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Abstract. Sheet music and audio recordings represent and describe mu-
sic on different semantic levels. Sheet music describes abstract high-level
parameters such as notes, keys, measures, or repeats in a visual form.
Because of its explicitness and compactness, most musicologists discuss
and analyze the meaning of music on the basis of sheet music. On the
contrary, most people enjoy music by listening to audio recordings, which
represent music in an acoustic form. In particular, the nuances and sub-
tleties of musical performances, which are generally not written down
in the score, make the music come alive. In this paper, we address the
problem of bridging the gap between the sheet music domain and the au-
dio domain. In particular, we discuss aspects on music representations,
music synchronization, and optical music recognition, while indicating
various strategies and open research problems.

Keywords. audio, sheet music, symbolic score, optical music recogni-
tion, music synchronization

1 Introduction

The last years have seen increasing efforts in building up large digital music
collections, which contain large amounts of textual, visual, and audio data as
well as a variety of associated data representations. In particular for Western
classical music, three prominent examples of digitally available types of music
representations are sheet music (available as digital images), symbolic score data

(e. g., in the MusicXML or the LilyPond format), and audio recordings (e. g.,
given as WAV or MP3). These three classes of representations complement each
other describing music on different semantic levels. Sheet music, which in our
context denotes a printable form of musical score notation, is used to visually
describe a piece of music in a compact and human readable form. This form
allows musicians to create a performance and musicologists to study structural,
harmonic, or melodic aspects of the music that may not be obvious from mere
listening. Symbolic score data can be parsed by computers and can be used

Dagstuhl Seminar Proceedings 09051 
Knowledge representation for intelligent music processing 
http://drops.dagstuhl.de/opus/volltexte/2009/1965



2 C. Fremerey, M. Müller, M. Clausen

Fig. 1. Illustration of the sheet music-audio synchronization by means of the first four
measures of Op. 100, No. 2 by Friedrich Burgmüller. The figure shows a scanned musical
score and the waveform of a recording of the same measures. The synchronization is
indicated by red bidirectional arrows linking regions (given as pixel coordinates) within
the scanned image and physical time positions within the audio recording.

to perform automated analysis tasks and to support larger scale analysis tasks
that could not be done manually. Finally, an audio recording encodes the sound-
wave of an acoustic realization, which allows the listener to playback a specific
interpretation.

Given various representations of musically relevant information, e. g., as en-
coded by sheet music or as given by a specific audio recording, the identification
of semantically related events is of great relevance for music retrieval and brows-
ing applications [1–4]. In this paper, we discuss the problem of sheet music-audio

synchronization, which refers to the problem of linking regions (given, e. g., as
pixel coordinates) within the given sheet music document to semantically cor-
responding physical time positions within an audio recording, see Fig. 1. Such
linking structures can be used to highlight the current position in the sheet
music document during playback of the recording, thus enhancing the listening
experience as well as providing the user with tools for intuitive and multimodal
music exploration, see Fig. 2. The importance of such a functionality has been
emphasized in the literature, see, e. g., [2].

In the last few years, first methods have been proposed for automatically
aligning and matching sheet music and audio material [6, 7]. Here, one possible
processing pipeline is to extract musical parameters from the scanned sheet mu-
sic using optical music recognition (OMR) methods as well as from the audio
recordings using signal processing methods. Based on the extracted parameters,
one can then use alignment techniques for synchronizing the scanned data and
the audio material. One may think of other processing pipelines depending on
the types of available data. For example, starting with symbolic score data (e.g.,
MusicXML, LilyPond), one can generate visual music representations. In this
case, there is no need for employing an error-prone OMR step and the synchro-
nization task can be performed on the basis of the explicitly given symbolic
information.
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Fig. 2. The Score Viewer interface for multimodal music presentation and navigation
(from [5]). Synchronously to audio playback, corresponding musical measures within
the sheet music are highlighted.

In the remainder of this paper, we discuss these issues in more detail. In
Sect. 2, we summarize some basic properties of various music representations
and formats. Then, in Sect. 3, we outline strategies for aligning sheet music and
audio recordings as introduced in [7]. In the case of scanned sheet music, the
quality of the synchronization results crucially depends on the OMR extraction
results. Therefore, in Sect. 4, we address the issue of optical music recognition
in more detail. In particular, we analyze the various kinds of recognition errors
and indicate how these errors may be dealt with in a subsequent postprocessing
step. Finally, in Sect. 5, we give prospects on future work and sketch possible
improvements. Further related work is discussed in the respective sections.

2 Music Representations

In this paper, we distinguish between three main classes of music representations:
Audio, Symbolic and Sheet Music, see Fig. 3. The entity Audio stands for audio
recordings as given in formats such as WAV or MP3. The entity Symbolic stands
for any kind of symbolic representation of a score including MIDI, MusicXML,
Humdrum, or LilyPond. Finally, the entity Sheet Music stands for visual repre-
sentations of a score as encoded in TIFF, PDF, or other image format.

