5.25 5.88 6.75 6.63 5.00 6.63 5.63 5.00 4.25
σ 1.75 0.99 1.49 1.41 1.51 1.41 1.69 1.51 1.39

The overall rankings for Section A are relatively close together, which may show that the
section was too short for giving a well-founded evaluation or that it was played similarly
by all students.

Analogously, Table 5.2 shows the results of question B1. Here, the best performance con-
cerning the overall impression is the third one (µ = 6.75), whereas the worst performance
is the ninth one (µ = 4.25). Actually, the ninth performance was ranked worst with
respect to all musical aspects. The reason for the poor rating is that the performing stu-
dent struggled significantly with the technically more involved Section B, thus neglecting
the musical shaping. This may also explain, why the given scores between the perfor-
mances differ to a much larger degree for Section B than for Section A. Finally, Table 5.3
presents the results of questions E1, E2 and E5, where only the overall impression had
to be rated. Here, the first, third, and second performances were rated best with regard
to the first theme (µ = 6.88), the second theme (µ = 6.75), and the entire exposition
(µ = 7.00), respectively. Again, the ninth performance was rated worst with regard to all
three categories. Interestingly, there does not exist a clear winner performance concerning
all different musical aspects and themes.
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Table 5.3. Evaluation results of question E1 (first theme, Figure 5.1 (b)), question E2 (second
theme, Figure 5.1 (c)), and question E5 (entire exposition).

1 2 3 4 5 6 7 8 9

1. Theme µ 6.88 6.25 5.88 5.63 4.88 5.25 5.50 5.25 4.75
σ 1.13 1.39 1.25 2.13 2.30 2.19 2.45 2.12 1.83

2. Theme µ 6.25 6.38 6.75 5.63 5.00 5.25 6.38 5.13 4.50
σ 1.83 1.06 1.39 1.30 1.60 1.04 1.85 1.96 1.60

Exposition µ 6.50 7.00 6.88 5.63 4.75 5.13 5.50 5.63 4.38
σ 1.41 1.51 1.46 1.85 1.58 1.81 2.00 1.77 1.60

5.3.2 Interface Evaluation

In the second part of the questionnaire, the students were asked about the operability
and usefulness of the Interpretation Switcher. As mentioned before, none of them had
serious problems in using the interface, which is also reflected by a high average rating
of µ = 7.63 given for the user-friendliness of the interface. Only one of the participants
gave a low score of 4 explaining a relatively large standard deviation of σ = 2.07. As it
turned out, the reason for this was that the student was pressured for time and not really
in the mood of participating in our experiment. Actually, this student also admitted that
she has had no time for properly practicing the piece, resulting in performance number
nine with the lowest score, see Table 5.3. Most of the other participants emphasized that
they found the handling and functioning of the Interpretation Switcher very intuitive,
even music students who have had only little experience with computers. Furthermore,
most students found the Interpretation Switcher very useful for tasks such as performance
analysis, music comparison, and other analysis tasks. Here, the average rating amounted
to µ = 7.13 with standard deviation σ = 1.89.

After the general rating, the students were also asked to freely comment on problems,
possible improvements, additional functionalities, and possible application scenarios (S2,
S3, S4). At this point they all confirmed that they have had no problems while using the
Interpretation Switcher interface. However, two students noted that the interface could
have reacted faster while switching between the respective performances. One student
would have appreciated to have an additional functionality for displaying the musical score
during playback. Also user-defined auxiliary markers that can be freely fixed, adjusted,
and removed along the various slider control bars should be introduced for additional
orientation and navigation purposes. All but one of them affirmed that they could imagine
to use the Interpretation Switcher within their studies or even for private use. In particular,
they said that the interface may be useful in the context of special seminars, where the
comparison of different performances play an important role. One student was enthusiastic
about the features offered by the Interpretation Switcher. He usually records his piano
lessons in order to listen to and to study his own playing afterwards. Here, he would
significantly benefit from novel switching and navigation functionalities for comparing
and analyzing the recorded audio material. Also, the Interpretation Switcher could be
very useful for compactly documenting the learning progress over a longer period in time.
For example, it could synchronously present the various performances of a specific musical
section recorded in different piano lessons over the semester.
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5.4 Conclusions

In this chapter, we presented a first experiment conducted at the University of Music
Saarbrücken with the main objective of introducing MIR user interfaces with novel switch-
ing and navigation functionalities to music teachers and students. Even though this group
tends to be skeptical about using computer-based methods in music education, most par-
ticipants affirmed the usefulness of our interface for comparing and analyzing performances
or simply for music listening and enjoyment. Testing and evaluating our interface within
a concrete application of practical relevance, we not only made a new group of prospec-
tive users acquainted with MIR methods but also obtained valuable feedback from music
experts.

The presented experiment only constitutes the beginning of a planned collaboration with
music educators and students, who are usually not aware of the developments in music
information retrieval. For the future, we plan to conduct similar experiments on a larger
scale. One further idea is to participate regularly in the lessons of piano students to record
their playing. We then plan to process (segment, classify, synchronize) the audio material
automatically and to suitably integrate it in our Interpretation Switcher to document and
analyze the students’ learning process.

Finally, we plan to develop and combine various additional functionalities. For example,
as mentioned by one of the participants, an additional sheet music interface for presenting
the musical score while playing back associated audio material would be helpful. Actually,
such functionalities have been presented in [9]. Furthermore, we will integrate additional
functionalities for inter- and intra-document music browsing including the possibility of
setting user-defined auxiliary markers as well as pre-computed markers that reflect the
musical form of the piece [16, 20]. In introducing novel functionalities, one main challenge
will be to keep the operability of the interface as intuitive as possible to avoid rejections
from the users’ side.



Chapter 6

A Multi-Perspective User

Interface for Music Signal Analysis

In view of the exploding distribution of digitized audio material, computer-based methods
have become indispensable for processing and analyzing the content of music signals. To
evaluate analysis results obtained by automated methods, one requires manually generated
high-quality labeled data and the feedback by music experts. In this chapter, we intro-
duce various novel functionalities for a user interface that opens up new possibilities for
viewing, comparing, interacting, and evaluating analysis results within a multi-perspective
framework and bridges the gap between signal processing and music sciences. Here, we
exploit the fact that a given piece of music may have multiple, closely-related sources of
information including different audio recordings and score-like MIDI representations. Our
interface then allows a user to interactively generate unifying views of the analysis results
across the available music representations. Disclosing musically relevant consistencies and
inconsistencies, these views not only afford new evaluation and navigation possibilities but
also deepen a user’s understanding of the underlying musical material. The results of this
chapter have been published in [60].

This chapter is organized as follows. First, we present the underlying user interface (Sec-
tion 6.1), and introduce three different modes for representing the timelines of the ver-
sions (Section 6.2). Afterwards, we illustrate the effect of the three timeline modes using
Beethoven’s Pathétique Sonata as an example for a case study (Section 6.3). In Sec-
tion 6.4, we introduce a novel functionality of our interface, which allows for generating
multi-perspective views across different version-dependent analysis results before indicat-
ing various application scenarios (Section 6.5). Finally, we demonstrate how our interface
may serve as a helpful tool for ear training (Section 6.6).

6.1 Extension of the Interpretation Switcher

The technical backbone of our user interface is referred to as Interpretation Switcher, which
has emerged from the previously developed SyncPlayer system [16] and is described in
Section 4.2. This interface allows a user to select several recordings of the same piece of
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Figure 6.1. Interpretation Switcher opened with four different versions (MIDI file and three
audio recordings) of the first eleven bars of Bach’s Prelude in C Major (BWV 846). The annota-
tions correspond to version-dependent chord labels (generated manually for the MIDI version and
automatically for the audio versions). In the right part of the interface, the user may select any
subset of the available versions (here, four out of five versions are selected).

music, which have previously been synchronized [54]. Each of the recordings is represented
by a slider bar indicating the current playback position with respect to the recording’s
particular timeline, see Figure 6.1. The user may listen to a specific recording by activating
a slider bar and then, at any time during playback, seamlessly switch to any of the other
versions (inter-document navigation).

In addition to the switching functionality, we have extended the Interpretation Switcher
to also indicate available version-dependent annotations below each individual slider bar,
where labeled segments are represented by color-coded blocks. Such annotations may
encode the chord labels generated manually or obtained by some automated chord recog-
nition procedure [77]. Or, such annotations may correspond to the repetitive structure
or the musical form, which may have been extracted from the respective recording using
automated structure analysis procedures [68]. Based on these annotations, the Interpreta-
tion Switcher also facilitates intra-document navigation, where the user can directly jump
to the beginning of any structural element simply by clicking on the corresponding block,
see Figure 6.1.
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Figure 6.2. Different timeline modes showing annotations in the absolute mode (top), the
relative mode (middle) and the reference mode (bottom) using the first versions as reference,
respectively. The left column continues the Bach example from Figure 6.1. The right column shows
the Interpretation Switcher opened with three different recordings of the exposition of Beethoven’s
Pathétique Sonata. Here, the annotations correspond to structural information indicating four
musically meaningful parts of the exposition.

6.2 Timeline Modes

We have further extended the functionalities of the Interpretation Switcher by realizing
three different modes for representing the timelines of the versions. In the absolute mode,
each timeline encodes absolute timing, where the length of a particular slider bar is pro-
portional to the duration of the respective version, see Figure 6.2 (top). In the relative
mode, each timeline encodes relative timing, where the length of all slider bars coincide,
see Figure 6.2 (middle). In other words, in the relative mode all timelines are linearly
stretched to yield the same length. The third mode, which is referred to as reference
mode, is the most interesting one. Here, an arbitrary but fixed version can be selected to
act as a reference. Then, all timelines of the other versions are temporally warped to run
synchronously to the reference timeline, see Figure 6.2 (bottom).

One feature of our timeline adjustment functionality is that the annotations indicated
below the slider bars are also adjusted according to the respective mode. Thus, the
different timeline modes allow for generating different views on these annotations. For
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Figure 6.3. First movement of Beethoven’s Pathétique Sonata Op. 13 (score obtained from [63]).
(a) Beginning of the introduction (Part A, bb. 1 ff.) (b) First theme (Part B, bb. 11 ff.) (c) Second
theme (Part C, bb. 51 ff.) (d) Part D (bb. 89 ff.)

example, using the reference mode, all annotations are temporally warped onto a common
timeline, which then facilitates a direct comparison of the annotations across the versions.
This is a very useful feature, in particular when the reference corresponds to ground-truth
annotations. Furthermore, when the reference corresponds to an uninterpreted MIDI
version representing a musical score, the reference mode allows for presenting all version-
dependent annotations with respect to a musically meaningful timeline, where time is
given in bars and bars rather than seconds.

6.3 Case Study

In the following case study, we exemplarily discuss the effect of the different timeline modes
by means of the Beethoven example in Figure 6.2, right column. Here, the Interpreta-
tion Switcher is opened with three different recordings of the exposition of Beethoven’s
Pathétique Sonata Op. 13 for which structure annotations are indicated. For each record-
ing the respective structure annotation consists of four blocks (A (blue), B (yellow), C
(green) and D (red)), which correspond to musically meaningful parts of the exposition.

To better understand the structure annotations shown in Figure 6.2, right column, we
refer to the description of the Pathétique’s exposition in Section 5.2.1. For convenience,
Figure 6.3 shows again the score of the considered parts of the exposition. The first
block (A) of the structure annotation of each recording corresponds to the introduction
of the exposition, see Figure 6.3a. The introduction leads in the first theme (bb. 11 ff.,
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see Figure 6.3b) of the sonata, corresponding to the second block (B) of the structure
annotation. The second theme (bb. 51 ff., see Figure 6.3c), corresponds to the third block
(C) of the structure annotation. The last block (D) of the structure annotation refers to
the fourth part of the exposition, introduced by a third theme in E flat major (bb. 89 ff.,
see Figure 6.3d).

Now, we again consider the three recordings of the Pathétique Sonata. The three different
timeline modes of the Interpretation Switcher allow for generating different views on the
structure annotations. Firstly, using the absolute mode (see Figure 6.2, right column, top),
where each timeline encodes absolute timing, enables to visually compare the absolute
durations of the three recordings in an intuitive way. For example, one directly observes
that the lengths of the first and the third slider bar roughly agree with each other, whereas
the second slider bar is noticeably shorter. In other words, Pianist 1 and Pianist 3 choose a
slower overall tempo in their performances of the exposition (resulting in a total duration
of 224 seconds), whereas Pianist 2 plays the exposition much faster (resulting in a total
duration of only 213 seconds), see also Table 6.1.

Secondly, the relative mode (see Figure 6.2, right column, middle) allows for visually
comparing the relative durations of the particular structure blocks with respect to the
total durations of the recordings. In this way, performance characteristics concerning the
tempo shaping in the four parts can be investigated easily. For example, one can notice
that Pianist 1 plays the introduction of the exposition (Part A) rather slowly compared to
the two other pianists (covering 52.2% of the duration of his/her whole performance). On
the contrary, Pianist 3 plays the introduction much faster so that its duration amounts
to only 38.4% of the total duration. However, one observes that Pianist 1 plays all the
three subsequent parts (B, C, D) faster than the two other pianists, see Table 6.1. Indeed,
Pianist 1 plays the introduction in a slow and expressive way but changes to a faster tempo
level at the actual beginning of the exposition (Part B).

Thirdly, in the reference mode (see Figure 6.2, right column, bottom) all timelines are
temporally warped to run synchronously to the reference timeline, where every recording
can be selected to act as a reference. In this example, the first recording serves as the refer-
ence. The reference mode allows now for a direct comparison of the annotations across the
recordings. One directly notices that the annotations of the three recordings agree with
each other. Here, the underlying reason is that the structure annotations are consistent
across the recordings and perfectly reflect the musical structure of the exposition. Actu-
ally, in this example, the annotations were generated manually. However, the situation
changes when annotations are computed by automated procedures for each of the versions
independently. Then, one typically encounters analysis errors and inconsistencies, which
become apparent in the Bach example (Figure 6.2, left column). This example will be
described in more detail in the subsequent section.

6.4 Multi-Perspective Views

As a further contribution, we have realized a functionality that facilitates the generation
of multi-perspective views across different version-dependent analysis results. We discuss
this functionality by means of our Bach example, where we consider a score-like uninter-
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Exp. A B C D

Pianist 1 Time[sec] 224 117 33 32 42
Rel. time[%] 100 52.2 14.7 14.3 18.8

Pianist 2 Time[sec] 213 93 38 36 46
Rel. time[%] 100 43.7 17.8 16.9 21.6

Pianist 3 Time[sec] 224 86 46 39 53
Rel. time[%] 100 38.4 20.5 17.4 23.7

Table 6.1. Absolute and relative time durations for the structural parts of the Pathétique’s
exposition. The table shows for each performance the absolute durations (in seconds) and the
relative durations (in %) of the considered structural parts (A, B, C, D) with respect to the total
duration of the respective performance.

preted MIDI file (with manually generated ground-truth chord labels) and three audio
recordings (with automatically extracted chord labels). Applying the interface’s zooming
functionality, Figure 6.4b shows the version-dependent chord labels of the Bach example
(bb. 7-9) in the reference mode, which enables for a simultaneous comparison of the var-
ious chord labels over multiple versions of the same piece of music. The various colors
correspond to the different labels. In our example, the first slider bar corresponds to the
MIDI version which, in this example, is used as the reference. (However, note that any
version may be selected to serve as the reference.) Here, bar 7 is labeled as G major
(blue), bar 8 as C major (yellow), and bar 9 as A minor (red). The white color indicates
unannotated passages. In the reference mode, the interface allows for placing a copy of
the reference annotations below each of the version-dependent annotations. Furthermore,
the pairwise consistencies (indicated by white) and inconsistencies (indicated by black)
across annotations can be visualized.

Such a multi-perspective view is shown in Figure 6.4c. Here, a tripartite panel is associated
to each version showing the original version-dependent annotations (top), the pairwise
consistency information (middle), and the reference annotations (bottom). For example,
this view immediately reveals that there are inconsistent annotations in bar 8, which is
labeled as C major (yellow) in the first version (reference) and labeled as E minor (green)
in the third version. Actually, this misclassification has musical reasons: in bar 8 a C
major seventh chord is played, which is simplified to C major in the manual annotation.
However, due to the added seventh (B) all the tones for E minor (E,G,B) are also present
leading to the misclassification E minor.

Additionally, the interface can also provide statistics that indicate the degree of consistency
with respect to the reference across all available versions. These statistics are visualized
as an additional gray-scaled panel as shown at the bottom of Figure 6.4c. Here, the degree
of consistency is reflected by the luminance of the grayscale. In particular, a white entry
at a given reference time position indicates that all chord labels agree with the reference
label across all versions, whereas a black entry indicates that all non-reference chord labels
differ from the reference label. This visualization points the user to problematic passages,
which were labeled inconsistently. These inconsistencies may be due to weaknesses of
the used labeling procedure (analysis errors), to synchronization inaccuracies, or to musi-
cal ambiguities in the piece of music (ill-posed problem, inadequate model assumptions).
In our Bach example, the multi-perspective view reveals that for bar 7 the chord labels
(blue) agree across all versions (except for some smaller inconsistencies at the left bound-
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Figure 6.4. Various multi-perspective views for the Bach example zooming into bars 7 to 9
of the first eleven bars as shown in Figure 6.2. (a): Score of bars 7 to 9. (b): Interpretation
Switcher in the reference mode (using the first version as reference). (c): Multi-perspective view
showing copies of the reference annotations below each of the version-dependent annotations and
the pairwise consistencies (white) and inconsistencies (black). The bottom visualizes the degree of
consistency (gray values) across all versions.

ary that may stem from synchronization inaccuracies). On the contrary, for bb. 8-9, the
multi-perspective view indicates several inconsistencies. Hence, these two bars seem to be
problematic passages in the piece of music. Actually, looking at the score one finds out
that seventh chords are present in both bars (C major seventh in bar 8, A minor seventh
in bar 9), which produces a certain chord ambiguity resulting in misclassifications.
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Our interface offers various ways, a user can interactively modify the views including
zooming and selection options. In particular, every version can be selected to serve as
a reference, where the view immediately adjusts upon selection. Note that in this case
not only the timeline is changed, but also the copied reference annotations are replaced
and the statistics are recomputed. As another feature, for a given set of versions, one can
select an arbitrary subset to be considered in the multi-perspective view. For example, in
Figure 6.1, four of the five available versions are selected.

6.5 Applications

In this section, we indicate various application scenarios for our advanced Interpretation
Switcher Interface. First of all, as indicated in the previous section, our user interface
may serve as a valuable tool for the evaluation of automated music analysis and labeling
procedures. Using the reference mode, a multi-perspective view can be generated that
yields a synchronized and compact overview of version-dependent analysis results across
multiple music representations of a given piece of music. Here, annotation consistencies
and inconsistencies can be visualized in a pairwise mode, where each version is compared
with the reference separately, as well as in a comprehensive mode comprising all versions.
Here, inconsistencies typically point to misclassifications that may be due to analysis errors
of automated methods or to intrinsic musical ambiguities. On top of the visual feedback,
our interface allows for immediate playback of any position within any version simply by
clicking on a color-coded block. Such a block visually represents either a labeled segment
or a derived segment that indicates consistency information. This allows a user to easily
identify interesting musical passages by means of the visual cues and then to playback
the corresponding underlying acoustic material. Having such audio-visual navigation and
feedback functionalities, a researcher is greatly supported in performing an in-depth error
analysis while deepening his or her understanding of the underlying musical material.

At this point, we want to emphasize that our multi-view evaluation interface may yield
interesting information even in the case that no ground-truth annotations are available.
For example, in chord recognition, most research is evaluated on the basis of a corpus of
Beatles songs, for which high-quality manual chord transcripts have been prepared [27].
However, such special-purpose manual annotations are rarely available. Therefore, one
may exploit the fact that one often has large quantities of different versions (e. g., vari-
ous performances) of a given piece of music, which present opportunities for generating
substitutes for manual ground-truth using music synchronization techniques [29, 54, 85].
First multi-perspective approaches to automatically evaluate algorithms have been applied
to chord recognition [36] and to beat tracking [24]. In this context, our user interface
supports such approaches by supplying immediate visual and acoustic feedback.

As another major benefit, our Interpretation Switcher alleviates interdisciplinary research
by bridging the gap between music information retrieval and music sciences. Usually,
MIR methods are evaluated by MIR researchers in their own lab environment, and music
experts are rarely incorporated in the evaluation process. Here, one reason is the lack
of communication between MIR researchers, who often do not have an adequate musical
background, and music experts, who are often reluctant in using novel computer-assisted
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methods. Our interface allows even a technically unexperienced user to perform an error
analysis of automatically generated annotations. Being pointed to problematic passages by
the interface, a music expert can employ his or her musical knowledge and trained ear for
an in-depth audio-visual analysis of specific passages. This process can be supported by an
MIR researcher who provides the knowledge about the details of the employed annotation
methods. In this way, our interface opens the way for an interdisciplinary collaboration,
which, on the one hand, supports the MIR researcher in improving the employed methods
using the valuable feedback from the music expert, and, on the other hand, familiarizes
the music expert with novel computer-assisted methods and interfaces.

For the future, we plan to apply our advanced Interpretation Switcher to support interdis-
ciplinary research going far beyond evaluation. In the context of musicology, one project
consists in determining tonal centers (i. e., passages dominated by a certain key) within a
large musical work or even entire music corpora, see Chapter 12. Here, first experiments
show that our multi-perspective audio-visual navigation functionalities considerably alle-
viates the work of musicologists. As a second interdisciplinary project, we have started
to introduce computer-based methods into the context of music education, see Chapter 5.
Here, our user interface may help to conduct more user-centered analyses of MIR methods
within natural, music-oriented settings [42].

6.6 The Ear Training Plugin

In this section, we illustrate how our multi-view interface may serve as an interactive tool
for ear training. First, in Section 6.6.1 we give an introduction to ear training. Afterwards,
in Section 6.6.2 we describe the desirable functionalities of an ear training plugin based
on the multi-view interface described in Section 6.4.

6.6.1 Ear Training

Ear Training is an important subject at academies of music. First of all, every candidate
has to pass an ear training test in the entrance examination. Furthermore, the students of
all study paths have to attend an ear training course for several years and to pass a final
exam. Ear training denotes the procedure of instructing the ear in order to determine
intervals, pitches and rhythms. The usual method in ear training is the dictation, where
the student has to transcribe the music by listening to it. There exist several levels of
dictations, e. g. dictations for one or for multiple voices, tonal or atonal dictations. By
training the ear, the perception of music is sharpened resulting in a deeper understanding
of musical structures, which are valuable skills in the context of improvisation, composing,
playing or analyzing music. Only a few musicians possess absolute pitch ability, whereas
most of them use relative pitch ability. Therefore, the musical context in which a musical
event sounds is indispensable for identifying it. Furthermore, the musician has to be
informed about the initial musical event. A usual ear training lesson proceeds as follows:
The teacher plays a certain dictate on the piano and the students try to transcribe it.
Afterwards, the transcription is compared to the original. Passages, where the student’s
solution deviates from the original are played again by the teacher. Here, one didactic
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method is to play the student’s wrong transcription in comparison to the original. In
this way, the student can directly learn from his/her error. Usually, ear training requires
plenty of practice and discipline. However, for ear training exercises one generally needs a
second person who fills the role of the teacher playing the dictate. It is hardly possible to
train the ear by oneself. In the following, we illustrate how an ear training plugin for the
Interpretation Switcher may open up new possibilities for interactively training the ear.

6.6.2 Functionalities of the Ear Training Plugin

We assume that a certain piece of music is opened in the Interpretation Switcher using the
reference mode. Here, the first slider bar represents a MIDI version and the second slider
bar an audio version of the considered piece of music. Additionally, the annotation panel
below the MIDI version allows for indicating the ground truth annotation, whereas the
panel below the audio version serves for visualizing the manually annotated chord labels
by the student. In the following, we consider only the 24 major and minor chords, where
every chord corresponds to a fixed color in the visualization.

In the beginning, the ground truth annotation is hidden so that the two annotation panels
are white colored. However, the borders of the chord segments are indicated by vertical
black lines (see Figure 6.5a). Now, the task for the student is to manually annotate the
chords by listening to the piece of music. By right-clicking within a certain segment of
the audio version’s annotation panel, a menu bar opens, showing the 24 major and minor
chords. By clicking on one of these 24 chords, the student can select the chord for the
corresponding segment. After the selection, the respective segment colors corresponding
to the selected chord and the shorthand of the chord is written as a string within the
segment (see Figure 6.5b).

Having manually annotated all the chords, the student can now compare his/her anno-
tation to the ground truth annotation. By activating the mode Solve the ground truth
annotation is blend in, visualized by the respective colors and shorthands (see Figure 6.5c).
Using the reference mode, the student can now directly compare his/her annotation with
the ground truth annotation. In the mode refAnnoCheck this comparison is facilitated
since copies of the ground truth annotation are placed above each of the two anntotations
(see Figure 6.5d). Furthermore, by activating the mode diffAnnoCheck the differences
between the two annotations are visualized in black (see Figure 6.5e). In this way, the
student can easily locate wrongly annotated passages and by clicking on the respective
segment listen to the previously identified problematic passage.

As the process of listening plays a crucial role in ear training, we now demonstrate how
sonifications of the chord annotations can support the student’s learning process. We
therefore assume that for each of the 24 considered chords a prestored sonification ex-
ists. Activating the errorListenCheck mode, the acoustic playback of the two slider bars
changes. While the first slider bar plays back by default the MIDI version of the piece of
music, it plays back in the errorListenCheck mode the chord progression corresponding to
the ground truth annotation using the respective sonified chords. The second slider bar
plays back by default the audio version of the piece of music. However, in the errorLis-
tenCheck mode it plays back the chord progression corresponding to the manual annotation
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Figure 6.5. Different instances of the Ear Training Plugin. (a) Start setting. The borders of the
chord segments are indicated by vertical black lines. (b) The annotation panel below the audio
version’s slider bar enables the student for manually annotating the chords by listening to the piece
of music. (c) The ground truth annotation is blend in below the MIDI version. (d) Copies of the
ground truth annotation are placed above each of the two annotations. (e) Deviations from the
ground truth annotation are visualized in black between the two annotations.
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of the student using the prestored sonified chords. The errorListenCheck mode supports
the student’s learning process in two ways: Firstly, listening to chord progressions instead
of the original composition simplifies the identification of the underlying chords. Secondly,
the common didactic method, which allows the student to compare by listening his/her
own possibly wrong annotation with the ground truth annotation, is realized. Using the
switching functionality of the interface, the student can listen in the musical context the
wrong manual annotation in comparison to the actual chord progression. This possibility
may realize a real learning progress in ear training.
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Harmonic Analysis
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Chapter 7

Chord Labeling

Automated chord labeling, which deals with the computer-based harmonic analysis of au-
dio recordings, is one of the central tasks in the field of music information retrieval. In this
chapter, we first introduce the topic of chord labeling by formulating the task and giving
an overview of related work (Section 7.1). Afterwards, we describe different approaches
for chord labeling: a template-based (Section 7.2), a Gaussian-based (Section 7.3) and an
HMM-based approach (Section 7.4). Then, we refer to the feature extraction step and
describe different types of chroma features which are of interest in the context of chord
labeling (Section 7.5). In a subsequent experiment we demonstrate the importance of the
features by analyzing the behavior of several chord labeling procedures in dependency of
various feature types (Section 7.6). Finally, we investigate the role of tuning in the con-
text of chord labeling by conducting a baseline experiment which shows that balancing
out tuning deviations has a great impact on the chord labeling results (Section 7.7). This
chapter is mainly based on [30], Section 7.1 to Section 7.6 basically follow [30]. The results
presented in Section 7.7 have been published in [35].

7.1 Related Work

In recent years automated chord labeling has been of increasing interest in the field of
MIR see, e. g., [4, 6, 8, 17, 26, 27, 40, 47, 48, 64, 65, 66, 70, 77, 86]. Harmony is a
fundamental attribute of Western tonal music and the succession of chords over time
often forms the basis of a piece of music, where a chord denotes the simultaneous sound
of three or more pitches. Harmonic progressions are not only of musical importance, but
also constitute a powerful mid-level representation for the underlying musical signal and
can be applied for various tasks such as music segmentation, cover song identification, or
audio matching [76, 62].

In the following, we address to the problem of audio-based chord labeling, where the chord
labeling task consists in first splitting up the recording into segments and then assigning
a chord label to each segment. The segmentation specifies the start time and end time of
a chord, and the chord label specifies which chord is played during this time period. Most
chord labeling procedures proceed in a similar fashion. In the first step, the given music
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Figure 7.1. Chord labeling task illustrated by the first measures of the Beatles song “Let It Be”.
(a): Score of the first three measures. (b): Audio representation of these measures. (c): Chroma
representation. (d): Chord labeling result indicating correct (C), false negative (FN), and false
positive (FP) labels.

recording is transformed into a sequence X = (x1, x2, . . . , xN ) of feature vectors xn ∈ F ,
n ∈ [1 : N ] := {1, . . . , N}. Here, F denotes a suitable feature space. Most recognition
systems are based on so-called chroma features or pitch class profiles, which we discuss in
detail in Section 7.5. In the second step, using suitable pattern matching techniques, each
feature vector xn is mapped to a chord label λxn ∈ Λ, see Figure 7.1(d). Here, Λ denotes
a suitably defined set of all possible chord labels. In the following, we consider the case
that Λ consists of the twelve major and minor triads, i. e.,

Λ = {C, C♯, . . . , B, Cm, C♯m, . . . , Bm}. (7.1)

The restriction to these 24 chord classes, even though problematic from a musical point
of view, is often made in the chord labeling literature.

There are many ways of performing the pattern matching step. The first possibility is to
use template-based matching strategies [17, 64], a simple template-based labeling strategy
is described in Section 7.2. Currently, most chord labeling approaches employ hidden
Markov models (HMMs) which also account for the temporal context in the classification
stage [77, 86, 6, 40, 70]. In Section 7.4, we will summarize an HMM-based chord labeling
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procedure. Furthermore, more complex Bayesian networks have been suggested for chord
labeling [47].

After the pattern matching step, further post-filtering techniques are applied to smooth
out local misclassifications. In the case that HMMs are used, the pattern matching and
temporal filtering steps are jointly performed within one optimization procedure.

Even though numerous procedures for automated chord labeling have been described in
the literature, the delicate interplay of the various feature extraction, filtering, and pattern
matching components is still not sufficiently investigated and understood. The situation is
complicated by the fact that the components’ behavior may crucially depend on a variety
of parameters that allow for adjusting temporal, spectral, or dynamical aspects. In [65],
the influence of various aspects and parameters of a typical HMM-based chord recognizer
is investigated. In [6], a detailed investigation is described to better understand the inter-
relation of different chord labeling components with a focus on the impact of filtering and
pattern matching strategies. However, the impact of different feature extraction strategies
was not investigated being left for future work. In Section 7.6, we continue this strand of
research by analyzing the impact of various types of chroma features in the context of the
chord labeling task.

7.2 Template-Based Chord Labeling

One way to perform the pattern matching step, is to use a template-based labeling strategy.
Here, the idea is to pre-compute a set T ⊂ F of templates that correspond to the set of
chord labels. The elements of T are denoted by tλ ∈ T , λ ∈ Λ. Intuitively, each template
is given in the form of a kind of prototype chroma vector that corresponds to a specific
musical chord. Furthermore, we fix a distance measure d : F × F → R that allows for
comparing different chroma features. In the following, we use the cosine measure defined
by

d(x, y) = 1−
〈x|y〉

||x|| · ||y||
, (7.2)

for x, y ∈ F \ {0}. In the case x = 0 or y = 0, we set d(x, y) = 1. Here, ||·|| denotes the
Euclidean norm (also referred to as ℓ2-norm).

Then, the template-based chord recognition procedure consists in assigning the chord label
that minimizes the distance between the corresponding template and the given feature
vector x = xn:

λx := argmin
λ∈Λ

d(tλ, x). (7.3)

Note that this procedure works in a purely framewise fashion without considering any
temporal context.

There are several strategies for determining suitable chord templates based on musical
knowledge or learning procedures using labeled training data. In the following, we consider
binary templates and averaged templates. The set T b consists of 24 binary templates,
each of which being a 12-dimensional binary vector with three non-zero entries equal to
one. These non-zero entries correspond to the three chromas the corresponding chord
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is composed of. For example, the binary template corresponding to the major chord
C = {C,E,G} is given by

tb
C
= (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)T . (7.4)

Furthermore, the set T a consists of averaged templates, which are learned from training
material by averaging suitable chroma vectors obtained from labeled audio data. For
example, the averaged template ta

C
is obtained by averaging all chroma vectors from the

training set labeled as C.

The two template-based chord recognition approaches are denoted by Tb and Ta, respec-
tively.

7.3 Gaussian-Based Approach

Next, we introduce a chord recognition procedure based on Gaussian distributions. Here,
the chord templates are replaced by chord models each specified by a multivariate Gaussian
distribution given in terms of a mean vector µ and a covariance matrix Σ. As for the
averaged templates, µ and Σ are learned from labeled audio data. Then, the distance of a
given chroma vector to a chord model is expressed by a Gaussian probability value and the
assigned label is determined by the probability-maximizing chord model (instead of the
cost-minimizing chord template), see [6]. The Gaussian-based chord recognition approach
is denoted by GP.

7.4 HMM-Based Approach

Finally, we summarize an HMM-based chord recognition procedure, which was originally
suggested by Sheh and Ellis [77] and is now the most widely used chord labeling approach.
The strength of this approach is that HMMs also account for the temporal context in the
classification stage, which can be considered as a kind of context-aware filtering of the
matching results. To this end, in addition to the Gaussian models, one needs transition
probabilities that express the likelihood of passing over from one chord label to any of the
other chord labels. These probabilities are given by a transition matrix Ω ∈ [0, 1]24×24,
which can be specified manually based on musical knowledge or automatically by using a
training procedure reverting to suitable training material. For the labeling procedure, one
then needs a Viterbi decoding algorithm to determine a chord label sequence that jointly
maximizes the output probabilities defined by the Gaussian distributions and the transition
probabilities, see [77]. The determination of the transition matrix also plays a crucial role
in the chord recognition context and has been studied in various contributions [4, 6, 65].
In our experiments, we determine Ω using training data with annotated chord labels, see
Section 7.6.1. The HMM-based chord recognition approach is denoted by HMM.

The HMM-based approach employed in our experiments in Section 7.6 uses more general
graphical models. Since the focus of our evaluation lies on the feature side, we revert to a
basic variant. More advanced recognizers are introduced in [6, 47, 86].
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7.5 Feature Extraction

Chroma-based audio features, sometimes also referred to as pitch class profiles, are a well-
established tool in processing and analyzing music data [2, 18, 54] and were introduced
to the chord recognition task by Fujishima [17]. As already mentioned in Chapter 2, the
chroma correspond to the set {C,C♯,D, . . . ,B} that consists of the twelve pitch spelling
attributes as used in Western music notation, assuming the equal-tempered scale. A
chroma vector can be represented as a 12-dimensional vector x = (x(1), x(2), . . . , x(12))T ,
where x(1) corresponds to chroma C, x(2) to chroma C♯, and so on. Normalized chroma-
based features indicate the short-time energy distribution among the twelve chroma and
closely correlate to the harmonic progression of the underlying piece. This is the reason
why basically every chord recognition procedure relies on some type of chroma feature.

There are many ways for computing chroma features. For example, the transformation
of an audio recording into a chroma representation (or chromagram) may be performed
either by using short-time Fourier transforms in combination with binning strategies [2] or
by employing suitable multirate filter banks [54]. Furthermore, the properties of chroma
features can be changed by introducing suitable post- and pre-processing steps modifying
spectral, temporal, and dynamical aspects. This leads to a large number of feature types
which can behave quite differently depending on the subsequent analysis task. In this
section, we summarize the types of chroma features that will be used in the subsequent
experiments in Section 7.6. Note that there are many more chroma variants. However,
our selection covers interesting variants that demonstrate the importance of the feature
extraction step.

7.5.1 Pitch Features

As basis for the chroma feature extraction, we first decompose a given audio signal into
88 frequency bands with center frequencies corresponding to the pitches A0 to C8 (MIDI
pitches p = 21 to p = 108). For deriving this decomposition, we use a multirate filter
bank consisting of elliptic filters as described in [54]. Then, for each subband, we compute
the short-time mean-square power (i. e., the samples of each subband output are squared)
using a rectangular window of a fixed length and an overlap of 50 %. In the following,
we use a window length of 200 milliseconds leading to a feature rate of 10 Hz (10 features
per second). The resulting features, which we denote as Pitch, measure the local energy
content of each pitch subband and indicate the presence of certain musical notes within
the audio signal, see [54] for further details. To account for tuning problems, we employ a
tuning strategy similar to [18]. To this end, one computes an average spectral vector and
estimates the tuning deviation parameter from the maximum spectral coefficient. This
tuning deviation parameter is then used to suitably shift the center frequencies of the
subband-filters of the above multirate filter bank. A similar approach is described in [58].
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7.5.2 CP Feature

From the Pitch representation, one can obtain a chroma representation by simply adding
up the corresponding values that belong to the same chroma. To archive invariance in
dynamics, we normalize each chroma vector with respect to the Euclidean norm. The
resulting features are referred to as Chroma-Pitch denoted by CP.

7.5.3 CLP Features

To account for the logarithmic sensation of sound intensity [43, 90], one often applies
a logarithmic compression when computing audio features [32]. To this end, the local
energy values e of the pitch representation are logarithmized before deriving the chroma
representation. Here, each entry e is replaced by the value log(η·e+1), where η is a suitable
positive constant. Then, the chroma values are computed as explained in Section 7.5.2.
The resulting features, which depend on the compression parameter η, are referred to as
Chroma-Log-Pitch denoted by CLP[η].

7.5.4 CENS Features

Adding a further degree of abstraction by considering short-time statistics over energy
distributions within the chroma bands, one obtains CENS (Chroma Energy Normalized
Statistics) features, which constitute a family of scalable and robust audio features. These
features have turned out to be very useful in audio matching and retrieval applications [62,
38]. In computing CENS features, a quantization is applied based on logarithmically
chosen thresholds. This introduces some kind of logarithmic compression similar to the
CLP[η] features. Furthermore, these features allow for introducing a temporal smoothing.
Here, feature vectors are averaged using a sliding window technique depending on a window
size denoted by w (given in frames) and a downsampling factor denoted by d, see [54] for
details. In the following, we do not change the feature rate and consider only the case
d = 1 (no downsampling). Therefore, the resulting feature only depends on the parameter
w and is denoted by CENS[w].

7.5.5 CRP Features

To boost the degree of timbre invariance, a novel family of chroma-based audio features
has been introduced in [56]. The general idea is to discard timbre-related information
in a similar fashion as pitch-related information is discarded in the computation of mel-
frequency cepstral coefficients (MFCCs). Starting with the Pitch features, one first applies
a logarithmic compression and transforms the logarithmized pitch representation using a
DCT. Then, one only keeps the upper coefficients of the resulting pitch-frequency cepstral
coefficients (PFCCs), applies an inverse DCT, and finally projects the resulting pitch vec-
tors onto 12-dimensional chroma vectors. These vectors are referred to as CRP (Chroma
DCT-Reduced log Pitch) features. The upper coefficients to be kept are specified by a
parameter p ∈ [1 : 120]. In our experiments, we use p = 55. Furthermore, similar to
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the CENS[w] features, we apply temporal smoothing by introducing a window parameter
w that is used to average the CRP features in a band-wise fashion. The resulting features
are denoted by CRP[w].

7.5.6 CISP Features

Finally, we use a chroma type, where the tonal components are enhanced and the spec-
tral resolution is increased by considering instantaneous frequencies. These features were
originally introduced by Ellis and have been used in the chord recognition context as
well as for cover song identification [12]. The basis for these features is a spectrogram.1

To enhance the spectral resolution, the instantaneous frequency for each coefficient is
estimated exploiting the phase information. Furthermore, based on the instantaneous fre-
quencies, a separation of noise and harmonic components is performed and only harmonic
components are preserved. Finally, to account for tuning deviations, the mapping of spec-
tral coefficients to chroma bins is globally adjusted by up to ±0.5 semitones to minimize
the deviations of the instantaneous frequency values from the chroma bin centers using a
histogram-based technique. To obtain the final features, denoted by CISP, adjacent frames
are averaged in 100 ms windows to yield a feature rate of 10 Hz.

7.6 Importance of Features

In this section, we examine the behavior of the four chord labeling procedures described
in Section 7.2, 7.3, and 7.4 in dependence on the underlying feature types. We start by
describing the experimental setup (including the data collection and evaluation measure)
in Section 7.6.1 and then report on the experiments in Section 7.6.2.

7.6.1 Experimental Setup

In our experiments, we use a collection of Beatles songs, which is a widely used benchmark
dataset with publicly available ground-truth chord annotations [46]. Although this dataset
is limited to only one artist, the results still show certain tendencies of the chord recognition
accuracies. The collection, which we denote as D, consists of 180 songs. We further
partition D into three sub-collections Dk, k ∈ {1, 2, 3}, by first ordering the recordings
alphabetically according to the songs’ titles, and then by putting the first 60 recordings
into D1, the second 60 recordings into D2, and the last 60 recordings into D3.

The original annotations supplied by Harte [27] were reduced to the 24 chord labels follow-
ing the widely spread convention of the MIREX Audio Chord Estimation task [52]. Here,
only the first two intervals of each chord are considered, where augmented chords are
mapped to major chords and diminished chords to minor chords. In some cases, there are

1In our experiments, we use an implementation available in the ISP toolbox http://kom.aau.dk/

project/isound/. Here, discrete Fourier transforms are calculated over windowed frames of length 93 ms
with 75% overlap. Consequently, each frame corresponds to 23 ms of the audio and each coefficient covers
a frequency range of 10.8 Hz.

http://kom.aau.dk/project/isound/
http://kom.aau.dk/project/isound/
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passages where no meaningful chord information exists. Such regions are annotated as “N”
and are left unconsidered in our evaluation (i. e., having no influence on the recognition
accuracy).

In our evaluation, we first quantize and segment the chord annotations to match the frames
being specified by the feature extraction step. The evaluation is then performed framewise
using standard precision and recall measures by comparing the automatically generated
labels with the reference labels. More precisely, a reference label is considered correct (C)
if it agrees with the computed label, otherwise it is called a false negative (FN). Each
incorrectly computed label is called a false positive (FP), see also Figure 7.1(d). From this
one obtains precision, recall, and F-measure defined by

P =
C

C+ FP
, R =

C

C + FN
, F =

2 · P · R

P + R
(7.5)

for each song.

In our evaluation, we employ a 3-fold cross validation. Here, two of the three sub-
collections are used to train the recognizer that is then tested on the remaining one.
F-measure values are averaged over all songs of the respective sub-collection Dk. The
final F-measure for the overall dataset D is the mean of the values obtained for the three
sub-collections.

For determining the averaged templates to be used in Ta as well as µ and Σ to be used
in GP and HMM, we revert to the observation by Goto [19] that the twelve cyclic shifts of a
12-dimensional chroma vector correspond to the twelve possible transpositions. Therefore,
exploiting the reference chord labels, we first transpose all chroma features to C or Cm, then
determine the models for these two chords, and finally obtain models for all 24 chords by
suitably transposing the C and Cm models. This procedure guarantees the same amount
of training data for all major and minor chords, respectively. To generate the transition
matrix Ω, we first determine for each frame the corresponding reference label. Then, for all

λi, λj ∈ Λ we define the transition probabilities Ω(λi, λj) =
C(λi,λj)∑

λk∈Λ C(λi,λk)
. Here, C(λi, λj)

specifies the number of chord transitions from label λi to the label λj , and
∑

λk∈Λ
C(λi, λk)

serves as a normalization counting the transition from λi to all labels λk ∈ Λ including
itself.

7.6.2 Dependency on Feature Type

In the following experiment, the dependency of the chord recognition results on the un-
derlying feature type is investigated. Figure 7.2 summarizes the results of the evaluation
for the five different feature types in combination with the four recognizers. In this exper-
iment, we use the compression parameter η = 100 for CLP[η] and the window parameters
w = 1 and w = 11 for CENS[w] and CRP[w].

To better understand the influence of the 3-fold cross validation used in our experiments,
Figure 7.2(a)-(c) shows the recognition accuracies for the three folds independently. Aver-
aging over the results of the three folds, one obtains the final results of the cross validation
shown in Figure 7.2(d). The F-measure values for the different parts of D are very consis-
tent, e. g., using CP together with HMM leads to F = 0.531 for D3 (Figure 7.2(a)), F = 0.528
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(a) Tb Ta GP HMM
CP 0.449 0.427 0.434 0.531
CLP[100] 0.540 0.607 0.616 0.716
CENS[1] 0.458 0.435 0.439 0.581
CENS[11] 0.534 0.552 0.562 0.633
CRP[1] 0.523 0.573 0.573 0.708
CRP[11] 0.607 0.659 0.661 0.712
CISP 0.426 0.482 0.505 0.707

(b) Tb Ta GP HMM
CP 0.476 0.416 0.423 0.528
CLP[100] 0.566 0.610 0.612 0.720
CENS[1] 0.474 0.425 0.420 0.588
CENS[11] 0.565 0.557 0.567 0.650
CRP[1] 0.532 0.592 0.591 0.729
CRP[11] 0.615 0.676 0.678 0.733
CISP 0.436 0.484 0.501 0.721

(c) Tb Ta GP HMM
CP 0.456 0.412 0.408 0.522
CLP[100] 0.552 0.613 0.618 0.738
CENS[1] 0.441 0.430 0.413 0.583
CENS[11] 0.540 0.552 0.543 0.631
CRP[1] 0.529 0.583 0.577 0.711
CRP[11] 0.615 0.665 0.657 0.714
CISP 0.425 0.480 0.490 0.713

(d) Tb Ta GP HMM
CP 0.460 0.418 0.421 0.527
CLP[100] 0.553 0.610 0.615 0.725
CENS[1] 0.458 0.430 0.424 0.584
CENS[11] 0.546 0.554 0.557 0.638
CRP[1] 0.528 0.583 0.581 0.716
CRP[11] 0.612 0.667 0.665 0.720
CISP 0.429 0.482 0.499 0.714

(e)

   CP   CLP[100] CENS[1] CENS[11]  CRP[1]  CRP[11]   CISP  
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Figure 7.2. Dependency of recognition rate on feature type using (a): Training: D1 ∪ D2, Test:
D3, (b): Training: D1 ∪ D3, Test: D2, (c): Training: D2 ∪ D3, Test: D1, and (d): 3-fold cross
validation on D (averaged over (a),(b) and (c)). (e): Visual representation of (d).

for D2 (Figure 7.2(b)), F = 0.522 for D1 (Figure 7.2(c)), and in average F = 0.527 for
the entire dataset D (Figure 7.2(d)). This indicates that the partition and selection of
training and testing data only has a marginal influence on the overall chord recognition
results for this particular dataset.

In the following experiments, we only revert to the average values of the cross validation.
As Figure 7.2(d) reveals, the chord recognition accuracies depend on the complexity of
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the respective recognizer. For example, in the case of CLP[100], one obtains an F-measure
value of F = 0.553 for the basic binary template-based method Tb. Considering training
data to learn averaged templates, the accuracy of Ta is increased to F = 0.610. Further
adding covariance information as used in GP gives only slight improvements (F = 0.615).
However, when using the most advanced method HMM one gets the highest accuracy of
F = 0.725. The reason for this is that HMM introduces a context-aware smoothing in the
classification stage. Considering the temporal context of chords leads to better results in
comparison to the methods working in a purely framewise fashion.

Our results also reveal that the chord recognition quality substantially depends on the used
feature type and implementation details. For example, using the most basic feature CP

results in very low F-measure values (e. g., F = 0.527 for CP with HMM) regardless of which
recognizer is used. However, simply applying a logarithmic compression enhancing weaker
components of the feature leads to a significant increases in F-measure (e. g., F = 0.725
for CLP[100] with HMM).

CENS[1] shows a very similar behavior as CP (w = 1 actually disables the temporal smooth-
ing on the feature side). This indicates that the internal quantization of these features
is not beneficial for chord recognition. However, when applying a temporal smoothing
by setting the window parameter w = 11 (corresponding to one second) the recognition
accuracy significantly increases for all recognizers. This effect is even noticeable for HMM
which already involves a smoothing in the classification step (F = 0.584 for CENS[1] and
F = 0.638 for CENS[11]).

CRP[1] is designed to boost timbre invariance. These features already incorporate an
internal logarithmic compression leading to similar results as for CLP[100] (F = 0.716 for
CRP[1] with HMM). Further adding temporal smoothing on the feature side, the F-measure
increases to F = 0.720 for CRP[11] with HMM. In particular, these features lead to high F-
measures, even in the case of the simple framewise recognizers (e. g., F = 0.612 in the case
of Tb). Here, a carefully designed feature seems to lessen the influence of the recognizer
on the chord recognition accuracy, see also Figure 7.2(e) for a visual representation of the
recognition results.

CISP attempts to emphasize harmonic components of the signal. This should improve the
chord recognition quality for all recognizers. However, in practice, CISP shows a special
behavior. On the one hand, using CISP results in high F-measure values in combination
with HMM (F = 0.714). On the other hand, combining CISP features with any of the
framewise recognizers Tb, Ta, and GP results in very low F-measure values (e. g., F = 0.429
for Tb). Here, one reason is that for this feature type the intensities of chroma bands
corresponding to chord notes are only slightly more pronounced than those corresponding
to non-chord notes. In general, the ratio of chroma intensities of chord notes to those
of non-chord notes seems to have a large influence on the chord recognition results. In
particular the frame-wise recognizers tend to be very sensitive to this ratio. Here, high
ratios (as in CP and CENS[w]) as well as low ratios (as in CISP) lead to poor recognition
results. HMM, however, is able to compensate for the low intensity ratios of CISP, but not
for the high intensity ratios of CP and CENS[w], see Figure 7.2(e).

The results of the experiments discussed in this section show that the choice of the chroma
feature has a significant influence on the different recognition procedures. Even the most



7.7. IMPORTANCE OF TUNING 67

advanced recognizer HMM has a substantial dependence on the underlying feature type.
Note that using an HMM-based recognizer in combination with a poor choice of chroma
feature leads to results of lower quality than using a basic recognizer with a good feature
(e. g., F = 0.527 for HMM with CP but F = 0.553 for Tb with CLP[100]). In particular, a
logarithmic compression of the intensities as well as a temporal smoothing on the feature
side have a beneficial effect, regardless of the recognizer used.

7.7 Importance of Tuning

The tuning in Western Music typically uses the equal-tempered scale, where the octave
is divided into 12 equal semitones. Here, the pitch reference for the tuning is the concert
pitch, which is set at 440 Hz and corresponds to A4. However, the exact setting of the
concert pitch depends on the performing ensemble and may vary greatly. For example,
in historical recordings often a lower tuning is used. Here, the concert pitch may range
between 440 Hz and 415 Hz. However, modern orchestras tend to use a higher concert
pitch ranging between 440 and 444 Hz. As a consequence, for the extraction of harmonic
content from audio recordings it may be of great importance to consider the aspect of
tuning in the chord labeling procedure.

In the following section, we conduct a simple brute-force baseline experiment to investigate
the role of tuning in the context of chord labeling. Based on a template-based chord labeler
as described in 7.2, we perform the chord labeling task by using different versions of chroma
features. In addition to the twelve possible cyclic chroma shifts we use six differently shifted
pitch filter banks to account for the fractional semitone shifts 0, 0.25, 0.33, 0.5, 0.67, 0.75, for
a description of the original filter bank see [54]. Here, using a shifted filterbank simulates
a retuning of the audio. Altogether, this amounts to 72 chroma feature versions sampling
the space of the chromatic scale. A similar strategy has been used e. g. by Gómez [18]
when using 24-bin or 36-bin pitch class profiles.

Performing a frame-wise evaluation on the Beatles dataset D consisting of 180 songs
(described in Section 7.6.1) we compute F -measures for the chord labeling task for all of
the resulting 72 chroma versions. Then, we consider the chroma version which maximizes
the F -measure. Table 7.1 shows the chord labeling results for eight selected songs as well as
in average for all 180 songs. Here, Forig refers to the F -measure using the original chroma
features, whereas Ftune refers to the best possible F -measure. Furthermore, Tune indicates
the optimal tuning difference in semitones of the audio relative to the annotations using
a suitably shifted filter bank. For example, for the song Lovely Rita the tuning difference
amounts to 0.67 semitones according to our computations. As Table 7.1 shows, balancing
out tuning deviations has a strong impact on the chord labeling result. For example, for
the song Lovely Rita the F -measure amounts to only 3% using the original filter bank,
whereas it amounts to 64.2% using a shifted filter bank of 0.67 semitones. Figure 7.3
shows the visualization of the chord labeling result for the beginning of this song. Here,
on top the original chroma features are used, whereas on the bottom the shifted pitch
filter bank is used. The visualizations clearly show that in the beginning of this song using
the original filter bank almost all chords are misclassified, whereas using the shifted filter
bank most of the chords are correctly classified.
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Figure 7.3. Visualization of the chord labeling result for the beginning of the Beatles song Lovely
Rita. (a) Using the original filter bank, (b) Using a shifted pitch filter bank of 0.67 semitones.

Song Tune Forig Ftune

Lovely Rita 0.67 0.030 0.642
Strawberry Fields Forever 0.25 0.519 0.547
Wild Honey Pie 0.50 0.078 0.366
Ticket To Ride 0.25 0.361 0.604
Another Girl 0.67 0.181 0.446
Boys 0.33 0.304 0.434
You’ve Got To Hide Your Love Away 0.33 0.577 0.704
Do You Want To Know A Secret 0.50 0.346 0.503
Average 0.300 0.531

Average (180 Songs) 0.526 0.559

Table 7.1. Importance of balancing out tuning deviations in the context of chord labeling. The
table shows F -measures for eight selected Beatles songs, in average, and in average for all 180
songs in the dataset. Here, Forig refers to the F -measure using original chroma features and FTune

to the maximal F -measure using a shifted pitch filter bank. Tune indicates the optimal tuning
difference in semitones of the audio relative to the annotations using a suitably shifted filter bank.

In Summary, balancing out the tuning deviations leads to an increase of the F -measure
from 30% to 53.1% in average for the eight selected songs. Averaging over all 180 songs
the F -measure increases by 3%. Note, that the above described experiment is really brute-
force so that we do not focus on the absolute F -measure values. However, our experiments
highlight the importance of a global re-tuning in the context of chord labeling. Considering
only integer semitone shifts one may get poor F -measures throughout all shifts so that
the consideration of fractional shifts is indispensible.



Chapter 8

Cross-Version Harmonic Analysis

The evaluation of chord labeling procedures is typically performed on large audio collec-
tions where the automatically extracted chord labels are compared to manually generated
ground truth annotations. Here, a piece to be analyzed is typically represented by an au-
dio recording produced under certain recording conditions, played on specific instruments
and characterized by the individual styles of the musicians. As a consequence, the ob-
tained chord labeling results are strongly influenced by version-dependent characteristics.
Another major problem arises from the fact that audio-based recognition results refer to
the physical time axis in seconds of the considered audio recording, whereas score-based
analysis results obtained by music experts refer to a musical time axis given in bars. This
simple fact alone makes it often difficult to get musicologists involved into the evaluation
process of audio-based music analysis.

In this chapter, we introduce a cross-version approach, which uses synchronization tech-
niques to analyze the harmonic properties of several audio versions synchronously. Here,
the idea is to overcome the strong dependency of chord labeling results on a specific version.
In particular, it turns out that consistencies across several versions indicate harmonically
stable passages in the piece of music, whereas inconsistencies indicate version-dependent
characteristics. Furthermore, we describe how to transform the time axis of analysis re-
sults obtained from audio recordings to a common musical time axis given in bars. This
not only facilitates a convenient evaluation by a musicologist, but also allows for com-
paring analysis results across different recorded performances. Finally, we introduce a
powerful visualization, which reveals the harmonically stable passages on a musical time
axis specified in bars. The results of this chapter have been published in [34, 36].

The chapter is organized as follows. First, we present the cross-version framework (Sec-
tion 8.1). In our experiments (Section 8.2), we exemplarily investigate the harmonic
stability of consistently labeled passages. Furthermore, we demonstrate how the cross-
version visualization facilitates a better understanding of classification errors in the case
that score-based ground truth labels are provided by a music expert. Finally, we conclude
in Section 8.3.
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8.1 Cross-Version Framework

We now describe the cross-version chord labeling procedure shown in a schematic overview
in Figure 8.1. At this point, we emphasize that our approach is not meant to be of technical
nature, and we refer to [6, 47] for an overview of state-of-the-art chord labeling procedures.
Instead, we introduce a simple yet powerful paradigm which exploits the availability of
different versions of a given piece of music.

In the following, we first describe how synchronization procedures can be used to trans-
form the time axis of audio-based analysis results to a performance-independent musical
time axis (Section 8.1.1). Afterwards, we present the employed chord labeling procedure
(Section 8.1.2), introduce the concept of cross-version chord labeling (Section 8.1.3) and
illustrate the usefulness of our cross-version visualization by means of several music ex-
amples (Section 8.1.4). Finally, we describe an alternative procedure for transforming the
time axis of audio-based analysis results to a common musical time axis (Section 8.1.5).

8.1.1 Musical Time Axis

The alignment techniques described in Chapter 2 can be used to transform the time
axis of audio-based analysis results to a common musical time axis, see Figure 8.1 for
an overview. To this end, we assume that for a certain piece of music we are given a
MIDI representation of the musical score, where the MIDI time axis follows a musically
meaningful time axis in bars. Such a MIDI file can be obtained by automatically exporting
a score in computer-readable format, which in turn can be generated by applying OMR
(optical music recognition) software to scanned sheet music, see Figure 8.1a. Now, given an
audio recording of the same piece of music, one can apply music synchronization procedures
to establish temporal links between the timelines of the MIDI representation and the audio
version.

This linking information allows for transferring bar or beat positions from the MIDI time-
line to corresponding time positions (given in seconds) of the audio timeline. Then, the
audio timeline can be partitioned into segments each corresponding to e. g. one musical
beat or bar. Based on this musically meaningful segmentation, beat- or bar-synchronous
audio features can be determined. Here, each feature vector corresponds to a musically
meaningful time unit that is independent of the respective recorded performance. We will
use such synchronized features to directly compare the chord labeling results across the
different versions.

An alternative procedure for transforming the time axis of audio-based analysis results to
a common musical time axis is described in 8.1.5. This procedure allows for transferring
annotations and chord labels from the score domain to the audio domain and vice versa.
Using music synchronization techniques, the general idea is to locally warp the annotations
of all given data streams onto a common time axis, which then allows for a cross-domain
evaluation of the various types of chord labels.
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Figure 8.1. Schematic overview of the employed cross-version framework. Here, the beginning
of Beethoven’s Fifth (bb. 1-13) is used as an example. (a) Export of the score to a neutral MIDI
representation. Here, the score corresponds to a piano reduction of Beethoven’s Fifth. (b) Visual-
ization of the automatically derived chord labels for a specific audio recording. The time axis in
bars is obtained by synchronizing the audio recording with the MIDI representation. The horizon-
tal black lines in the visualization represent the bassline extracted from the MIDI representation.
(c) Cross-version visualization (38 different audio recordings). The horizontal black lines in the
visualization represent the bassline extracted from the MIDI representation.

8.1.2 Chord Labeling

The chord labeling is then performed on the basis of the synchronized chroma features,
where we furthermore apply a tuning estimation to balance out possible deviations of the
performances from standard tuning [18, 47]. Note that numerous chord labeling procedures
have been described in the literature. State-of-the-art chord recognizers typically employ
statistical models such as hidden Markov models [40, 77, 86] or more general graphical
models [47] to incorporate smoothness priors and temporal continuity into the recognition
process, see Chapter 7. Since the respective chord labeling procedure is not in the focus of
this chapter, we use a basic template-based chord labeling procedure [17] as described in
Section 7.2, which better illustrates the kind of information that is enhanced and stabilized
by our cross-version strategy. However, note that more complex chord recognizers can be
used instead.
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In the following, we consider 24 chord categories comprising the twelve major and the
twelve minor chords, following the conventions as used for MIREX 2011 [53]. Let Λ
denote the set of these 24 categories, then for each λ ∈ Λ we define a binary template tλ
that corresponds to the respective chord. The template-based chord labeling procedure
consists in assigning to each frame (here, exemplarily, we use a bar-wise frame level) the
chord label that minimizes a predefined distance d (in our implementation, we use the
cosine distance) between the corresponding template and a given feature vector referred
to as x:

λx := argmin
λ∈Λ

d(tλ, x). (8.1)

As result, we obtain for each audio version a sequence of automatically extracted bar-wise
chord labels. Figure 8.1b shows the automatically extracted chord labels for a specific
audio recording of the first 13 bars of Beethoven’s Symphony No. 5, Op. 67, the so-called
Beethoven’s Fifth. The vertical axis represents the 24 chord categories, where major and
minor chords with the same root note are visualized next to each other. Capital letters
correspond to major chords, whereas lower case letters correspond to minor chords. The
horizontal axis represents the time axis given in bars. The automatically derived chord
labels are shown in red, e. g., the chord label for bar 1 corresponds to G major, whereas the
chord label for bar 2 corresponds to E♭ major. As the bassline of a harmonic progression
plays an important role for the understanding of harmonic structures, we have visualized
it as an additional information in the middle of the corresponding major and minor chord
having the bassline as root note. The bassline is automatically extracted from the MIDI
representation by determining the lowest of all present MIDI notes at every point in time.

8.1.3 Cross-Version Chord Labeling

As previously mentioned, the chord labeling results not only depend on the piece of music
but also on the acoustic and artistic characteristics of the specific audio recording. To
alleviate the dependence on such characteristics, one can exploit the fact that for classical
pieces of music usually many different recorded performances exist. Here, our idea is to
perform the chord labeling across several versions of a given piece of music and then to
resolve the dependency of the chord labels on a specific version by using some kind of
late-fusion strategy. Since the automatically extracted chord labels for the different per-
formances are given bar-wise, one can overlay the performance-specific chord labels for all
considered recorded performances resulting in a cross-version visualization. Figure 8.1c
shows a cross-version visualization for the beginning of Beethoven’s Fifth (bb. 1-13), where
38 different performances are considered. The color-scale ranging from bright yellow to
dark red indicates the degree of consistency of the chord labels across the various perfor-
mances, where red entries point to consistencies and yellow entries to inconsistencies. For
example, bar 2 is labeled highly consistently, whereas bar 3 is labeled inconsistently across
the considered performances.

In this way, the cross-version visualization directly reveals chord label consistencies and
inconsistencies across the different performances giving a deeper insight into the chord
labeling procedure as well as the underlying music material. As we will show, consistently
labeled passages generally correspond to harmonically stable passages, which are clearly
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dominated by a certain key. In some cases, consistencies may also point to consistent
misclassifications which might be taken as an indicator for inadequacies of the underlying
chord labeling model. For example, considering only 24 major and minor chords, it is
obvious that more complex chords such as, e. g., diminished chords can not be captured. In
contrast, inconsistencies generally point to harmonically instable passages or ambiguities
in the underlying music material. For example, incomplete chords as well as additional
notes such as trills, appoggiaturas or suspended notes lead to chord ambiguities causing
an inconsistent labeling across the different performances.

8.1.4 Examples

To illustrate our cross-version approach, we now discuss some real-world music examples.
We first refer to the introductory bars of Beethoven’s Fifth (see Figure 8.1). Figure 8.1b
shows the visualization of the automatically derived chord labels for a specific audio record-
ing. Following the time axis in bars, the visualization allows for a direct comparison to
the score. As the score reveals the first five bars (bb. 1-5) do not contain complete triads.
Instead, the characteristic “fate motif” appears, which is presented in octaves in unison.
The visualization shows that the automatically derived chord labels for these introductory
bars, aside from bar 3, are meaningful in the sense that they represent chords having the
presented note of the respective bar as root note. However, in bar 3, where f is played
in unison, E♭ major is detected. This might be an indicator for inaccuracies in the syn-
chronization since the previous bar (b. 2) is dominated by the note e♭. The same problem
appears in bar 6. Bars 7-10 are then labeled as C minor. A closer look at the score reveals
that in this passage (bb. 8-10) C minor is clearly present. However, in the beginning of this
passage (b. 7) C minor with suspended sixth (a♭) leads into the C minor chord (bb. 8-10).
In fact, C minor with suspended sixth corresponds to the notes of A♭ major. However, the
suspended sixth (a♭) is played in a very soft way in the considered recording, which might
be the reason for the detection of C minor. Bars 11-13 then are labeled in a meaningful
way as G major.

The cross-version visualization (Figure 8.1c) now directly reveals consistently and incon-
sistently labeled passages. For example, one observes the following highly consistently
labeled passages, which may correspond to harmonically stable passages: bars 1-2, 4-5
and 8-13. As previously described, bars 1-2 and 4-5 refer to the fate motif in unison,
thus not containing complete triads. These bars are now consistently labeled as a chord
having the respective note of the considered bar as root note. Comparing bars 8-13 to the
score shows that they indeed correspond to passages being clearly dominated by a certain
harmony. Bars 8-10 are consistently labeled correctly as C minor reflecting the harmonic
stability of this passage, which is clearly dominated by a C minor triad. Similarly, bars
11-13 are correctly identified by the visualization as harmonically stable, being dominated
by G major. In contrast, one directly observes that bar 3 is labeled inconsistently. This
inconsistent labeling may be due to local inaccuracies in the underlying synchronization
procedure. For a larger amount of recordings this bar is labeled as F major (or as E♭ major)
having as root the note presented in unison in this bar (or in the previous bar). In fact,
bar 3 was already misclassified as E♭ major considering a single audio recording before.
The cross-version visualization now clearly identifies this bar to be problematic in view
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Figure 8.2. Cross-version visualization for Beethoven’s Fifth (bb. 40-47). Here, 38 different
audio recordings are considered. Left: Cross-version visualization of the automatically derived
chord labels. Right: Cross-version visualization, where the automatically derived chord labels are
overlayed with score-based ground truth chord labels.

of the underlying synchronization procedure. Finally, bar 7 attracts attention since it is
labeled for approximately half of the recordings as C minor and as A♭ major for the other
half. Here, C minor with suspended sixth (a♭) is present, which indeed sounds equivalently
to A♭ major. Since the suspended a♭ is usually played in a soft way, for many recordings
(including the previously discussed specific recording) this bar is misclassifed as C minor.
However, the cross-version visualization shows that for the largest part of recordings this
bar is correctly classified (with regard to the sound) as A♭ major.

As the previously discussed example shows, ground truth data is not necessarily needed to
derive valuable information from the cross-version visualization concerning the employed
chord labeling procedure as well as the underlying music material. However, assuming
the case that score-based ground truth labels are provided by a trained musician, this
information can be easily incorporated into our cross-version approach, see Figure 8.2. In
this way, errors (deviations from the ground truth) can be subdivided into errors being
specific to a certain audio version (inconsistent misclassifications) and errors independent
of a specific version (consistent misclassifications). While inconsistent misclassifications
may point to ambiguities in the underlying music material, consistent misclassifications
may point to inadequacies in the underlying chord labeling framework.

We now exemplarily show how the cross-version visualization may serve as a useful tool, in
the case that score-based ground truth labels are provided. The ground truth annotation
has been generated by a music expert on the bar-level using the shorthands and conven-
tions proposed by Harte et al. [27], see Section 8.2.1. Figure 8.2 shows the cross-version
visualization for a different excerpt of Beethoven’s Fifth (bb. 40-47). On the left, the pre-
viously introduced visualization is shown, where the automatically derived cross-version
chord labels are visualized without considering ground truth chord labels. On the right,
an extension of this cross-version visualization is presented, where the cross-version chord
labels are compared to score-based ground truth labels. In this visualization we now dis-
tinguish two different color scales: one color scale ranging from dark blue to bright green
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and the previously introduced color scale ranging from dark red to yellow. The first color
scale from blue to green serves two purposes. Firstly, it encodes the score-based ground
truth chord labels. Secondly, it shows the degree of consistency between the automatically
generated audio labels and the score labels. For example, the dark blue entries in bars
44-47 show, that a C minor chord is specified in the score-based ground truth labels, and
all automatically derived chord labels coincide with the score label here. In contrast, the
bright green entry in bar 40 shows that the score-based chord label corresponds to Fminor,
but most of the automatically derived chord labels differ from the score label, specifying a
C major chord. Analogously, the second color scale from dark red to yellow also fulfills two
purposes. Firstly, it encodes the automatically derived chord labels that differ from the
score-based labels. Secondly, it measures the universality of an error. For example, in bars
44-47 there are no red or yellow entries, since the score-based labels and the automatically
derived labels coincide here. However, in bar 40 most automatically derived chord labels
differ from the score-based labels. Here most chord labels specify a C major chord.

8.1.5 Procedure for Transferring Annotations

In Section 8.1.1 we have described how to transform the time axis of audio-based analysis
results to a common musical time axis using beat- or bar-synchronous features. In the
following, we present an alternative procedure, which allows for transferring annotations
and chord labels from the score domain to the audio domain and vice versa. Here, we first
compute the chord annotations on the physical time axis in seconds of the respective audio
version before applying synchronization procedures to transform the time axis by locally
warping all computed chord annotations of the several audio versions onto a common
musical time axis, see Figure 8.3.

Therefore, we assume that we are given a MIDI representation of the musical score, where
the MIDI time axis follows a musically meaningful time axis in bars. Additionally, chord
labels manually annotated by a trained musician on the basis of a score are given as
well as labels automatically derived from the audio recording via some computer-based
method. In the first step, we derive CENS features from the MIDI as well as from the
audio, say X := (x1, x2, . . . , xN ) and Y := (y1, y2, . . . , yM ), respectively. Since each CENS
feature corresponds to a time frame, we can also create two binary chord vector sequences,
A := (A1, . . . , AN ) and B := (B1, . . . , BM ), which encode the given chord labels in a
framewise fashion. Here, An, Bm ∈ {0, 1}d for n ∈ [1 : N ] and m ∈ [1 : M ]. The constant
d equates the number of considered chords, in our case d = 24, since we consider in the
following only the 24 major and minor chords. A value of one in a vector component
encodes the chord prevalent in the corresponding time frame. Using the first four bars of
Chopin’s Mazurka Op. 68 No. 3 as an example, we illustrate the sequences A for the score
and B for the audio in Figure8.3(b) and 8.3(c), respectively. Note that in Figure8.3(b)
the time is expressed in terms of bars, while in Figure8.3(c) the time is given in seconds.
This different notion of time prevents a comparison of A and B at this point.

The next step consists of synchronizing the two CENS features sequences X and Y as
mentioned in Section 2. The resulting alignment path p = (p1, . . . , pL) encodes temporal
correspondences between elements of X and Y . Following the same time frame division,
the alignment path also encodes correspondences between the sequences A and B. Using
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Figure 8.3. Various chord annotations visualized for the Chopin Mazurka Op. 68 No. 3 (F
major), bars 1-4. (a) Score. (b) Score-based ground truth chord labels. (c) Automatically derived
audio chord labels (physical time axis). (d) Warped audio chord labels (musical time axis). (e)
Overlayed score and audio chord labels. (f) Cross-version visualization, where the automatically
derived audio chord labels for 51 different recorded performances are overlayed with score-based
ground truth chord labels.
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this linking information, we locally stretch and contract the audio chord vector sequence
B according to the warping information supplied by p. Here, we have to consider two
cases. In the first case, p contains a subsequence of the form

(n,m), (n + 1,m), . . . , (n+ ℓ− 1,m)

for some ℓ ∈ N, i. e., the ℓ score-related vectors An, . . . , An+ℓ−1 are aligned to the single
audio-related vector Bm. In this case, we duplicate the vector Bm by taking ℓ copies of
it. In the second case, p contains a subsequence of the form

(n,m), (n,m+ 1), . . . , (n,m+ ℓ− 1)

for some ℓ ∈ N, i. e., the score-related vector An is aligned to ℓ audio-related vectors
Bm, . . . , Bm+ℓ−1. In this case, we replace the ℓ vectors by the vector Bm+⌊ℓ/2⌋. The
resulting warped version of B is denoted by B̄. Note that the length of B̄ equals the
length N of A, see Figure 8.3(d). For the visualization we set all vectors in B̄ to 0,
where no groundtruth chord label is available, as for example in the middle of bar 4, see
Figure 8.3(d).

Overall, we have now converted the physical time axis of the audio chord vector sequence
B to the musically meaningful bar axis, as used for A. Finally, we can visualize the
differences between the score-based and the audio-based chord labels by overlaying A and
B̄, see Figure 8.3(e). Blue entries now indicate areas, where the ground truth labels and
the audio chord labels coincide. On the contrary, green and red encode the differences
between the chord labels. Here, green entries correspond to the ground truth chord labels
derived from the score, whereas red entries correspond to the audio chord labels. For
example, at the beginning of bar 2 the score as well as the audio chord labels indicate a C

major chord. On the contrary, at the end of bar 2 there is a C major chord specified in the
score, while the chord labels derived from the audio incorrectly specify an A minor chord.

In Figure 8.3(f) the cross-version visualization for the first four bars of the Chopin Mazurka
is represented. Here, we warped the automatically generated chord labels for 51 different
audio recordings onto the musical time axis using the steps described above. By over-
laying the resulting chord vector sequences B̄ for all versions, we obtain a cross-version
visualization as introduced in 8.1.3.

8.2 Experiments

In the following, we first describe the score-based ground truth annotations used in our ex-
periments (Section 8.2.1). Based on several music examples, we then discuss the harmonic
stability of consistently labeled passages in the cross-version visualization (Section 8.2.2).
Finally, we demonstrate how the visualization may be used for an in-depth analysis of
chord recognition errors (Section 8.2.3).

8.2.1 Annotations

For the cross-version evaluation we manually annotated the chords for the following four
pieces of Western classical music: Chopin’s Mazurka Op. 68 No. 3, Bach’s Prelude in C
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major BWV 846, the first movement of Beethoven’s Fifth Symphony, Op. 67, and the
first movement of Beethoven’s Op. 27 No. 2, the so-called “Moonlight Sonata”. Using the
underlying score, the annotations were created on the beat-level, for Chopin’s Mazurka
even on a finer level. In the case of a bar-wise evaluation, the beat-wise given annotation is
transformed into a bar-wise annotation, by assigning to each bar the chord label existing
for more than half of the considered bar. In this context, bars for which no prevalent
chord label exists are left unannotated. The format and naming conventions used for the
annotation were proposed by Harte et al. [27]. The annotator paid much attention to
capture even slight differences between adjacent chords. Hence, the bass tone as well as
missing or added tones in chords are marked explicitly using the corresponding shorthands.
As we consider in the evaluation only the 24 major and minor chords, we have to map the
given chord labels to one of these 24 chords in a meaningful way. To this end, we employ
the interval comparison of the dyad, which was used in MIREX 2011 [53] and takes into
account only the first two intervals of each chord. Thus, augmented and diminished chords
are mapped to major and minor, respectively, as well as any other label having a major
or minor third as its first interval.

8.2.2 Harmonic Stability

By means of two music examples, we now exemplarily investigate the harmonic stabil-
ity of consistently labeled passages. As a first example, we choose again bars 40-47 of
Beethoven’s Fifth, which already served as example in Section 8.1.4. The cross-version
visualization of the automatically derived chord labels (see Figure 8.2, left) reveals two
highly consistently labeled passages: bar 43, labeled highly consistently as F minor, and
bars 44-47, which are labeled as C minor across all considered recorded performances.
Comparing to the score, bars 44-47 indeed turn out to be a harmonically stable passage
which is clearly dominated by C minor. Consequently, this highly consistently labeled
passage is labeled correctly, which is shown in the visualization, where the automatically
derived chord labels are compared to score-based ground truth labels (see Figure 8.2,
right). In contrast, bar 43 is labeled consistently as F minor (see Figure 8.2, left), but
comparing to the score one finds out that besides of an F minor chord two additional
notes (b and d) are contained in this bar, suggesting the dominant G major. Therefore, a
clear assignment of a triad is not possible on the bar level. This is also the reason that
there is no score-based label assigned to this bar in the ground truth annotation (see Fig-
ure 8.2, right). The remaining bars are labeled rather inconsistently indicating harmonic
instability or ambiguities in the underlying music material (see Figure 8.2, left). A closer
look at the score reveals that these bars are characterized by suspended notes on the first
beat. These additional notes which do not belong to the underlying chords are mainly
responsible for the inconsistent labeling. The comparison with the score-based ground
truth annotation reveals that for bars 40 and 41 indeed most of the automatically derived
chord labels differ from the ground truth annotation (see Figure 8.2, right).

Figure 8.4 shows the cross-version visualization for an excerpt of Bach’s Prelude BWV
846 in C major (bb. 11-15), where five different recorded performances are considered. The
visualization reveals 3 bars which are labeled correctly with high consistency (b. 11, b. 13,
and b. 15) and two bars, which are misclassified for most of the considered audio versions
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Figure 8.4. Cross-version visualization for Bach’s Prelude BWV 846 in C major (bb. 11-15). Here,
five different audio recordings are considered. Left: Cross-version visualization of the automat-
ically derived chord labels. Right: Cross-version visualization, where the automatically derived
chord labels are overlayed with score-based ground truth chord labels.

(b. 12 and b. 14). Comparing to the score one finds out that the correctly labeled passages
indeed correspond to bars, where clear major or minor chords are present. In contrast, bars
12 and 14 are problematic in the sense that they contain diminished seventh chords which
can not be assigned in a meaningful way to one of the considered 24 major and minor
chords, thus producing misclassifications. In this case, an extension of the considered
chord categories to also include diminished seventh chords might solve the problem.

8.2.3 In-Depth Error Analysis

None of the currently available automatic chord labeling approaches works perfectly. Er-
rors can either be caused by the inherent ambiguity in chord labeling, or by a weakness
special to the employed chord labeler. An in-depth analysis allowing for a distinction
between these error sources is a very hard and time-consuming task. We show how this
process can be supported and accelerated using the evaluation and visualization frame-
work presented in Section 8.1. In the following examples we use the procedure described
in Section 8.1.5 for transforming the time axis of the audio-based analysis results to a
common musical time axis.

We start our in-depth error analysis with Chopin’s Mazurka Op. 68 No. 3, which already
served as example in Section 8.1.5. Figure 8.5 shows again the chord labeling result for
a specific audio recording as well as the cross-version visualization for the first four bars
of the piece. We first refer to the visualization of the chord labeling result for a specific
audio recording, which clearly reveals various chord recognition errors, see Figure 8.5(e).
Making use of the musical time axis, these errors can now easily be traced back to the
corresponding position in the score and analyzed further. For example, at the beginning
of the piece, the score-based ground truth annotation corresponds to F major, whereas
the computed audio-based annotation corresponds to F minor. A mix-up of major and
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Figure 8.5. Chopin Mazurka Op. 68 No. 3, bars 1-4. (a) Score. (b) Visualization of the
chord labeling result for a specific audio recording. (c) Cross-version visualization, where the
automatically derived chord labels are overlayed with score-based ground truth chord labels.

minor often appears in the chord recognition task. The next misclassification occurs at
the end of bar 1, where the ground truth still corresponds to F major, but the computed
annotation specifies a C major, which is actually the subsequent chord in the ground truth.
This may be a boundary problem or an error in the synchronization.

In the middle of bar 2, we note that the ground truth chord is B minor, whereas the
computed chord is C major. Having a look at the score, one can see that the chord in
question is actually a B diminished chord. Due to the reduction of the manual annotation
to major/minor chords, this chord is mapped to a B minor chord in the ground truth.
Causing a misclassification here, this is often a problem in the major/minor evaluation
based on the comparison of the dyad.

The next misclassifications are due to the musical ambiguity of chords. At the end of bar
2 we observe in the score a C major chord, where the fifth is missing. Comparing on the
dyad level, this chord is mapped to a C major chord in the ground truth. However, all the
notes of the chord (c, e) are also part of an A minor chord, which is actually computed at
this position. A similar problem occurs at the beginning and at the end of bar 3, where
the ground truth annotation corresponds to D minor, whereas the computed annotation
corresponds to F major. The same phenomenon appears a last time at the end of bar 4,
where F major is recognized instead of A minor. This phenomenon is caused by ambiguities
inherent to the chord labeling task and constitutes a very common problem. The chords
in classical music rarely are pure major or minor chords, because tones are often missing
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Figure 8.6. Bach BWV 846, bars 19-24. (a) Score, (b) Cross-version visualization, where the
automatically derived chord labels are overlayed with score-based ground truth labels.

or added. Hence, the recognition as well as the manual annotation process become a hard
task.

Next, we illustrate what kind of additional information our cross-version visualization can
provide compared to the previously discussed visualization that only makes use of a single
audio recording. Looking for consistencies and inconsistencies across the chord recognition
results for 51 different audio recordings, see Figure 8.5(f), it is possible to classify and
investigate single errors even further. For example, the misclassified F minor chord in the
beginning of bar 1 (see Figure 8.5(e)) seems to be an exception for the specific recording.
This can be clearly seen from the cross-version visualization where only for a few of the
51 audio recordings F minor is computed instead of F major. Also, the misclassification
at the end of bar 4 (F major instead of A minor) is not consistent across all considered
audio recordings. On the contrary, some of the misclassifications which we observed in
the case of one audio recording (Figure 8.5(e)), are consistently misclassified for most of
the other audio recordings. For example, the diminished chord in the middle of bar 2, the
chord ambiguity problem occuring at the end of bar 2 (A minor instead of C major), the
beginning of bar 3 (F major instead of D minor) and the end of bar 4 (F major instead of
A minor). Overall, the cross-version visualization allows for a classification of recognition
errors into those specific to a recording and those independent of a recording.

As a further example we now consider the famous Bach Prelude in C major, BWV 846.
The cross-version visualization for 5 different audio recordings for bars 19-24 (see Fig-
ure 8.6) again reflects the chord recognition problems related to diminished chords. At
the beginning of the excerpt (bb. 19-21) and at the end (b. 24) the chord recognition result
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Figure 8.7. Beethoven’s Fifth, bars 470-474. (a) Score, (b) Cross-version visualization, where
the automatically derived chord labels are overlayed with score-based ground truth labels.

for all audio recordings consistently agrees more or less with the ground truth. However,
one can observe two passages with green entries in bars 22-23. Looking at the correspond-
ing position in the score, we find two diminished seventh chords, in bar 22 an F♯ : dim7
and in bar 23 an A♭ : dim7. Due to the reduction to major/minor chords these two chords
are mapped to F♯ minor and A♭ minor in the ground truth annotation, respectively, see
Figure 8.6. However, in most audio recordings an A minor chord is detected instead of
F♯ : dim7, having two tones (a and c) in common. And instead of the A♭ : dim7 chord an
F minor chord is found, for which even all three tones are present (f, a♭ and c) due to the
additional passing note C in the A♭. While the seventh chord in bar 20 is recognized well
for all recordings, we see that in bar 21 the F major seventh chord was mistaken for an A

minor chord, again due to chord ambiguity reasons.

As a last example we now consider the first movement of Beethoven’s Fifth Symphony in
37 different audio recordings. Actually, this piece of music is much more complicated in
terms of harmonic aspects than the previously considered Chopin and Bach examples. In
the Beethoven example, we can often find the musical principles of suspension, passing
notes or “unisono” passages. Here, the automatic chord recognition as well as the manual
annotation are challenging and ambiguous tasks. One example for the use of nonharmonic
tones in chords can be found in bars 470-474, visualized in Figure 8.7. Looking at the
score, we observe in the left hand a D major chord with a missing fifth (bb. 470-473), but
in the right hand a g is added in octaves to this D major chord. Being the fourth of d,
the g can be seen as a nonharmonic tone in D major. This causes a chord misclassification
for about 15 recordings, where G major or alternatively G minor is computed. On the
contrary, the G seventh chord in bar 474 is recognized very well for all recordings. Note
that the first beats of bars 470-474 are not manually annotated, since the octaves do not
represent meaningful chords.

Another example of a musical pattern that is found to be extremely problematic in the
chord recognition task, is the principle of suspension. We illustrate the problems related
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Figure 8.8. Beethoven’s Fifth bars 484-490. (a) Score, (b) Cross-version visualization, where
the automatically derived chord labels are overlayed with score-based ground truth labels.

to this musical characteristic using another excerpt (bb. 484-490) of Beethoven’s Fifth, see
Figure 8.8. In each of bars 484-488, one can find a suspension on the first eighth, which
resolves into a major chord on the second eighth. This musical characteristic can easily
be spotted in the cross-version visualization. Here, we see that at the beginning of each
bar the number of audio recordings for which the computed annotation agrees with the
ground truth is very low and gets higher afterwards. In bar 490 finally the first complete
pure major chord is reached. Note that the second beats of bars 485-487 consist of passing
notes to the next suspension. Hence, a meaningful chord cannot be assigned resulting in
several beats missing a ground truth annotation.

8.3 Conclusions

In this chapter, we presented a cross-version approach which allows for comparing chord
label annotations across different performances and across different domains (e. g. sym-
bolic, MIDI, audio). In Chapter 9, such a cross-version approach will serve as basis for
evaluating two MIDI-based chord labeling procedures using annotations given for corre-
sponding audio recordings. Our experiments indicate, that consistently labeled passages
across different performances often correspond to harmonically stable passages, whereas
inconsistencies point to harmonically instable regions in the piece of music. In fact, an-
alyzing the harmonic properties of several audio versions synchronously, one can achieve
a stabilization of the chord labeling results, which will be of central importance in Chap-
ter 10. Presenting the cross-version analysis results on a musically meaningful time axis
in bars also helps to make the analysis results better accessible to music experts. Firstly,
the presented approach allows for involving musicologists in the evaluation process of au-
tomated chord labeling procedures. For example, the cross-version visualization opens
the way for an interdisciplinary collaboration, where musicologists may greatly support
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computer scientists in performing an in-depth error analysis of the employed chord la-
beling procedure based on the score. Secondly, the cross-version visualization may serve
musicologists as a helpful tool for exploring harmonic structures of a musical work, which
we will illustrate in our case study on Beethoven’s Appassionata presented in Chapter 11.



Chapter 9

Cross-Version Evaluation

For a given piece of music, there often exist multiple versions belonging to the symbolic
(e. g. MIDI representations), acoustic (audio recordings), or visual (sheet music) domain.
Each type of information allows for applying specialized, domain-specific approaches to
music analysis tasks. In this chapter, we realize the idea of cross-version harmonic analysis
(introduced in Chapter 8) to automatically evaluate two MIDI-based chord labeling proce-
dures using annotations given for corresponding audio recordings. Using a novel late-fusion
approach that combines different alignment procedures in order to identify reliable parts in
synchronization results, the cross-version comparison of the various chord labeling results
is performed only on the basis of the reliable parts. We show how inconsistencies in these
results across the different versions allow for a quantitative and qualitative evaluation.
In particular, we perform an in-depth error analysis of the two symbolic chord labelers,
classify possible error sources, and illustrate the respective error source by means of con-
crete song examples. This qualitative error analysis not only indicates limitations of the
employed chord labeling strategies but also deepens the understanding of the underlying
music material. This chapter is based on [14].

The chapter is organized as follows. In Section 9.1 we present an overview on symbolic
chord labeling and in particular, describe the two symbolic chord labelers, which are used
in the evaluation presented in Section 9.2. Finally, we conclude in Section 9.3.

9.1 Symbolic Chord Labeling

Symbolic chord labeling deals with the computer-based harmonic analysis of symbolic
music data. In the field of symbolic chord labeling, only few procedures have been in-
troduced [50, 67, 69, 75, 82, 89]. Early symbolic chord labeling procedures are typically
rule-based and refer to musical knowledge of Western Classical music [50, 89]. For exam-
ple, in [50] a method for performing roman numeral analysis from symbolic music data
is introduced. Furthermore, Sleator and Temperley proposed several procedures for per-
forming harmonic analyses which are now part of the Melisma Music Analyzer [78]. The
Melisma system is one of the two chord labelers which are used in our evaluation and
described in more detail in Section 9.1.1. Hidden Markov models have also been used

85
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in the context of symbolic chord labeling, see [69]. In the following, we shortly describe
the two symbolic chord labeling procedures which we will evaluate in Section 9.2. For a
detailed description of the two symbolic chord labelers we refer to [15].

9.1.1 Temperley’s Melisma

The first symbolic chord labeling procedure which is used in our evaluation is referred to
as Melisma [82]. The input of Melisma is a list of MIDI pitches including the onset and
offset times as well as some metrical information.1 Based on this information, the module
harmony estimates the root note of the chord in a certain time window using a system of
preference rules [41, 82]. Afterwards, the module key derives keys for all given segments
using a Bayesian model [83] before in a last step the actual chord labels are produced in
the form of a roman numeral analysis.2 Temperley’s system is a combination of different
procedures: Preference rule systems, a Bayesian algorithm and the final procedure for
labeling the corresponding chord given the key and the root note. Furthermore, it depends
on different classes of parameters: hard-coded parameters, user-defined parameters and
learned parameters.

For our evaluation described in Section 9.2 we use information about root note, mode
(major, minor, unspecified) and the fifth (perfect, diminished, unspecified) as well as the
onset and offset times. This finally results in considering the three possible chord classes
major, minor and diminished.

9.1.2 A Bayesian Model Selection Algorithm

The second symbolic chord labeler used in our evaluation is referred to as RLM . This
system follows a Bayesian approach for chord labeling [71]. Here, all relevant parameters
are part of the same modeling procedure and the most likely chord model is determined
by Bayesian model selection. Since RLM focuses mainly on popular music it assumes
only triad chords in the following six possible chord classes: major, minor, diminished,
augmented, sus2, and sus4.

9.2 Evaluation

Exploiting the availability of multiple versions of a given piece of music, we have suggested
the concept of a cross-version analysis for comparing and/or combining analysis results

1In our experiments, we provided harmony with the information about quarter and sixteenth notes
given by the MIDI file instead of deriving metrical information by the meter program.

2 Note, that key’s output is a roman numeral analysis, whereas chord labels are only contained in key’s
internal data structure. Testing key’s roman numeral analysis for popular music showed, unsurprisingly,
that many chords were uninterpretable resulting in the assigned label Chr (standing for chromatic and
indicating that it is not possible to derive the respective chord from a major or a minor scale by adding
thirds to one of the scale notes.) Therefore, we by-passed the roman numeral analysis in order to access
the chord labels of key’s internal data structure.
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Figure 9.1. Cross-version music analysis based on synchronization techniques (from [14]).

across the versions (see Chapter 8). We now exemplarily apply this concept to automat-
ically evaluate the two MIDI-based chord labelers RLM and Melisma from Section 9.1
whose performance has not been clear so far, since no ground truth annotations for MIDI
versions have been available on a larger scale. We evaluate the two symbolic chord labelers
on the well-known Beatles dataset, where chord annotations are available for correspond-
ing audio recordings (Section 9.2.1). Figure 9.1 shows the cross-version analysis procedure
in a schematic overview.

In the following, we first describe the experimental setup (Section 9.2.1) and introduce a
cross-version visualization (Section 9.2.2). Afterwards, we present a quantitative evalua-
tion (Section 9.2.3) before demonstrating how the cross-version visualization can greatly
support a user in a qualitative analysis of the recognition errors (Section 9.2.4).

9.2.1 Experimental Setup

In our evaluation we exploit the audio data chord annotations provided by Christopher
Harte, who manually annotated all 180 songs of the 12 Beatles studio albums [27]. Harte’s
annotations are generally accepted as the de-facto standard for evaluating audio-based
chord labeling methods. Transferring these annotations from the acoustic to the symbolic
domain allows for an efficient reuse of the existing ground truth for the evaluations of
symbolic chord labelers. Furthermore, having a common set of ground truth across all
available musical domains presents a starting point to identify exactly those positions in a
piece where a method relying on one music representation has the advantage over another
method, and to investigate the underlying musical reasons.

Our evaluation dataset consists of 112 songs out of the 180 songs. For these 112 songs we
not only have an audio recording with annotated chord labels, but also a corresponding
MIDI version. Given a MIDI file and a corresponding audio recording, we start our
evaluation by computing a MIDI-audio alignment.
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Figure 9.2. Cross-version chord evaluation for the song Getting Better. Left: Overlay of
two MIDI-based chord labeling results (Melisma and RLM ) and manually generated audio-based
chord labels. In the visualization the ground truth labels (black), the errors ofMelisma (green), the
errors of RLM (yellow), and errors appearing for Melisma and RLM (red) are indicated. Right:
Consistency alignment (horizontal axis specifies MIDI time in beats and vertical axis specifies audio
time in seconds).

Because the MIDI versions often differ significantly, at a local level, from the audio record-
ings, we cannot simply employ global synchronization techniques. Therefore, we employ
a consistency alignment, which identifies those sections that can be aligned reliably. The
main idea of this method is to employ a late-fusion approach that combines several types of
conceptually different alignment strategies instead of relying on one single strategy. Look-
ing for consistencies and inconsistencies across the synchronization results, the method
automatically classifies the alignments locally as reliable or critical. In Figure 9.2 (right)
the consistency alignment for the song Getting Better is visualized, showing that one
section in the MIDI file (between beat 210 and 230) could not be reliably aligned to a cor-
responding section in the audio. For a detailed description of the consistency alignment
we refer to [15].

Using the linking information provided by the alignment, we compute for each MIDI beat
the corresponding position in the audio version. Using this linking information, we then
transfer the audio-based chord labels to the MIDI version. If more than one audio chord
label exists in the audio segment associated with a MIDI beat, we simply choose the
predominant chord label as MIDI annotation. As the result, we obtain a beatwise chord
label annotation for the MIDI version.

For our evaluation, we compare the transferred ground truth annotations to the automati-
cally generated chord labels obtained from Melisma and RLM on the basis of the 12 major
and the 12 minor chords. Therefore, using the interval comparison of the triad as used
for MIREX 2010 [52], all ground truth chord labels are mapped to one of these 24 chords.
Here, both a seventh chord and a major seventh chord are mapped to the corresponding
major chord. However, augmented, diminished or other more complex chords cannot be
reduced to either major or minor and therefore are omitted from the evaluation.

9.2.2 Visualization

Using synchronization techniques allows for visualizing different chord recognition results
simultaneously for multiple versions. Such cross-version visualizations turn out to be a
powerful tool for not only analyzing the chord label results but also for better understand-
ing the underlying music material [36]. We introduce our visualization concept by means of
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a concrete example shown in Figure 9.2. Here, the chord labels generated by Melisma and
RLM are visualized along with the transferred ground truth annotations using a common
MIDI time axis given in beats (horizontal axis). The vertical axis represents the 24 major
and minor chords, starting with the 12 major chords and continuing with the 12 minor
chords. Associated with each beat is a black entry representing the ground truth chord
label that we transferred to the MIDI files. For example, in Figure 9.2, a G major chord
label is assigned to beat 50. The colored entries in the figure are used to indicate where the
two automatic chord labelers differ from the manual annotation. Here, yellow and green
entries indicate that RLM and Melisma differ from the manual annotation, respectively.
For example, in the beginning of the song the green entries show that Melisma detected
a C major chord, while the ground truth specified an F major chord. If a chord labeler
generated a chord label that cannot be reduced to either major or minor, then this is indi-
cated by a colored entry in the ‘xx’ row. For example, in the beginning of the song RLM
detected a complex chord corresponding to a yellow entry in the ‘xx’ row. Sometimes,
both automatic chord labelers differ from the ground truth, but agree on the same chord
label. Such consistent deviations from the ground truth are marked in red. An example
can be found around beat 200, where both automatic chord labelers specify a C major
chord instead of an F major chord in the ground truth. Furthermore, areas in the figure
with a gray background indicate beats for that no ground truth is available. For example,
in Figure 9.2, this can be observed between beat 210 and 230. Here, our consistency
alignment, given on the right in the figure, shows that this section in the MIDI file could
not be reliably aligned to a corresponding section in the audio. Furthermore, a ground
truth annotation might also be unavailable for a beat if the chord label at that position
is irreducible to major or minor—for example, if the chord label specifies an augmented
chord.

Overall, our visualization allows for the identification of two different classes of inconsis-
tencies. On the one hand, red entries in the visualization reveal positions, where the two
chord labelers consistently differ from the ground truth. Here, the reason for the error may
be of extrinsic or musical nature, independent of the specific chord labeler. On the other
hand, yellow and green entries indicate intrinsic errors of the respective chord labeler.
Thus, our visualization constitutes a useful tool to identify interesting or problematic
passages in the audio recording.

9.2.3 Quantitative Evaluation

We now quantitatively evaluate the two MIDI-based chord labelers. Table 9.1 presents
the results for nine exemplarily chosen songs as well as an average over all 112 pieces in
our database. For each song, the precision values of Melisma and RLM are listed. Here,
precision indicates the percentage of the manually annotated beats correctly classified
by the respective chord labeler. Also, the alignment coverage (AC), which specifies the
percentage of the MIDI version that has been aligned to the respective audio version, is
listed.

As can be seen from Table 9.1, the precision of RLM , averaged over all 112 songs, is 82%,
whereas that of Melisma is only 72%. Using Bayesian model selection, RLM seems to
be more data adaptive and performs better in our experiments than Melisma, depending
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Table 9.1. Results of the cross-version chord evaluation for RLM and Melisma. The four columns
indicate the piece/dataset, the alignment coverage (AC), as well as the precision (Prec) for the two
methods.

Prec Prec
Piece AC RLM Melisma
AnotherGirl 97 98 60
DoctorRobert 99 76 60
EightDaysAWeek 99 92 74
EverybodysTryingToBeMyBab 95 71 85
GettingBetter 83 60 52
GoodDaySunshine 82 85 55
InMyLife 97 90 75
IWannaBeYourMan 91 61 42
Money 56 38 11
Average 89 75 57

Average over all 112 songs 86 82 72

on some hard-coded parameters. Furthermore, Melisma is tuned towards classical music,
whereas RLM focuses on popular music, which might be advantageous with regard to the
Beatles dataset.

Even though such a quantitative evaluation gives a general indication on the algorithms’
performances, it is not very helpful for the understanding of the algorithmic or musical
reasons of the recognition errors. We now show how our visualization framework can be
used for a more in-depth analysis of the chord recognition results.

9.2.4 Qualitative Evaluation

Our cross-version visualization directly reveals two different types of errors: extrinsic er-
rors that are independent of the employed chord labeling strategy (marked by red entries)
as well as intrinsic errors of the two chord labelers (marked by yellow and green en-
tries). In the following, we further detail on this observation by exemplarily performing a
qualitative error analysis by means of some concrete song examples.

First, we discuss some typical intrinsic errors of the two chord labelers. For Melisma, it
turned out that one main error source consists in confusing major and minor. Here, the
song Another Girl (Figure 9.3) serves as an example. As can be clearly seen from the
visualization, Melisma recognizes most of the time A minor instead of A major. On the
contrary, most of RLM ’s errors are produced by specifying a complex chord label instead
of a major or minor label in the ground truth. For example, looking at the song Doctor
Robert (Figure 9.4), one notices that an A major chord is annotated from beat 1 to beat
57 in the ground truth, whereas RLM often specifies a more complex chord corresponding
to the ‘xx’ row. Taking into account six different chord classes (major, minor, diminished,
augmented, sus2, sus4), RLM is susceptible to choose such a complex chord label instead
of a simple major or minor chord label. Here, a manual inspection revealed that also
simplifying assumptions in the manually generated audio annotations (taken as ground
truth) and the reduction process are sources for confusion and ambiguity. For example, in
the song Doctor Robert A major and A sus4 are played alternately. However, the manual
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Figure 9.3. Cross-version chord label visualization for the song Another Girl (Beat 1-90).
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Figure 9.4. Cross-version chord label visualization for the song Doctor Robert (Beat 1-80).

annotation simply corresponds to A major so that RLM ’s classification as an A sus4 chord
(which is actually correct) appears as a misclassification. Furthermore, also in the Doctor
Robert (Figure 9.4) example, Melisma’s confusion of major and minor appears again,
where F♯ minor is recognized instead of F♯ major from beat 62 to beat 80.

The second type of error sources are extrinsic errors, which are errors that appear consis-
tently for both chord labelers (marked by red entries). Such consistent misclassifications
may appear for several reasons. Having performed an in-depth error analysis allows us
to categorize these errors into the following four subclasses. Firstly, a consistent misclas-
sification can appear due to errors in the synchronization. Looking at the visualization
of the song In My Life (Figure 9.5), one can see the three consistent misclassifications in
red. Appearing at the borders of the determined chord labels and specifying either the
previous or the subsequent ground truth label as chord label, these misclassifications are
characteristic for inaccuracies in the synchronization.

Secondly, inaccuracies in the manual ground truth annotations can be responsible for
consistent misclassifications. Here, it should be noted that Harte’s manual annotations
are created for the guitar accompaniment, so further voices (for instance, the melody voice)
remain unconsidered in the manual chord labels. However, many Beatles songs contain
passages where the chord of the guitar accompaniment is overlayed with another chord
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Figure 9.5. Cross-version chord label visualization for the song In My Life (Beat 1-60).
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Figure 9.6. Cross-version chord label visualization for the song Money (Beat 1-250).

played by other instrument. For example, in Money (Figure 9.6), E major and E minor
are sometimes overlaid3. Here, the ground truth specifies E major, referring only to the
guitar chord. However, both chord labellers specify E minor instead of E major most of
the time, this being the predominant chord at these positions.

Thirdly, a harmonic difference between the MIDI and the audio version may lead to a
consistent deviation of the two chord labelers from the ground truth. In the song example
Good Day Sunshine (Figure 9.7), one observes the three red entries at E minor around
the beats 55, 70 and 110, whereas the ground truth specifies E major. These consistent
misclassifications are due to a deviation of the MIDI version from the audio version. In
the MIDI version an important tone in the leading voice is changed from originally g♯
(which is part of E major) to g (which is part of E minor), leading to the misclassification
E minor for both chord labellers.

Finally, as the fourth subclass, we detected errors that are caused by musical reasons. For
example, the use of suspensions or the presence of passing notes and other nonharmonic
tones often lead to local chord ambiguities. In particular, the leading voice often contains

3Arguably, this bluesy chord is neither minor nor major; it is an example of why chord classifiers need
to develop beyond the simplistic assumption that everything is based on triads.
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Figure 9.7. Cross-version chord label visualization for the song Good Day Sunshine (Beat 1-120).
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Figure 9.8. Cross-version chord label visualization for the song Eight Days A Week (Beat 1-150).

nonharmonic tones with regard to the underlying harmony. Precisely this phenomenon
appears e. g. in the song Eight Days A Week (Figure 9.8) at beat 60, where the underlying
chord is G major, which is also the labeled chord in the ground truth. However, both chord
labelers specify an Eminor chord here. This is due to the nonharmonic tone e in the leading
voice, which, together with the tones g and b, forms an E minor chord.

Having classified the errors appearing in the chord labeling process, we now consider two
further examples, which illustrate combinations of the error sources described above. For
example, in Everybody’s Trying To Be My Baby (Figure 9.9), RLM specifies the beats 107
to 123 as E minor, whereas Melisma agrees with the ground truth, labeling an E major
chord. At first sight, it looks as though RLM mixed up major and minor. However, the
reason for the misclassification is a harmonic difference between the MIDI and the audio
version. In the MIDI version, an E minor seventh chord sounds in this passage, but in the
audio version and therefore in the ground truth an E major chord is present. Therefore,
the E minor classification of RLM is correct, whereas the E major classification of Melisma
turns out as a misclassification being caused by its typical error source, the confusion of
major and minor.

In the visualization of the next example, I Wanna Be Your Man (Figure 9.10), one observes
two large passages of misclassification, the first from beat 8 to 75 and the second from beat
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Figure 9.9. Cross-version chord label visualization for the song Everybody’s Trying To Be My
Baby (Beat 1-150).
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Figure 9.10. Cross-version chord label visualization for the song I Wanna Be Your Man (Beat
1-175).

135 to 175. Here, both chord labellers deviate from the ground truth, which specifies E
major. Melisma labels an E minor chord, whereas RLM detects a B minor chord. Actually,
the reasons for the misclassification of the respective chord labeller differ. On the one hand,
in this passage there is a permanent harmonic change between an E major chord and an
E minor seventh chord. Due to inaccuracies in the manual annotation, the ground truth
specifies E major for the whole passage, thus neglecting the E minor seventh chord, which
is also present in the MIDI version. This inaccuracy in the manual annotations is the
reason for the misclassification of Melisma, labelling E minor. On the other hand, we
can find the following nonharmonic tones in the leading voice: b, d and f♯, which form
a B minor chord. This ambiguity is responsible for the misclassification of RLM , which
specifies B minor.

9.3 Conclusions

In this chapter, we demonstrated the utility of our cross-version framework by exemplarily
applying the concept of cross-version harmonic analysis for the evaluation of MIDI-based
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chord labeling methods using audio-based ground truth annotations. Performing an in-
depth analysis of error sources, we indicated limitations of the employed chord labeling
strategies and exemplified how our framework facilitates interdisciplinary research. Visu-
alizations and interfaces based on our framework allow even a technically unexperienced
user to perform an error analysis of automatically generated annotations. This opens the
way for a collaboration between computer scientists, providing the knowledge about the
underlying chord labeling strategies, and musicologists providing a trained ear and the
expertise about harmonic relations.
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Chapter 10

Stabilizing Audio Chord Labeling

In this chapter, we show that analyzing the harmonic properties of several audio versions
synchronously (by using a cross-version approach as introduced in Chapter 8) stabilizes the
chord labeling result in the sense that inconsistencies indicate version-dependent character-
istics, whereas consistencies across several versions indicate harmonically stable passages
in the piece of music. In particular, we show that consistently labeled passages often cor-
respond to correctly labeled passages. Our experiments document that the cross-version
labeling procedure significantly increases the precision of the result while keeping the recall
at a relatively high level. The results of this chapter have been published in [34].

This chapter is organized as follows. First, we introduce a cross-version voting strategy
(Section 10.1) before presenting a simple constraint-based strategy which uses a single
version (Section 10.2). In our experiments (Section 10.3), a comparison of these two
strategies demonstrates that our voting strategy is conceptually different from simply
imposing stricter conditions in the template-based approach. Finally, we conclude in
Section 10.4.

10.1 Cross-Version Voting Strategy

By overlaying the chord labeling results as described in Section 8.1.3 for the first 19 bars of
Beethoven’s Piano Sonata Op. 27 No. 2, the so-called Moonlight Sonata, considering seven
different audio versions, we obtain a cross-version visualization, see Figure 10.1b. The
cross-version strategy now reveals consistencies and inconsistencies in the chord labeling
across all audio versions. For example, one directly notices that the misclassification in
bar 10, when considering a specific audio version (see Figure 10.1e), seems to be version-
dependent. Considering several audio versions, bar 10 is more or less consistently labeled
correctly as E minor. In contrast, a more consistent misclassification (C major instead of
E minor was labeled for four versions) can be found in bar 16.

In the following experiment, we investigate to which extent the consistency information
across several audio versions may be exploited to stabilize chord labeling. In the majority
voting strategy we keep for each bar exactly one of the automatically extracted chord labels,

97
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Figure 10.1. Visualization of the chord labeling result for Beethoven’s Moonlight Sonata (bb. 1-
19). In the left column (b-d) the cross-version voting strategy is used considering seven perfor-
mances, whereas in the right column (e-g) the constraint-based strategy is used considering only a
single audio recording (Barenboim). Bars, for which no score-based ground truth label exists (since
the clear assignment of a harmony is not possible), are left unconsidered in the evaluation. (a)
Score of bars 1-7. (b) Visualization of consistencies and inconsistencies in the cross-version anal-
ysis. (c) Cross-version majority voting strategy. (d) Cross-version voting strategy with ν = 0.5.
(e) Basic strategy. (f) Constraint-based strategy with γ = 0.3. (g) Constraint-based strategy with
γ = 0.1.

namely the most consistent chord label across all versions. All remaining audio chord labels
are left unconsidered in the evaluation. This results in a visualization which is shown in
Figure 10.1c. Blue entries (correct: C) now indicate areas, where the audio chord label
agrees with the ground truth chord label. In contrast, green and red entries encode the
differences between the chord labels. Here, red entries (false positives: FP) correspond
to the audio chord labels, whereas green entries (false negatives: FN) correspond to the
ground truth labels. As one directly notices, besides one misclassification in bar 16, the
above mentioned highly consistent error, all chords are now correctly classified resulting
in a significant increase of precision.

In the next step, we further constrain the degree of consistency by introducing a consis-
tency parameter ν ∈ [0, 1]. To this end, we consider only bars which are labeled consis-
tently for more than (ν · 100)% of the audio versions. All other bars are left unannotated.
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For example, ν = 0.5 signifies that we keep in the evaluation only passages, where for more
than 50% of the audio versions the extracted chord labels agree. Figure 10.1d shows the
visualization of the chord labeling result for ν = 0.5, where the voting procedure succeeds
in eliminating all misclassifications. At the same time only three correct classifications
are taken out of the evaluation. In this way, the precision further increases (amounting to
100% in Figure 10.1d), while the recall still remains on a relatively high level (amounting
to 60% in Figure 10.1d).

As the example described above shows, the cross-version voting approach succeeds in
significantly increasing the precision, while keeping the recall at a relatively high level. For
a quantitative evaluation of the cross-version voting strategy we refer to the experiments
described in Section 10.3.

10.2 Constraint-Based Strategy

To better illustrate the potential of our cross-version voting strategy, we now consider
a constraint-based stabilizing procedure. Using the template-based approach described
in Section 8.1.2, the automatically derived chord label for a given bar is defined by the
template having the minimal distance to the feature vector, in the following referred to
as basic strategy. Figure 10.1e shows a visualization of the chord labeling result. As
the visualization reveals the first bar is correctly identified as C♯ minor, whereas bar 2 is
misclassified, being identified as E major although being labeled as C♯ minor in the ground
truth. Here, a C♯ minor 7th chord is present in the ground truth, being mapped to C♯

minor. In fact, this seventh chord contains all the tones for E major, which explains the
misclassification.

As we can see from the example, using the basic strategy, it obviously happens that for bars
containing complex chords none of the given 24 templates fits well to the present feature
vector. Here, the chord template of minimal distance may have a rather large distance
to the feature vector. To counteract this case, we now introduce a parameter γ ∈ [0, 1],
which represents an upper threshold for the distance between the assigned chord template
and the feature vector. In this way, we obtain a constraint-based procedure, where only
chord labels λ are kept for which

d(tλ, x) < γ. (10.1)

All feature vectors x that have a larger distance than γ to any of the chord templates
are left unannotated. In the following experiment, the idea is to successively decrease the
parameter γ in order to investigate its influence on the chord labeling result.

Figure 10.1f shows the visualization for γ = 0.3. Obviously, one misclassification (bb. 16)
is now taken out of the evaluation. However, at the same time two previously correctly
classified chords (bb. 6, bb. 11) are left unconsidered in the evaluation, resulting in a de-
crease of the recall. Here, again seventh chords are present being correctly classified but
having a relatively large distance to the template vector. Further decreasing the parameter
γ is accompanied by a dramatical loss in recall while the precision increases moderately
(Figure 10.1g). For quantitative results of the evaluation of the constraint-based strategy
we refer to the experiments shown in Figure 10.2.
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Composer Piece # (Versions) Identifier

Bach Prelude C Major BWV 846 5 ‘Bach’

Beethoven
Moonlight Sonata Op. 27 No. 2

7 ‘BeetM’
(first movement)

Beethoven
Fifth Symphony Op. 67

38 ‘Beet5’
(first movement)

Chopin Mazurka Op. 68 No. 3 49 ‘Chopin’

Table 10.1. Overview of the pieces and number of versions used in our experiments.

10.3 Experiments

In this section we quantitatively evaluate the various chord labeling strategies using a
dataset that comprises four classical pieces of music, see Table 10.1. At this point, we
want to emphasize that our main object is not in increasing the F -measure, defined below.
Instead, in the application we have in mind, we are interested in finding passages, where
one obtains correct chord labels with high guarantee. Therefore, our aim is to increase
the precision, however, without losing too much of the recall.

In the following, we denote the automatically derived audio chord labels as La, and the
ground truth chord labels as Lgt. For our bar-wise evaluation, we use precision (P ), recall
(R) and F -measure (F ) defined as follows:

P =
#(La ∩ Lgt)

#La
, R =

#(La ∩ Lgt)

#Lgt
, F = 2 ·

P ·R

P +R
. (10.2)

We first discuss the cross-version voting strategy. Figure 10.2 shows curves for P , R and F
for the four pieces in the dataset, where the horizontal axis now represents the parameter
ν ranging between 0.5 and 0.8 except for the position labeled by ‘Maj’ corresponding to
the majority voting strategy. First of all, one notices that performing the chord labeling
across several versions using the majority voting strategy, precision, recall and F -measure
already improve by 10-30% in comparison to the basic strategy based on a specific version
(see ‘Min’ in Figure 10.2).

Furthermore, for all four examples the precision rapidly increases, so that for ν = 0.5
already a high precision is reached: 95% (Bach), 94% (BeetM), 100% (Chopin) and 77%
(Beet5). At the same time the recall remains on a rather high level, still amounting to 59%
(Bach), 77% (BeetM), 76% (Chopin) and 63% (Beet5). In this way, our experiments show
that consistently labeled passages across several versions often correspond to correctly
labeled passages. Increasing the consistency parameter ν further increases the precision
values, while the recall still remains at acceptably high levels. In summary, exploiting the
consistency information of the chord labels across several versions succeeds in stabilizing
the chord labeling, resulting in a significant increase of precision without loosing too much
of the recall.

We now compare these results with the ones obtained from the constraint-based strategy.
Figure 10.2 shows curves for P , R, and F for the four pieces in our dataset. Here, P , R,
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Figure 10.2. Left: Cross-version voting strategy. Curves for precision (P ), recall (R) and F -
measure (F ) using the majority voting strategy (Maj), and four different consistency parameters
ν from 0.5 to 0.8. Right: Constraint-based strategy based on a specific version. Curves for the
mean value of precision (P ), recall (R) and F -measure (F ) using the basic strategy (Min) and five
different settings for γ from 0.5 to 0.1.
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Mean Min Max
Bach 0.7000 0.4375 0.8750
BeetM 0.7473 0.6923 0.8718
Chopin 0.6345 0.4545 1.0000
Beet5 0.5967 0.5282 0.8345

Table 10.2. Basic chord labeling based on specific versions. The table shows mean, minimum
and maximum F -measures over all recorded performances of a given piece.

and F correspond to mean values, which are obtained by first applying the constraint-
based strategy on every version in the dataset separately and then averaging over all these
versions.

In the visualization, the horizontal axis represents the parameter γ ranging between 0.5 and
0.1 except for the position labeled by ‘Min’ corresponding to the basic labeling strategy.
As one directly notices, there is a clear tendency visible for all four examples in our
database. For increasing γ the precision also slowly increases reaching a high value of
roughly 80% for γ = 0.1. However, at the same time the recall dramatically drops down
to roughly 10% for γ = 0.1. Obviously, using the constraint-based strategy one can also
increase precision values as misclassifications are taken out of the evaluation, however at
the same time previously correct classifications are excluded resulting in a declining recall.
Because of the dramatic loss of recall, this simple constraint-based strategy is not suited
for stabilizing the chord labeling results.

Furthermore, our experiments reveal that performing the chord labeling based on a spe-
cific audio recording, the version-dependent results can vary greatly. This is shown by Ta-
ble 10.2 indicating the mean F -measure, as well as the minimal and maximal F -measure
achieved over all available recordings when using the basic labeling strategy (there was
also a MIDI-synthesized version in each of the four groups). For example, the F -measure
for one version of Bach amounts to 43.75%, corresponding to the minimal F -measure over
all versions, whereas for another version the F -measure amounts to 87.5%, corresponding
to the maximal F -measure over all versions. The average F -measure over the five versions
amounts to 70%. These strong variations of the chord labeling results across different
versions can not be explained by tuning effects, as we compensated for possible tuning
deviations in the feature extraction step. A manual inspection showed that, for most cases,
musical ambiguities are responsible for strong differences between the version-dependent
results.

10.4 Conclusions

In this chapter, we showed that consistently labeled passages across several versions often
correspond to correctly labeled passages. As a consequence, the cross-version visualization
may serve musicologists as a helpful tool for exploring harmonic structures of a musical
work. This will be demonstrated in our case study on Beethoven’s Appassionata (Chap-
ter 11), where we use the visualization as a source of inspiration for a detailed harmonic
analysis.
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Because of their high reliability, cross-version chord labels may be an alternative to man-
ually generated ground truth labels. This may particularly hold for large-scale harmonic
analyses on the basis of huge corpora of recorded music. In Chapter 12, we will apply
our cross-version framework on the entire corpus of Beethoven’s piano sonatas in order
to explore harmonic structures across different movements for some of the sonatas. Here,
our automated methods help to investigate which tonal centers occur in a specific sonata
and how they are functionally related to each other. In this context, a structure-oriented
analysis, which analyzes tonal centers according to the different form parts of the clas-
sical sonata form, is of great musicological meaning as each such part is characterized
by a specific occurrence of certain harmonies. Performing this analysis across the com-
plete corpus of Beethoven’s piano sonatas, we will quantify and better understand from a
music-historical perspective how Beethoven has applied tonal centers in his work.

As for future work, we need to perform more detailed quantitative evaluations to verify
our hypothesis that our cross-version approach indeed leads to a stabilization of the chord
labeling results. Furthermore, we plan to use our automated framework for exploring
harmonic structures across even larger and more complex corpora of musical works, such
as the corpus of Wagner’s operas.
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Chapter 11

Exploring Harmonic Structures:

Case Study on Beethoven’s

Appassionata

In this chapter, we present a case study on Beethoven’s Sonata Op. 57, the so-called
“Appassionata” in order to demonstrate how the cross-version visualization introduced in
Chapter 8 may serve musicologists as a supportive tool for exploring harmonic structures.
Performing a detailed harmonic analysis of the Appassionata, it turns out that consisten-
cies in the labeling results across different versions typically correspond to harmonically
stable passages, thus being of musical relevance. Revealing the harmonically stable pas-
sages in an intuitive and non-technical way on the musically meaningful time axis given in
bars, the cross-version visualization leads the user to passages dominated by a certain key,
also referred to as tonal centers. On the other hand, the visualization reveals harmonically
instable passages that typically contain the classification errors.

In the following, we first discuss the cross-version visualization for the beginning of the
Appassionata (Section 11.1). Afterwards, we give a short musical description of the Appas-
sionata explaining the choice of this work for our case study (Section 11.2). Inspired by the
cross-version visualization, we then present an in-depth harmonic analysis of the Appas-
sionata discussing the different form parts of sonata form separately (Section 11.3), before
commenting on consistencies and inconsistencies (Section 11.4). Thereafter, we exemplar-
ily show the importance of adjusting the model assumptions to the considered application
scenario (Section 11.5) and investigate to which extent the cross-version visualization may
support a subjective analysis of the overall form by a musicologist (Section 11.6). Finally,
we conclude in Section 11.7.

11.1 Cross-Version Visualization

For the following case study we use the cross-version chord labeling approach described in
Section 8.1. For convenience, Figure 11.1 presents the employed cross-version procedure
again in a schematic overview, now for the beginning of Beethoven’s Appassionata (bb. 1-
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Figure 11.1. Schematic overview of the employed cross-version framework. Here, the beginning
of the first movement of the Appassionata (bb. 1-8) is used as an example. (a) Export of the score
to a neutral MIDI representation. (b) visualization of the automatically derived chord labels for
a specific audio recording. The time axis in bars is obtained by synchronizing the audio recording
with the MIDI representation. (c) Cross-version visualization (28 different audio recordings).

8).

The automatically extracted chord labels for a specific audio recording are visualized in
Figure 11.1b. Following the time axis in bars, the visualization allows for a direct com-
parison of the automatically derived chord labels with the score. For example, one notices
that F major is detected in bar 1. As the score shows, this is clearly a misclassification,
since this bar contains a broken F minor chord. Actually, F major and F minor only differ
in the third (a vs. a♭), which is played very softly in the specific recording, resulting in
this misclassification. In bar 2, where the broken F minor chord is continued, F minor then
is correctly classified. The automatically derived chord label for bar 3 corresponds again
to F minor. Referring to the score, one verifies that first a clear C major chord is present
here, followed by a diminished seventh chord. Considering only 24 chord categories in the
labelling procedure, the detection of this more complex chord is not really meaningful.
This explains the misclassification F minor in this bar. In contrast, bars 5–6 are correctly
labelled as G♭ major. Here, again a clear arpeggio of G♭ major is present. However, in bar
7 the next misclassification appears due to the diminished seventh chord, similarly to bar
3. Bar 8, musically corresponding to a clear D♭ major chord, is again correctly classified.
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Figure 11.1c now shows the cross-version visualization for the first eight bars of the Ap-
passionata, where 28 different recorded performances are considered. The degree of con-
sistency across the various performances is indicated by a color-scale ranging from bright
yellow to dark red. Here, red entries indicate consistently labelled passages, whereas yellow
entries point to inconsistencies.

For example, the visualization reveals two passages, where the labelling is of high consis-
tency: bars 1–2 and bars 5–6, which are consistently labelled as F minor and G♭ major,
respectively. Looking at the score, one notices that these two passages correspond to an
arpeggio of the detected chords. In fact, these two passages reflect the only two harmoni-
cally stable passages within the first eight bars. However, considering only a single audio
recording, bar 1 was misclassified as F major, see Figure 11.1b. Furthermore, the visual-
ization reveals passages where the labelling is of low consistency. For example, bar 3 and
bar 7 are labelled inconsistently, indicating harmonically instable passages. In fact, this is
where the above mentioned diminished seventh chords appear, which are not part of the
24 considered chord categories and so mainly responsible for the inconsistent labelling.
Two more or less consistently labelled passages are represented by bar 4 and bar 8. For
example, bar 4 is labelled consistently for 14 performances as C major. Comparing to the
score, one notices that this bar starts with a clear C major chord. However, it includes
the upbeat to bar 5, introducing the G♭ major chord, which causes misclassifications in
some of the recorded performances. Bar 8 is consistently labelled as D♭ major across 16
performances. Surprisingly, for ten performances this bar is misclassified as A♭ major.

11.2 Musical Work

To demonstrate the possibilities, problems and future perspectives of our method we
present an analysis of the first movement of Beethoven’s “Appassionata” sonata [84].
(This common title is used even if it does not stem from Beethoven but from the editor
of a four-hand arrangement, in 1838.) The choice of this piece is based on several aspects.
Firstly, Beethoven’s piano sonatas, especially those of the middle period, present harmonic
properties which are neither too complicated nor too simple. Secondly, these sonatas—
and above all the Appassionata—are available in a great number of different recorded
performances. Finally, for the assessment of musicological purposes of our method, it
was important for our choice that the Appassionata is an extremely interesting work in
its formal properties. As our research focuses not only on automated harmonic analysis,
but also on the possibilities presented by our automated analysis for the comprehension,
interpretation and demonstration of form aspects in large-scale works, an analysis of the
Appassionata might serve as a paradigm for future research.

The sonata movement is clearly divided into four quite similar sections (see Table 1):
exposition (bb. 1–65), development (bb. 65–135), recapitulation (bb. 135–204) and coda
(bb. 204–262). In contrast to almost all other sonatas and symphonies of this period, the
exposition is not repeated. Consequently, the bars really indicate the extension of the
piece in time, whereas in more “conventional” sonata movements the exposition has to be
counted twice.
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Form part bb. Subparts bb. Musical description

Exposition (A) 1–65

A1 1–24 first group
A2 24–35 transition
A3 35–51 second group
A4 51–65 cadential group

Development (B) 65–135

B1 65–93 first group
B2 93–109 transition
B3 109–123 second group
B4 123–135 cadential group

Recapitulation (C) 135–204

C1 135–163 first group
C2 163–174 transition
C3 174–190 second group
C4 190–204 cadential group

Coda (D) 204–262

D1 204–210 first group
D2 210–218 second group
D3 218–239 transition
D4 239–262 second group

Table 11.1. Structural overview of the first movement of the Appassionata. The table shows for
each musical form part (A, B, C, D) the corresponding structural subparts.

11.3 Harmonic Analysis

Before entering a discussion of the labelling results as shown in Figures 11.2–11.6, it has to
be stressed that our main goal is not to maximise the “correctness” of the identified chord
labels. Instead, we want to demonstrate that our cross-version visualization is a useful tool
for the harmonic analysis of a piece of music. By performing an in-depth harmonic analysis
of the Appassionata, we investigate to which extent the harmonic structures provided by
our visualization correspond to the analysis results obtained by “traditional” musicologists.
Figure 11.2 shows the visualization of our automated analysis as an overview. The four
form parts A, B, C and D as well as the subparts are marked in the visualization by
vertical black lines. In the following sections, the four form parts are discussed separately,
starting with the exposition.

11.3.1 Exposition

Figure 11.3 shows the cross-version visualization for the exposition of the sonata. The
visualization provides information in multiple ways. Concerning the overall harmonic
structure of the exposition, it becomes evident that the exposition is divided into four
subparts, which, besides other differences not considered here, are different in their har-
monic structure. These four subparts correspond to the conventional subparts of sonata
expositions: first group (often called “first theme”, A1), transition (A2), second group
(or “second theme”, A3) and cadential group leading in minor keys usually to the related
major key (A4).

A1 refers to the first group. Here, several red passages can be seen indicating that they
are consistently labelled across all recorded performances. This might be an indicator for
harmonically stable bars. So, for example, the first two bars present a triad arpeggiatura
in F minor (bb. 1–2), which is despite its agitated rhythm a harmonically stable passage.
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Figure 11.2. Cross-version visualization for the first movement of Beethoven’s Appassionata
Sonata.

This is reflected in the visualization by the dark red entries in the F minor row, showing
a high degree of consistency of the chord labels for these bars across all performances.
The following bar (b. 3) seems to be harmonically less stable, being labelled inconsistently
for different recorded performances. In fact, the score shows that this bar includes a C

major chord in the first half followed by a diminished seventh chord in the second half.
Choosing a bar-wise window in the chord recognition procedure and considering only the
24 major and minor chords in our framework, this bar is identified as harmonically not
homogeneous. For a majority of recordings bar 3 is labelled as C major, for others it is
labelled as D minor, E major, F minor, G major and B♭ major. The next harmonically
stable passage (bb. 5–6) is consistently labelled as G♭ major. Here, the triad arpeggiatura
of the first two bars is repeated a semitone higher in G♭ major.

The second part of the exposition (A2), the so-called transition, modulates to the key
of the second group (A3), A♭ major. The visualization shows two tonal centres here: E♭

major, the dominant of the destination key A♭ major, and A♭ minor, the minor variant of
this key. An eye-catching feature is the pedal point e♭, which is constantly present during
the entire part A2.

The transition (A2) is followed by the second group (A3). Here, the visualization indicates
a larger homogeneous section: The first 6 bars (bb. 35–40, presenting what is usually called
“second theme”) are consistently labelled as A♭ major. In contrast, bar 42 is labelled as
D♭ minor for approximately half of the recordings and as B♭♭/A major for approximately
the other half because of the two successive harmonies D♭ minor and B♭♭ major in this bar.
The following bars 45–50 then are uniformly colored in yellow presenting a completely
new pattern in the visualization. The reason for these apparent difficulties in the identifi-
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Figure 11.3. Cross-version visualization for the exposition (bb. 1–65) of Beethoven’s Appassion-
ata Sonata.

cation of a concrete harmony is that bars 45–46 present only a single note with trill and
appoggiaturas and bars 47–50 a mere scale in A♭ minor with chromatic elements. This
scale, leading to the cadential group (A4), is reflected in the unusually “jumping” bassline
in the visualization.

The cadential group (A4) shows a clear predominance of A♭ minor, the minor variant of
the relative key A♭ major. The first three bars are consistently labelled correctly as A♭

minor (b. 51), F♭ major (b. 52) and B♭♭ major (b. 53, enharmonically changed as A major).
Similarly, bars 55–57 are consistently labelled correctly. Bars 54 and 58, labelled mainly as
D♭ minor, present a special problem. Even for a musicologist it is not easy to immediately
understand what happens here. On the fourth beat of bar 53 the B♭♭ major chord is
changed into the same chord with its minor seventh (a♭♭ enharmonically changed to g

natural) and minor ninth (c♭♭ enharmonically changed to b♭), omitting the fundamental
b♭♭. If B♭♭ major is the dominant chord of E♭♭ major, this diminished seventh chord would
have the same function being read as d♭–f♭–a♭♭–c♭♭. As the class of diminished seventh
chords can be interpreted in four different directions (in this case: d♭ could be the leading
tone to E♭♭/D major or minor, f♭ to G♭♭/F major or minor, a♭♭ to B♭♭♭/A♭ major or minor),
Beethoven makes use of this polyvalence, interpreting this chord (sounding in the context
of B♭♭ major as d♭–f♭–a♭♭–c♭♭) as d♭–f♭–g–b♭, which is the dominant of A♭ major and minor.
This enharmonic change becomes evident only in the course of bars 54 and 58 on the
fourth beat with the chord of E♭7 major, which on the second and third beat is obscured
by the suspended fourth and minor ninth. This leads to the erroneous labelling of this
chord in our procedure mainly as D♭ minor. In bar 59 E♭7 major with suspended fourth and
minor ninth is repeated, which is only labelled correctly as E♭ major for some recordings,
whereas a majority is labelled as D♭ minor, due to the repeated occurrence of d♭, a♭ and
f♭. The last five bars (bb. 61–65) then are consistently labelled as A♭ minor.
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Figure 11.4. Cross-version visualization for the recapitulation (bb. 135–204) of Beethoven’s
Appassionata Sonata.

11.3.2 Recapitulation

As in sonata form the recapitulation (C) usually is a return of the exposition (A) with char-
acteristic harmonic changes, it makes sense to compare these two parts in our visualization.
Figure 11.4 shows the harmonic structure of the recapitulation, which—corresponding to
the exposition—is divided in four parts: The first group (C1), the transition (C2), the
second group (C3) and the cadential group (C4). At first glance, the harmonic structure
of C1 seems to be similar to A1. Several differences, however, can be observed. So, for
instance, two pedals c (bb. 135–139) and d♭ (bb. 139–142) are striking, which did not ap-
pear in A1. Furthermore, the continuation of the “first theme” (bb. 144–151) is likewise
highlighted by the pedal c in contrast to the exposition. It can be seen that this passage
is consistently labelled as C major, whereas the labelling for the corresponding passage
in the exposition varied. Another difference becomes obvious in bars 152–154, where F

major is present instead of F minor in the exposition. Here, a variant of the “first theme”
consisting of ascending triads is presented in the major tonic, anticipating already the
“second theme”, which in the recapitulation appears in F major (C3, bb. 174 ff.).

C2, C3 and C4 are transposed a minor third downwards in comparison to the exposition.
Hence, in C2, which leads to C3 in the major tonic F major, the two tonal stable keys are
now the dominant C major and the tonic F minor. The second group is then presented in
the major tonic F major (C3, bb. 174 ff.). Finally, the cadential group (C4) re-establishes
the tonic F minor.

11.3.3 Development

The development (B) traditionally is the central section of sonata form where modulations
and thematic work take place. As new keys are a characteristic property of this section,
it usually shows a higher degree of tonal instability. A closer look at our visualization,
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Figure 11.5. Cross-version visualization for the development (bb. 65–135) of Beethoven’s Ap-
passionata Sonata.

however, reveals that the Appassionata’s development is not as different in its harmonic
structure from the exposition and the recapitulation as might be expected. Again four
parts can be distinguished which surprisingly resemble the four parts of the exposition:
first group (B1), transition (B2), second group (B3), cadential group (B4). Certainly,
especially the first part differs harmonically from the exposition, which is expressed by
the red and dark yellow passages in Figure 11.5: The descending triad of the very beginning
(often called the “main theme”) is presented firstly in A♭ minor (the tonality in which the
exposition ends), here notated as G♯ minor (bb. 65f.), then in F♭ major (bb. 67–68; notated
as E major) and so on. After a series of sequenced repetitions of the “interrupting” motif
from bars 3–4, the development properly starts with a series of sequences of the “main
theme” which range from E minor (bb. 79–80), G7 major (bb. 81–82, shown as G major), C
minor (bb. 83–84), E♭7 major (bb. 85–86, shown as E♭ major), to A♭ major (bb. 87–88), see
Figure 11.5. Beethoven then—strangely enough—repeats the transition (B2; bb. 93–109)
with its pedal, now on a♭, leading to the entrance of the “second theme” (B3; bb. 109–122)
in Db major. This section is followed by a sort of cadential group (B4; bb. 123–134),
which is almost entirely based on the diminished seventh chord e–g–b♭–d♭. Since we
only consider 24 chord categories in our procedure, this diminished seventh chord leads
to an inconsistent labelling in our visualization. Interestingly, the inconsistent labelling
concentrates more or less on chords which have as root note one of the notes belonging to
the diminished seventh chord. We will show in Section 11.5 how to account for diminished
seventh chords by suitably extending the set of chord categories. This diminished seventh
chord is changed to C7 major with suspended minor ninth (b. 132) before finally, C major
is reached (b. 134) preparing the entrance of the recapitulation (C).
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Figure 11.6. Cross-version visualization for the coda (bb. 204–262) of Beethoven’s Appassionata
Sonata.

11.3.4 Coda

The last large scale part of this first movement of the Appassionata is the coda, which,
having a length of 58 bars, is of equal importance as the other three parts. Its tonal centre
can be seen easily in Figure 11.6: the tonic F minor. In particular, D4 is clearly dominated
by this key, emphasising the tonic at the end of the movement. Here again, the second
group is present, now drawn into the sombre tonic of the movement as a whole, F minor.

11.4 Consistencies and Inconsistencies

The aim of our case study is not to present a presumably perfect automated analysis, but to
discuss the potential and also the problems of our procedure. Not only consistencies (red),
but also inconsistencies (yellow) in the visualization reveal interesting aspects of musical
relevance. Apparently, the “red” bars indicate musical sections where a certain chord is
clearly predominant. Even if we take possible errors of our approach into account, several
aspects revealed by the visualization are surprising. For example, before the recapitulation
(C), the tonic F minor (or major) and its dominant C major are present only in the first
section of the exposition (A1): F minor in bars 1–2 and 17–19, C major in bars 10 and
20–23. A closer look at the score shows that this is indeed correct. Apparently all “red”
bars can be related clearly to the indicated key and, vice versa, there seems to be no
other bar with a clear triadic structure, which is not shown in red. The absence of F
minor and major and its dominant C major seems to be a characteristic property of this
sonata movement. Figure 11.2 clearly shows that even in the first group of the exposition
(A1) these chords are scarcely present and that from the transition (A2) onwards they
disappear completely until their return in the first group of the recapitulation (C1). In
the recapitulation’s second group (C3), F major plays a significant role, whereas F minor
is pre-dominant in the coda, especially in its final part (D4). F minor appears like the
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centre of gravity, circled by a multitude of other harmonies, which come closer and closer
and finally fall back on this centre.
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Figure 11.7. Cross-version visualization for the development (bb. 65–135) of Beethoven’s Ap-
passionata Sonata. Here, 27 different chord templates (12 major, 12 minor, 3 diminished seventh
chords) are considered.

The next question is why in our visualization many bars of this sonata movement are
shown in yellow (indicating inconsistency). Generally, this may be either a problem of
our approach (e. g. local misclassifications) or a characteristic of the actual harmonies, or
both. One reason may be a plurality of chords within the chosen frame. In this case, the
change of the frame size from—in our case—one bar to a half bar or a dotted crotchet
(quarter note) may solve this problem. Other possible reasons may be additional notes
in the chords, such as appoggiaturas, trills or suspended notes, furthermore, incomplete
chords or chords that do not fit into the set of 24 chord categories. It may be concluded
that chords, which do not at all appear in our visualization, are likely to be more or less
absent. Thus, our visualization reveals the surprising fact that even tonalities that might
be expected in this F minor sonata movement are absent, for instance B♭ major, G major,
G minor, D major and D minor.

11.5 Model Assumptions

In our case study we have chosen certain model assumptions as simple as possible in
order to better illustrate the behaviour of automated methods. Note that, e. g., the set
of 24 chord categories or the basic template-based chord labelling procedure can be easily
replaced by other more complex or even simpler model assumptions. In general, the
underlying model assumptions should be adapted to the respective application, and the
appropriateness of the model should be discussed with musicologists. For example, in a
specific scenario the set of 24 chord categories may be inappropriate. Here, prior knowledge
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can be used to either restrict or extend this set to better match a specific application. In
the following, we give an example arising from our case study, which shows that the
adjustment of the model assumptions to the considered application scenario is of great
importance.

As our harmonic analysis in Section 11.3 has shown, the diminished seventh chords con-
sisting of three minor thirds do not fit with any of the 24 major and minor chords. In
our visualization, this necessarily leads to inconsistent patterns, thus concealing the im-
portance of this chord in this piece. This can best be seen in the last section of the
development (B4), where the diminished seventh chord e–g–b♭–d♭ dominates the piece,
see Figure 11.5.

In order to also account for the diminished seventh chords, one can extend the set Λ of
chord categories to comprise 27 elements: 12 major chords, 12 minor chords, and the 3
diminished seventh chords (up to enharmonic equivalence). In the following, these three
chords are denoted by dim7-1 (c–e♭–g♭–a), dim7-2 (c♯–e–g–b♭) and dim7-3 (d–f–a♭–b),
respectively. Then, 27 binary templates tλ are used instead of the 24 which were used
before. Figure 11.7 shows the cross-version visualization for the development, where now
27 different chord categories are considered. The vertical axis again represents the chord
categories, where now the 3 diminished seventh chords dim7-1, dim7-2, and dim7-3 are
arranged above the 24 major and minor chords (see the green box).

As the visualization directly reveals, the diminished seventh chord in the last section
(B4, bb. 123–131) is now consistently labelled in the expected way, namely as dim7-2.
Especially for bars 123–129 the chord labels across almost all versions agree on this chord,
so that almost no yellow passages are visible any longer. Furthermore, the visualization
now shows a second passage, bar 89–90, which is consistently labelled as the diminished
seventh chord dim7-1. Comparing this to the score, one finds out that indeed a clear dim7-1
is present in these bars. Consequently, the extension of the chord categories has led, at
least in this example, to a clear identification of passages where diminished seventh chords
are present. Furthermore, the consistently labelled passages, which were present when
considering only 24 chord categories, are still present when considering now 27 categories.
However, note that further enlarging the set of possible chord categories may also lead to
a deterioration of the results. Having more categories to choose from, also increases the
chance of misclassifications and hence of inconsistencies.

11.6 Aspects of Large-Scale Form

The visualization of the first movement of Beethoven’s Appassionata as seen in Figure 11.2
should not be regarded as the final result of our automated harmonic analysis, but as a
starting point for a deeper comprehension of this composition. Analysis, be it in fields
such as chemistry, physics or in the arts, is always a reduction to more or less isolated
aspects which then may be helpful for a better understanding of the whole. An additional
advantage of our approach is the possibility to visualize the harmonic structure of entire
movements. So, Figure 11.2 gives an overview of the first movement of the Appassionata.
The movement consists of four quite similar form parts. This has been observed before,
e. g. by Theodor W. Adorno, who compared the construction of this movement to four
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stanzas [1]. This, however, is misleading, as a strophic form would suppose a more or
less closed form of each “stanza”. Figures 11.2–11.6, however, show that all form parts
open with a section in which several keys are reached (A1, B1, C1, D1) and—with the
significant exception of the development (B), which ends on a diminished seventh chord
(dominant to the tonic F minor) in B4, see Figure 11.5—only at the end come to a clear
harmonic position. Thus, all four parts seem to go through a process of establishing a key.
Furthermore the visualization reveals that the “second theme” appears in the exposition
in A♭ major (A3, bb. 35 ff.), in the development in D♭ major (B3, bb. 109 ff.), in the
recapitulation in F major (C3, bb. 174 ff.) and finally in the coda twice: in D2 again in
D♭ major as in the development, and then finally in D4 (bb. 239 ff.) “più allegro” in F

minor, being drawn here from its former “far regions” into the F minor key of the entire
movement. Our analysis shows that this key is clearly dominant only in this final section
of the sonata movement. Here, at the end, the “second theme” is revealed as the actual
“main theme” of this movement, whereas the “first theme” (or “first group”) has a more
introductory character. Three times this “introduction” and the subsequent transition
with its pedal lead towards a sort of a visionary “second theme”, before turning to a
minor key (A and C) or a diminished seventh chord (B). Only at the end, in the coda,
this “second theme” is drawn into the main key; it loses its visionary character, gaining
tonal authenticity.

11.7 Conclusions and Perspectives

This case study on Beethoven’s Appassionata should be seen as an example scenario to
illustrate how automated methods and visualizations may assist musicologists in their work
while serving as a source of inspiration. Contrary, by means of a concrete and detailed
harmonic analysis, we indicated challenges and limitations of automated chord recognizers.

The visualization of harmonically stable and instable passages on a musically meaningful
time axis (given in bars and not in seconds as is usually the case when analysing recorded
performances) often reveals harmonically relevant structures, which can then be studied in
greater detail based on a score representation. The presented automated approach allows
for large-scale harmonic analyses on the basis of extensive recorded music corpora. In this
way, our approach may efficiently support harmonic analyses of entire work cycles. At
present, we are working on the entire corpus of Beethoven’s piano sonatas, see Chapter 12.
Here, our visualizations serve as the starting point for a comparison of harmonic structures
within particular sonatas and also across different movements and pieces.

Finally, we want to emphasise two advantages of the presented procedure. Firstly, the
visualization is a meaningful reduction of the score. The principle of reducing tonal music
has already been established by methods using e. g. Schenkerian analysis [45]. The reading
of a score requires high musical skills, and—what is even more important—the analysis of
harmonic developments in a score is obfuscated by a huge amount of different information
including melody, thematic processes, phrasing, dynamics, and instrumentation. The pro-
cedure presented here enables a considerably easier reading of harmonic developments and
may serve as a useful tool, which, by the way of reduction and large-scale visualization,
may offer new insights. Secondly, it becomes possible to perform harmonic analyses with
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a speed and a degree of objectivity which is not feasible in a purely manual fashion. Tra-
ditional analysis is based on more or less “subjective” impressions of reading, performing
or listening with all its multiple features—certainly adequate forms of reception. On the
contrary, the results of our cross-version chord labelling approach are on the one hand
clearly a reduction, but on the other hand can claim to be not an interpretation but to be
based on physical facts. The intention is not the reduction of musicology to “objectivity”,
but to use objectively verifiable facts for the reassessment of established interpretations
and the opening of new perspectives.



118 CHAPTER 11. EXPLORING HARMONIC STRUCTURES



Chapter 12

Large-Scale Analysis of Harmonic

Structures

In this chapter, we show how our cross-version approach for harmonic analysis enables for
large-scale analyses of harmonic structures. Based on a cross-version voting strategy, as
presented in Chapter 10, we derive statistics of the appearance of tonal centers across the
entire corpus of Beethoven’s piano sonatas. Performing a structure-oriented analysis of
tonal centers according to the different parts of sonata form, we investigate the appear-
ance of tonal centers in the different form parts of particular piano sonatas. Furthermore,
computing and visualizing the statistics of tonal centers relatively to the key of the consid-
ered sonata, we are able to compare the statistics across different sonatas. Analyzing the
average appearance of tonal centers for the sonatas of the early, middle and late period,
separately, we reveal commonalities, differences and trends in the appearance of tonal
centers across the entire work cycle.

This chapter is organized as follows. First, we describe the scenario of Beethoven’s piano
sonatas (Section 12.1). In our experiments, we use a cross-version voting strategy for
deriving statistics of the appearance of tonal centers, which we analyze across the complete
work cycle (Section 12.2). Finally, we conclude in Section 12.3.

12.1 Description of the Scenario

In this section, we decribe the scenario our experiments are based on. First, we give an
introduction to the work cycle of Beethoven’s piano sonatas (Section 12.1.1). Afterwards,
we describe the dataset used in our experiments (Section 12.1.2). Finally, we introduce
the Meta-MIDI annotation format, which enables for a musically meaningful evaluation
across the entire work cycle (Section 12.1.3).

119
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12.1.1 Beethoven’s Piano Sonatas

The corpus of Beethoven’s piano sonatas can be seen as one of the highlights in music
history. Until now, numerous musicological studies have been performed which investigate
several aspects of Beethoven’s piano sonatas [49, 72, 84]. Furthermore, these sonatas
belong to the standard repertoire of many pianists resulting in numerous recordings of the
complete work cycle. The corpus comprises 32 different sonatas, which generally contain
three to four different movements — there are also sonatas which only consist of two
movements. From a historical point of view, the 32 sonatas are often divided into three
different classes corresponding to three time phases in which they were composed. This
division into three phases is based on a certain development in the compositional properties
across all 32 sonatas. As the transition between the three phases is smooth, there does
not exist a unique division. In the following, we assume the division into three phases
as shown in Table 12.1. In the first phase (1795-1800), which corresponds to the early
period of Beethoven’s piano sonatas, Beethoven takes up prevalent Classical principles
and develops them further. In the second phase (1801-1814) musical form principles are
already questioned and an individualization of the movements starts. Finally, the third
phase (1816-1822) comprising Beethoven’s late sonatas is characterized by the release of
prevalent rules concerning musical form, by complex compositional properties as well as
high technical requirements of the performing pianist.

In our experiments, we will focus on the first movements of Beethoven’s piano sonatas due
to the following reasons. The first movements of Classical sonatas are from the musico-
logical point of view of particular interest. Furthermore, they typically follow sonata form
which means that they can be subdivided into certain form parts: exposition, develop-
ment, recapitulation and coda. These form parts again follow certain musical principles
concerning structural aspects as well as harmonic aspects. In the following, we shortly
summarize harmonic principles of Classical sonata form which are fundamental for the
subsequent evaluation. In this context, we have to distinguish between sonatas in major
and sonatas in minor. We first refer to sonatas in major. Here, in the exposition the
first theme is represented in the tonic, whereas the second theme is represented in the
dominant. Afterwards, in the development typically distant keys are reached which were
not present before. In the recapitulation the first and the second theme are then presented
both in the tonic which resolves the previous harmonic conflict between the two themes.
As a consequence, the tonic is typically the prevalent key in the recapitulation. If a coda
exists, the tonic is usually stabilized again resulting in a predominance of tonic and domi-
nant. For sonatas in minor the main difference is that in the exposition the second theme
is usually presented in the tonic parallel and not in the dominant as in the major case.
Consequently, the main keys appearing in the exposition of a minor sonata are the tonic
and the tonic parallel.

12.1.2 Dataset

In our experiments, we perform the cross-version chord labeling for the first movements
of the entire corpus of Beethoven’s piano sonatas. Table 12.1 shows an overview of all 32
sonatas, where for each sonata the number of the sonata, the opus number, the respec-
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No. Piece Name # bars Length in seconds Remarks

1 Op002No1 - 304
1 2 3 4 5 6 7

i) –
329 226 209 378 210 337 260

2 Op002No2 - 668
1 2 3 4 5 6 7

i) –
410 439 651 435 378 416 444

3 Op002No3 - 347
1 2 3 4 5 6 7

+
603 623 619 619 586 617 639

4 Op007 - 497
1 2 3 4 5 6 7

+
525 477 510 520 445 498 425

5 Op010No1 - 388
1 2 3 4 5 6 7

+
351 353 329 348 291 323 316

6 Op010No2 - 404
1 2 3 4 5 6 7

i) –
374 366 517 323 296 342 302

7 Op010No3 - 468
1 2 3 4 5 6 7

+
413 428 428 414 384 473 415

8 Op013 - 431
1 2 3 4 5 6 7

ii) +
513 572 526 580 494 508 602

9 Op014No1 - 222
1 2 3 4 5 6 7

+
631 408 381 445 374 365 408

10 Op014No2 - 263
1 2 3 4 5 6 7

+
400 431 466 476 414 394 420

11 Op022 - 267
1 2 3 4 5 6 7

+
419 447 470 444 408 465 426

12 Op026 - 219
1 2 3 4 5 6 7

iv) +
434 526 435 519 408 436 414

13 Op027No1 - 106
1 2 3 4 5 6 7

iii), iv) +
332 335 302 276 302 321 292

14 Op027No2 Moonlight 69
1 2 3 4 5 6 7

iv) +
369 395 304 362 384 315 359

15 Op028 - 622
1 2 3 4 5 6 7

+
637 675 540 649 538 546 517

16 Op031No1 - 436
1 2 3 4 5 6 7

+
382 394 424 368 355 388 372

17 Op031No2 - 320
1 2 3 4 5 6 7

ii) +
512 526 499 535 425 540 461

18 Op031No3 - 341
1 2 3 4 5 6 7

+
516 524 547 533 471 482 510

19 Op049No1 - 143
1 2 3 4 5 6 7

+
251 285 317 - 296 221 214

20 Op049No2 - 174
1 2 3 4 5 6 7

+
277 284 288 290 256 267 273

21 Op053 Waldstein 387
1 2 3 4 5 6 7

+
680 692 619 649 564 627 579

22 Op054 - 154
1 2 3 4 5 6 7

iv) +
350 357 315 370 312 346 307

23 Op057 Appassionata 262
1 2 3 4 5 6 7

+
578 639 637 - 455 575 449

24 Op078 - 206
1 2 3 4 5 6 7

iii) +
435 413 440 443 377 388 406

25 Op079 - 372
1 2 3 4 5 6 7

+
281 278 310 285 267 253 253

26 Op081a Les Adieux 308
1 2 3 4 5 6 7

ii), iii) +
448 470 423 441 359 424 452

27 Op090 - 245
1 2 3 4 5 6 7

+
346 373 379 348 271 322 248

28 Op101 - 102
1 2 3 4 5 6 7

+
267 269 215 253 220 247 211

29 Op106 Hammerklavier 530
1 2 3 4 5 6 7

+
660 784 694 702 568 679 578

30 Op109 - 101
1 2 3 4 5 6 7

ii), iii) +
254 259 224 234 198 210 201

31 Op110 - 116
1 2 3 4 5 6 7

+
400 453 366 410 363 378 345

32 Op111 - 209
1 2 3 4 5 6 7

ii) +
604 601 543 542 516 547 547

Table 12.1. Overview of the dataset comprising the first movements of the 32 piano sonatas by
Beethoven. The table shows for each movement the title of the work, the number of bars, the
lengths of the seven considered versions (1: Ashkenazy, 2: Barenboim, 3: Bilson, 4: Brendel, 5:
Gulda, 6: Jando, and 7:MIDI) and some important remarks (i) Structural differences between the
versions, ii) MIDI version contains part-wise tempo changes, iii) Time signature changes, iv) Not
in sonata form). The last column indicates if the movement is used in the experiments (+) or not
(–). The borders of the three compositional phases are indicated by double horizontal lines.

tive name, and the number of bars is indicated. For each sonata movement we consider
seven different versions (six recorded performances and one MIDI representation). The
table shows for each of the versions the respective length in seconds. Furthermore, certain
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characteristics of the respective sonata movement are indicated in the form of remarks.
First, for three of the sonatas the available versions structurally differ from each other in
the sense that certain form parts are repeated only in some of the versions. Therefore,
these three movements are not considered in the following evaluation. Second, some of the
sonata movements contain subsequent parts which extremely vary concerning the underly-
ing tempo. Our experiments showed that these sudden tempo changes lead to inaccuracies
in the underlying synchronization procedure. Therefore, we adapted the tempo of the re-
spective MIDI version so that it contains sudden tempo changes but follows a constant
tempo for the respective parts. Third, some of the sonatas contain time signature changes
which is on the one hand of musical interest, on the other hand makes the extraction of
bar borders from the MIDI version problematic since the length of a bar is not constant.
Fourth, four of the sonata movements in the second phase do not follow sonata form.

12.1.3 Meta-MIDI Annotation Format

In our cross-version approach, we transform the time axis of audio-based analysis results
to a musically meaningful time axis in bars. Therefore, in a first step, we have to extract
bar or beat positions from the MIDI representation. However, for a given piece of music
the extracted beat positions from a MIDI file often deviate from the musical beat posi-
tions since the MIDI format typically does not contain any musical information about the
length of a beat. Furthermore, there is no general convention to specify upbeats in a MIDI
file. Problems appear also for the extraction of bar borders in the case that a piece of
music contains time signature changes. To account for these problems and to enable for
a musically meaningful evaluation across the corpus of Beethoven’s piano sonatas, we de-
veloped the Meta-MIDI annotation format. This format allows to store meta information
about the considered piece of music as e. g. time signature changes, upbeat information,
the length of a musical beat, changes in the length of a musical beat within the piece, the
number of measures and structural annotations, as e. g. annotations of the different parts
of sonata form. The format is designed in such a way, that it enables musicologists to
conveniently annotate the considered piece of music based on the score.

12.2 Experiments

In the following experiments, we first describe how to derive statistics of tonal centers
using a cross-version voting strategy (Section 12.2.1). Afterwards, we exemplarily analyze
statistics of tonal centers according to the different form parts of sonata form for several
piano sonatas (Section 12.2.2). Finally, we perform an analysis of the appearance of tonal
centers across the three phases of the work cycle (Section 12.2.3).

12.2.1 Statistics of Tonal Centers

We now use a cross-version voting strategy as described in Section 10.1. We therefore,
introduce a consistency parameter ν ∈ [0, 1] and consider only bars which are labeled
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Figure 12.1. Proportion of remaining bars in dependency of the considered degree of consistency
in the cross-version voting strategy. The three curves show the average proportion of remaining
bars for the three phases based on different consistency parameters ν from 4

7
to 1.

consistently for more than (ν · 100)% of the versions, whereas all other bars are left unan-
notated. As we have shown, increasing the consistency parameter ν leads to an increase
of the precision values. In this context, our experiments in Section 10.3 documented that
a consistency parameter ν = 0.5 already led to high precision values of more than 90% for
three of four considered pieces.

After having applied the cross-version voting strategy, the remaining bars tend to be
harmonically stable and correspond with high probability to correctly labeled bars. Fig-
ure 12.1 shows the number of remaining, i. e. consistently labeled bars, in dependency
of the consistency parameter ν. Here, the horizontal axis corresponds to the degree of
consistency, whereas the vertical axis shows the number of remaining bars in proportion
to the number of all bars of the piece. Each of the three curves shows for a certain phase
for different consistency parameters ν the mean value of remaining bars over all sonatas
contained in this phase. For example, considering only bars which are consistently labeled
for at least four out of seven versions approximately 70% of the bars remain in average
for the sonatas of Phase I. In other words, for the sonatas in Phase I 70% of the bars
are consistently labeled across four out of seven considered versions. Figure 12.1 shows
that for all three phases the number of remaining bars decreases with increasing consis-
tency parameter ν. Considering only bars being labeled consistently across all versions,
for all three phases approximately 15% of the bars are left. Furthermore, a comparison of
the three curves shows that the curve for Phase I and Phase II are very similar to each
other. However, the curve for Phase III strongly differs from the two other curves. As the
visualization reveals the late sonatas of Phase III contain in average approximately 5%
less consistently labeled passages than the sonatas in the two earlier periods. Since the
sonatas of the late period are characterized by complex harmonic structures tonal centers
may appear less often in Phase III than in the two other phases.

Based on the cross-version voting strategy, we now compute statistics which show the
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Figure 12.2. Statistics of tonal centers for Op049No2 based on two different consistency pa-
rameters ν. The left column (a-d) shows statistics for ν = 0.5, whereas in the right column (e-h)
ν = 1 is used. (a) Statistics for the entire movement, ν = 0.5. (b) Statistics for the exposition,
ν = 0.5. (c) Statistics for the development, ν = 0.5. (d) Statistics for the recapitulation, ν = 0.5.
(e) Statistics for the entire movement, ν = 1. (f) Statistics for the exposition, ν = 1. (g) Statistics
for the development, ν = 1. (h) Statistics for the recapitulation, ν = 1.

distribution of the 24 major and minor chords among the consistently labeled bars for a
certain consistency degree ν. In this way, we aim to measure the proportion of the 24 keys
among the appearing tonal centers.

In the following, we investigate the influence of increasing the consistency parameter ν
on the statistics of tonal centers. Figure 12.2 shows statistics for several form parts of
Op049No2 using two different parameter settings for ν. In the left column we used the
consistency parameter ν = 0.5, whereas in the right column ν = 1. The vertical axis
of the visualizations shows the proportion of the chords among all consistently labeled
bars. The horizontal axis corresponds to the 12 root notes of the 24 chords, from C to B.
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The respective major and minor chords are visualized next to each other, where blue bars
correspond to major chords and red bars to minor chords.

We now compare the statistics for ν = 0.5 with the statistics for ν = 1. The visualizations
show that considering a rather low consistency parameter ν = 0.5 the distributions of tonal
centers spread. For example, the visualization of the statistics for the entire movement,
see Figure 12.2a, clearly reveals the tonal centers D major (29%) and G major (41%).
However, there are many other keys which appear in the visualization as possible tonal
centers but amount to less than 10%: C major, D minor, E major, E minor, F major, F♯
minor, A major, A minor, B major, and B minor. Using the maximal consistency parameter
ν = 1 a kind of stabilization of the statistics is achieved. The chords, which were only
scarcely present using a lower consistency degree now disappear and only the chords which
are consistently labeled across all versions remain. In this way, only four of the previously
twelve appearing tonal centers are left: D major, G major, A minor and B major. The same
effect can be observed for the exposition, development and recapitulation of the sonata,
see Figure 12.2. This shows that computing chord statistics based on the cross-version
voting strategy leads to a meaningful identification of tonal centers.

12.2.2 Examples

In the following experiments, we set ν = 0.7 so that we consider only bars which are
labeled consistently for more than 70% of all versions, i.e. which are labeled consistently
for five out of the seven considered versions. This parameter setting seems to be a good
choice since we aim on the one hand to investigate passages of high harmonic stability
and on the other hand we want to keep still a sufficient number of bars. As Figure 12.1
shows, for ν = 0.7 the remaining bars for Phase I and Phase II still amount in average to
50% and for Phase III to 40% of all bars.

As a first example we use again Op049No2. Figure 12.3 shows statistics of tonal centers
for this movement based on the consistency parameter ν = 0.7. In Figure 12.3a, the
distribution of the 24 chords among the consistently labeled bars is visualized for the
entire first movement. As the visualization directly reveals, the main tonal centers for
the first movement of this sonata are G major (48%) and D major (32%). This is the
distribution of keys one would expect for a typical Classical sonata in major. The tonic
represented in this case by G major and the dominant represented by D major are of central
harmonic importance in sonata form.

We now perform a structure-oriented analysis of tonal centers, where we consider each
part of sonata form separately. Performing the analysis of tonal centers according to the
different form parts is of great musicological meaning since each form part is characterized
by the appearance of certain harmonies. Figure 12.3b shows the distribution of the keys
for the exposition. Similarly to the distribution of the entire movement the tonic G major
(47%) and the dominant D major (42%) are the prevalent tonal centers. However, one
notices that the dominant D major appears in the exposition more often as tonal center
reaching a value of 42% in comparison to 32% considering the entire movement. This can
be explained by the fact, that the dominant as the key of the second theme is of central
importance for the exposition, whereas the distribution of the entire movement also takes
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Figure 12.3. Statistics of tonal centers for Op049No2 based on the consistency parameter
ν = 0.7. (a) Statistics for the entire movement. (b) Statistics for the exposition. (c) Statistics for
the development. (d) Statistics for the recapitulation.

into account the appearance of the second theme in the tonic in the recapitulation. A
comparison to the cross-version visualization, see Figure 12.4, shows that indeed G major
and D major are the prevalent chords in the exposition.

Figure 12.3c shows the distribution for the development of the sonata. Here, B major
(50%), A minor (33%) and D minor (17%) appear as main tonal centers. Furthermore,
according to our statistics these keys were not reached before in the exposition. The cross-
version visualization, see Figure 12.4, underlines the appearance of these tonal centers. In
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Figure 12.4. Cross-version visualization for Op049No2.

fact, B major seems to be the main tonal center appearing in bars 111-115.

Finally, the statistics for the recapitulation are shown in Figure 12.3d. It is obvious, that
the tonic G major appears now as the main tonal center with a proportion of 70%. Here,
the reason is that the first and the second theme are now both presented in the tonic,
which is revealed by the cross-version visualization, see Figure 12.4.

The previously described example has turned out to be a sonata following the rules of
Classical sonata form. In the following, we exemplarily show how the visualization of the
statistics of tonal centers helps to identify sonatas which deviate from certain rules or
more generally said, which are characterized by individual harmonic properties.

As next example we consider Op028. Figure 12.5 shows statistics of tonal centers appear-
ing in the different form parts of the sonata. In the left column the previously introduced
visualization is shown for the entire movement, the exposition, the development, the re-
capitulation and the coda. Here, the keys are denoted in an absolute way, facilitating the
deeper analysis of tonal centers in the cross-version visualization. However, for a compar-
ison of different piano sonatas in different keys, which we actually aim to, it is meaningful
to compute and visualize the keys of the tonal centers in a relative way based on tonal
functions. Such a visualization of the statistics is shown in the right column of Figure 12.5.
Here, the horizontal axis again shows the 24 major and minor chords but now relatively
to the key of the considered sonata. Hence, the axis is shifted in the sense that it starts
with the root note of the tonic. The axis labels indicate on the one hand a semitone index,
which corresponds to the number of semitones of the interval between the root note of
the tonic and the root note of the respective chord. On the other hand, the axis labels
indicate the scale degree, here, the degree of the major scale. For example I, IV, and V
correspond to the tonic, subdominant and dominant, respectively.

Op028 is a sonata in D major. As the statistics of tonal centers for the exposition in
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Figure 12.5. Statistics of tonal centers for Op028. In the left column (a-e) the chords are
visualized in an absolute way, whereas in the right column (f-j) the chords are visualized relatively
to the key of the considered sonata (D major). (a) Statistics for the entire movement. (b) Statistics
for the exposition. (c) Statistics for the development. (d) Statistics for the recapitulation. (e)
Statistics for the coda. (f) Statistics for the entire movement. (g) Statistics for the exposition. (h)
Statistics for the development. (i) Statistics for the recapitulation. (j) Statistics for the coda.

Figure 12.5b and Figure 12.5g show, the main tonal centers in the exposition are the tonic
D major (29%) and the dominant A major (30%). However, two further tonal centers
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Figure 12.6. Cross-version visualization for the exposition of Op028.
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Figure 12.7. Cross-version visualization for the development of Op028.

appear in the visualization: the counter parallel F♯ minor (semitone index 4, degree III)
amounting to 12% and its dominant C♯ major (semitone index 11), which corresponds to
the major chord on degree VII of the D major scale and amounts to 11%. The appearance
of these two tonal centers seems to be characteristic for this sonata. We now analyze the
four appearing tonal centers in the cross-version visualization, see Figure 12.6. As the
visualization reveals, the first theme (bb. 1-39) is clearly dominated by the tonic D major.
The second theme starts in bar 63. From this bar on, the cross-version visualization reveals
a consistent labeling for C♯ major and F♯ minor in change. A comparison with the score
shows that indeed the second theme in its first appearance (bb. 63-76) is dominated by F♯
minor and its dominant C♯ major. It only contains a concluding bar in the dominant A
major. In bar 77 a long cantabile enters starting clearly in C♯ major before it continues
in bar 91 in the actual dominant A major. Now the main tonal centers are A major, in
change with F♯ minor and D major. Finally, in bar 101 the dominant A major appears as
the main tonal center until the end of the exposition.
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Figure 12.8. Cross-version visualization for the recapitulation of Op028.
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Figure 12.9. Cross-version visualization for the coda of Op028.

The main tonal center of the development shown by the statistics in Figure 12.5c and Fig-
ure 12.5h seems to be F♯ major (47%). A comparison with the cross-version visualization,
see Figure 12.7, shows that F♯ major appears as tonal center from bars 389 to 418. In fact,
the score reveals that in this passage a clear F♯ major chord is present.

The statistics for the recapitulation, see Figure 12.5d and Figure 12.5i, show that it is
obviously dominated by the tonic D major (52%). A comparison with the cross-version
visualization in Figure 12.8 reveals that the second theme now finally appears in the tonic
from bar 545 on. However, in its first appearance (bb. 499 ff.) it is mainly colored by the
keys F♯ major and B minor amounting to 7% and 11%, respectively.

The statistics for the coda, see Figure 12.5e and Figure 12.5j, reveal the tonic D major as
main tonal center. 75% of the consistently labeled bars obviously correspond to D major.
The cross-version visualization, see Figure 12.9, as well as the score affirm the clearly
presence of D major in the entire coda showing that finally the tonic is stabilized in the
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Figure 12.10. Statistics of tonal centers for Op031No2. In the left column (a-e) the chords are
visualized in an absolute way, whereas in the right column (f-j) the chords are visualized relatively
to the key of the considered sonata (D minor). (a) Statistics for the entire movement. (b) Statistics
for the exposition. (c) Statistics for the development. (d) Statistics for the recapitulation. (e)
Statistics for the coda. (f) Statistics for the entire movement. (g) Statistics for the exposition. (h)
Statistics for the development. (i) Statistics for the recapitulation. (j) Statistics for the coda.

end of the movement.
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As an example for a sonata in minor, we now consider Op031No2. Figure 12.10 presents
statistics of tonal centers for this sonata. In the left column, the keys are visualized
absolutely, whereas in the right column the keys are visualized relatively to the key of the
sonata, D minor. Note, that the degrees indicated by the horizontal axis now refer to the
degrees of the minor scale. The visualizations of the statistics for the entire movement,
see Figure 12.10a and Figure 12.10f, reveal as main tonal centers the tonic D minor (24%),
the dominant A major (19%) and the minor variant of the dominant, A minor (18%).
The high proportion of the last mentioned chord is a little surprising. Referring to the
statistics of tonal centers for the exposition, see Figure 12.10b and Figure 12.10g, we notice
that obviously, the minor dominant A minor plays an important role in the exposition
amounting to 31%, aside from the tonic D minor (21%). A comparison to the cross-
version visualization and the score reveals that, indeed, the second theme appears in the
exposition in the minor dominant A minor— for sonatas in minor the second theme is
typically represented in the exposition in the tonic parallel.

In the development, the main tonal centers are the tonic D minor (17%), the dominant
A major (24%) and the parallel of the dominant F♯ minor (semitone index 4, 18%), see
Figure 12.10c and Figure 12.10h.

In the recapitulation the tonic now is represented as the main tonal center (35%) together
with the dominant A major amounting to 23%, see Figure 12.10d and Figure 12.10i. A
comparison with the score shows that the second theme is now likewise represented in the
tonic.

Finally, the coda clearly reveals the tonic D minor (100%) as tonal center, see Figure 12.10e
and Figure 12.10j. As the score reveals the coda stabilizes the tonic in the end of the
movement, containing D minor as the clear tonal center.

12.2.3 Tonal Centers across the Three Phases

After having investigated tonal centers for particular sonatas we now aim to perform the
analysis of tonal centers across the three phases. In this context, our goal is to reveal
commonalities, differences and trends in the appearance of tonal centers across the entire
corpus of Beethoven’s piano sonatas. Furthermore, we will analyze the tonal centers for
the different parts of sonata form separately, revealing trends in the appearance of tonal
centers in the different form parts across the three phases.

Table 12.1 shows the division of the sonatas into the three phases. Since in the following
evaluation we are interested in a structure-oriented analysis of tonal centers we keep for
the three phases only the sonata movements which follow sonata form. Furthermore, as
sonatas in major and sonatas in minor follow different harmonic principles, we perform a
separate evaluation of the major and the minor sonatas. In this way, we evaluate in total
25 piano sonatas, 18 major sonatas, among 6, 8 and 4 belong to Phase I, Phase II, and
Phase III, respectively, and 7 minor sonatas among 2, 4 and 1 belong to Phase I, Phase
II, and Phase III, respectively.

Based on the computation of statistics of tonal centers relatively to the key of the con-
sidered sonata we are able to directly compare the appearance of tonal centers across the
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Figure 12.11. Mean distributions of tonal centers across the three phases for sonatas in major
considering the entire movements (a-c), the expositions (d-f), the developments (g-i), the recapitu-
lations (j-l). (a) Phase I (entire movements). (b) Phase II (entire movements). (c) Phase III (entire
movements). (d) Phase I (expositions). (e) Phase II (expositions). (f) Phase III (expositions). (g)
Phase I (developments). (h) Phase II (developments). (i) Phase III (developments). (j) Phase I
(recapitulations). (k) Phase II (recapitulations). (l) Phase III (recapitulations).
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Figure 12.12. Overview of the statistics of tonal centers for all considered sonatas in major. Here,
statistics are shown for the entire movement, and the different form parts exposition, development,
and recapitulation. The horizontal black lines on the left indicate the borders of the phases.
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Figure 12.13. Overview of the statistics of tonal centers for all considered sonatas in minor. Here,
statistics are shown for the entire movement, and the different form parts exposition, development,
and recapitulation. The horizontal black lines on the left indicate the borders of the phases.

entire corpus of piano sonatas. In a first step, we compute the distribution of the 24 keys
among the consistently labeled bars based on the consistency parameter ν = 0.7. In a
second step, we compute a mean distribution of the 24 keys for each of the three phases
separately, by averaging over the distributions of the sonatas contained in the respective
phase. In this way, we obtain statistics about the average appearance of the 24 keys as
tonal centers for the sonatas in a particular phase.

We start our evaluation with the sonatas in major. Figure 12.11 shows mean distributions
of tonal centers for the three phases and the different form parts. For a comparison to the
distributions of tonal centers for the particular sonatas of the three phases, which might
deviate from the mean distribution, Figure 12.12 presents the distributions of tonal centers
for all movements and form parts in an overview. We now first refer to statistics concerning
the entire sonata movements. Figures 12.11a, b, and c show the mean distributions of tonal
centers for Phase I, Phase II, and Phase III, respectively. Comparing the statistics for the
three phases shows that they do not substantially differ from each other. Across all three
phases, the tonic and the dominant seem to be the clear tonal centers of the entire sonata
movements.

We now perform the analysis for the different parts of sonata form separately. In Fig-
ures 12.11d, e, and f the mean distributions of tonal centers for Phase I, Phase II, and
Phase III, respectively, are visualized, where only the exposition is considered. As the
visualizations reveal, the tonic and the dominant, as the keys of the first and the second
theme, again seem to be of central importance across all phases. However, one notices
that the proportion of the secondary dominant (semitone index 2, major chord on degree
II) decreases across the three phases, amounting to 14% in Phase I, 10% in Phase II and
6% in Phase III. The secondary dominant, as the dominant of the dominant, may be im-
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portant in the harmonic context of the second theme. The decrease of its appearance as
tonal center possibly is an indicator of a process of blurring the clear harmonic structures
from the early sonatas to the late sonatas.

Figures 12.11g, h, and i show the mean distributions of tonal centers for Phase I, Phase II,
and Phase III, respectively, where the development is considered. First, one notices that
the distributions of tonal centers for all three phases widely spread. This is not surprising,
since the development is typically characterized by the appearance of novel harmonies
which were not reached in the exposition. Therefore, tonal centers of the development
may vary greatly across the sonatas. However, the multitude of tonal centers decreases
across the three phases so that the sonatas of Phase III seem to agree more or less on
the appearance of certain tonal centers, mainly the dominant (17%) and the tonic parallel
(semitone index 9, degree VI, 23%). Furthermore, one notices that the appearance of
the minor tonic, corresponding to the key appearing the second often in Phase I (13%)
decreases across the three phases to amount only 2% in Phase III. On the contrary, the
appearance of the tonic parallel (semitone index 9, degree VI) increases across the three
phases. It amounts to 2% in Phase I, 6% in Phase II and finally it seems to be of great
importance for the sonatas of Phase III, amounting to 23%.

Figures 12.11j, k, and l show the mean distributions of tonal centers for Phase I, Phase
II, and Phase III, respectively, where the recapitulation is considered. The visualizations
mainly reveal two interesting aspects. First, the dominant seems to become less important
across the three phases, decreasing from 22% in Phase I, to 14% in Phase II and 5% in
Phase III. Second, the rather distant chord functionally corresponding to the parallel of
the minor subdominant (semitone index 8), which amounts to only 1% and 0.05% in Phase
I and Phase II, respectively, seems to be of great importance for the sonatas in Phase III,
reaching a proportion of 21%.

Since the available sonatas in minor only amount to 7 sonatas among 2, 4 and 1 belong
to Phase I, Phase II, and Phase III, respectively, the mean distributions for the particu-
lar phases might be statistically not relevant. However, Figure 12.13 shows the statistics
of tonal centers for all minor sonatas in an overview. Here, a comparison of tonal cen-
ters across the sonatas reveals individual characteristics of certain sonatas. For example,
Op049No1 is the only sonata for which in the development only tonal centers in major
keys are reached. Furthermore, in the exposition of Op090 the minor dominant appears
as main tonal center as it is the case in the previously discussed Op031No2. A compar-
ison with the score shows, that indeed, in Op090 the second theme is likewise presented
in the minor dominant similar to Op031No2.

12.3 Conclusions

In this chapter, we showed how the cross-version approach for harmonic analysis may
efficiently support musicologists in analyzing tonal centers across large music corpora.
Analyzing the occurrence of tonal centers for the different form parts of sonata form
across the entire work cycle of Beethoven’s piano sonatas, we revealed commonalities,
differences and trends in the appearance of tonal centers. In this way, we demonstrated
how the presented statistics of tonal centers may offer musicologists new perspectives of
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analysis, in particular across large music corpora. In the future, we plan to analyze tonal
centers across even larger and more complex musical works, as e. g. the corpus of Wagner’s
operas. Here, due to the vast amount of data, a purely manual harmonic analysis is hardly
possible. Furthermore, being characterized by complex harmonies and rich orchestrations,
the detection of large-scale harmonic relations within and across the operas becomes a
challenging task.
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Chapter 13

Conclusion

This thesis has presented several automated methods and novel concepts which are aimed
at bridging the gap between MIR and musicology. We now first reflect on general problems
which appear when dealing with automated methods in this interdisciplinary context and
then present our vision of a meaningful development of MIR in the future.

Automated methods do not work flawlessly—when dealing with automated methods one
always has to account for possible inaccuracies in the underlying extraction step. Here,
a further problem is that it is often unclear if an existing error is due to inadequacies in
the underlying automated procedure or due to intrinsic musical reasons. For example,
the automated extraction of tempo parameters has shown that an obvious change in the
tempo curve may either point to inaccuracies in the underlying synchronization procedure
or to an actual tempo change of the performer. A possibility to smooth out extraction
errors is to perform large-scale analyses as applied in the context of our cross-version
approach for harmonic analysis. Here, multiple versions of the same piece of music were
exploited to stabilize the analysis results so that consistencies across the analysis results
are indicators for correct labeling results. In the future, such a cross-version approach
might also be of interest in the context of the extraction of tempo parameters from audio
recordings. Here, consistencies in the tempo curves across several recorded performances
may show common tendencies in the tempo shaping across all performers. By comparing
individual tempo curves for specific recorded performances with the cross-version tempo
analysis result, commonalities and differences in the playing style of several performers,
which is the actual aim of performance analysis, could possibly be identified.

The possibility of smoothing out local inaccuracies in the analysis results is opposed to a
detailed analysis, which is often of particular interest in musicology. Performing such fine-
grained analyses is often not possible with current automated methods. For example, fine
tempo nuances can not be revealed by the tempo curve based on the described automated
procedure for extracting tempo parameters. However, these fine agogic deviations of the
underlying tempo are of particular interest for analyzing a performer’s individual playing
style.

A further fundamental problem is that automated methods are often applied although the
definition of the underlying task is not clear and, furthermore, from a musical point of

139
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view not meaningful. For example, a beat-wise computation of tempo is not meaningful
when considering musical works of the Romantic period, where the tempo shaping on a
rather coarser level, i.e. measured over a larger time window, is of interest. Furthermore,
extracting chords from a piece of music which consists of broken chords does not make
sense when considering a time window being too small to capture all particular notes of
the chord. Therefore, a musically meaningful definition of the task is of great importance
for deriving significant information from MIR methods. To ensure that the employed
framework is musically meaningful the definition of the task and the choice of appropriate
model assumptions should be discussed in collaboration with musicologists.

Furthermore, problems appear for the evaluation of automated methods due to the lack
of appropriate ground truth data. For example, for chord labeling only ground truth
annotations for popular music are available, whereas from the musicological point of view
harmonic structures appearing in Classical music are of particular interest. In this thesis,
we therefore generated the ground truth chord annotations by ourselves. However, to
enable evaluations on large audio collections of Classical music, it would be desirable that
corresponding chord annotations are available. Here, our proposed method for transferring
score-based ground truth annotations to audio-based annotations and vice versa enables
a music expert to conveniently annotate a piece of music based on the score. This opens
the way for the generation of score-based ground truth chord annotations for large audio
collections in the Classical domain.

A further barrier for the development of automated methods which are applicable to mu-
sicology is the lack of communication between the two fields which fundamentally differ
from each other. On the one hand, musicologists are often skeptical about the benefits
of computer-based methods. Furthermore, they are not aware of novel developments in
MIR and do not have a strong background in computer science which is often required
when dealing with automated methods. On the other hand, computer scientists often
lack in the musical background to comprehend the musical relevance of their analysis re-
sults. Furthermore, the methodologies of the two fields are fundamentally different so that
novel concepts are needed which allow for transferring between them and alleviating in
this way the collaboration. For example, our transformation of the physical time axis of
audio-based analysis results to a musically meaningful time axis in bars is a simple yet im-
portant conceptual contribution, which only then makes the analysis results interpretable
for musicologists.

To summarize, this thesis contributed to bridging the gap between computer science and
musicology. We showed how in an interdisciplinary collaboration musicologists and com-
puter scientists can greatly benefit from each other. Since automated methods allow
for large-scale analyses across music corpora on an unprecedented scale, they are able
to significantly support musicologists in their work. However, the role of the human is
indispensable when dealing with automated methods. In this context, the major respon-
sibilities of the human are the definition of the task, the choice of the model assumptions
and the interpretation of the analysis results of the automated methods being aware of
possible extraction errors.

We now indicate our vision of future interdisciplinary research in the field of MIR. For a
successful collaboration between computer scientists and musicologists in the future, the
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development of further fundamental concepts allowing for an exchange between the two
fields is indispensable. In a collaboration based on these concepts, it is important that
the task is defined by musicologists and computer scientists together. Here, musicologists
ensure that the task is of musical importance, whereas computer scientists are responsible
for estimating the feasibility of the proposed task with automated methods. Similarly,
the choice of appropriate model assumptions for the considered application scenario has
to be discussed in collaboration. In this way, musicologists and computer scientist may
greatly benefit from each other. On the one hand, computer scientists may benefit from
music experts by incorporating them in the evaluation process of automated methods. In
this context, the present thesis showed the importance of interdisciplinary user interfaces
which should be designed in a user-friendly way. Using such interfaces for the evaluation,
musicologists do not need to know any details about the underlying automated procedures
and can employ their musical knowledge and trained ear for conveniently performing an
in-depth error analysis of the employed automated methods. This evaluation by a music
expert may greatly support computer scientists in improving the underlying automated
method. On the other hand, musicologists can be considerably supported by automated
methods allowing for efficient analyses across large music corpora. Here, again appropriate
user interfaces or visualizations are meaningful for allowing musicologists a convenient
interpretation of the automatically derived results.

In summary, the field of MIR offers great possibilities for performing interdisciplinary
collaborations in the future, where computer scientists and musicologists may considerably
benefit from each other. Due to the fundamental difference of the two fields and a lack
of communication it remains a challenge to encourage the exchange between computer
science and musicology. However, in this thesis, we contributed to bridging this gap
and furthermore, we showed the novel possibilities and the importance of performing
interdisciplinary research.
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