Actually the boundaries between these classes are not as sharp as the illus-
tration in Fig. 3 might suggest. In fact, the clustering of music representations
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Fig. 3. Illustration of three classes of music representation used in this paper: Audio,
Symbolic and Sheet Music.

into classes is a matter of choosing a definition of where to draw the lines be-
tween classes. The term “symbolic” is not very descriptive by itself. Actually
any kind of digital data uses symbols to represent abstract entities of some data
model. In this paper, we use the term symbolic to refer to any data format that
explicitly represents musical entities.

The musical entities may range from timed note events as is the case in
MIDI files to graphical shapes with attached musical meaning as is the case
in the SCORE engraving system. Examples for symbols that do not represent
musical entities are audio samples in audio files or pixels in bitmap image files.
Also the graphical shapes in vector graphics representations of scores are not
considered to be musical entities as long as they do not additionally specify the
abstract musical entity represented by that shape. Certainly, there is a wide
range of what to consider as symbolic music, see [8] for a detailed discussion.
However, our rough and intuitive classification should suffice for the discussion to
follow. Some examples for data formats for symbolic score data are MusicXML,
LilyPond, Humdrum, NIFF, MIDI and SCORE. Example formats for audio data
are WAV and MP3. Example formats for sheet music documents are BMP, TIFF
and PDF.

Note that audio data is considered to live in the time domain, i.e., posi-
tions and regions are measured in units of time. On the contrary, sheet music is
considered to live in the image domain, i.e., positions and regions are specified
in the two-dimensional Euclidean space. Symbolic score data can contain both
time domain and image domain information. Actually, it is in the symbolic realm
where the transition between the image domain and time domain is made.

Having specified the meaning of music representation classes, we now identify
transformations between these classes. In Fig. 3, these transformations are in-
dicated by arrows. The transformation of sheet music documents into symbolic
score data is commonly referred to as optical music recognition (OMR). This
includes, for example, the recognition of musical symbols from scans of printed
sheet music pages. The reverse transformation, i.e., the creation of a sheet music
image from symbolic score data, is called rendering. Depending on how detailed
geometric information is given in the symbolic score data, this step may or may
not require the application of typesetting and engraving rules. The task of cre-
ating symbolic score data from an audio recording is called transcription. A
transformation in the reverse direction is called synthesis. Note that, in general,
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these transformations are not required to preserve all information and therefore
may not be reversible.

In many music libraries, scores are mostly available in form of printed sheet
music. To be able to process the scores with computers, one has to digitize the
prints through scanning and employ optical music recognition (OMR) to ex-
tract symbolic score data from the images. In recent years, the digitization of
documents in libraries has been a major topic in the library communities. Most
libraries have started to digitize their content in one way or another. However,
most of the generated data is not freely available due to copyright and other re-
strictions. In the last years, an increasing number of freely available repositories
of digital sheet music have come into existence. For example, the Mutopia [9]
and IMSLP [10] project aim at generating and supplying such data. In view of
academic research, the availability of music data without any copyright restric-
tions is of crucial importance. A data format for which no data is available or for
which the data is legally protected is of very limited value for most researchers.

3 Sheet Music-Audio Synchronization

The goal of sheet music-audio synchronization is to link regions within the two-
dimensional image domain of sheet music documents to semantically correspond-
ing temporal regions in audio recordings, see Fig. 1. One may choose one of sev-
eral options for the granularity of the regions that are to be linked, for example,
pages, lines, bars or notes. Depending on the choice of granularity, there are
different strategies to perform the synchronization task. For example, in case of
a page-wise synchronization the manual creation of links between the pages of
sheet music and corresponding temporal regions of audio recordings may still be
acceptable. However, aiming at finer grained resolutions, the complexity for cre-
ating the links increases significantly, hence requiring automated synchronization
methods.

The respective strategy for achieving a sheet music-audio synchronization
very much depends on the type of the given input data, see Fig. 4. In the fol-
lowing, we consider two scenarios that are of great practical importance. In the
first scenario, one is given an audio recording and a sheet music document (e.g.,
a scan). Using optical music recognition, symbolic score data is generated from
the sheet music. In the second scenario, one is given an audio recording and
symbolic score data (e.g., in the LilyPond format). In this case, a sheet music
image has to be rendered from the symbolic score data.

In both scenarios, the connection between the audio data and the symbolic
data is realized through the same mechanisms. The basic idea is to transform
both the symbolic score data as well as the corresponding audio recording into
a common mid-level representation, which can then be synchronized based on
standard alignment techniques such as dynamic time warping [4]. In the synchro-
nization context, chroma-based music features have turned out to be a powerful
mid-level music representation [11, 3, 4].
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Fig. 4. Illustration of data types and data transformations relevant for sheet music-
audio synchronization. Double-headed arrows with one solid and one non-solid head
indicate a (possibly lossy and error-prone) data transformation towards the direction
of the solid head that implicates a two-way mapping from regions in one data type to
regions in the other data type. For example in the case of OMR, one can derive symbolic
score data from a sheet music document, implicating a mapping between symbols in
the score data and corresponding locations or regions in the sheet music document.
The double-headed arrow with two non-solid heads for the synchronization indicates a
two-way mapping without any data transformation. The arrows for transcription and
synthesis are greyed out, because they are not in the focus of this work.

Note that in both scenarios, one based on OMR and the other based on ren-
dering, one requires an explicit mapping between the musical objects given by
the symbolic representation and the 2D coordinates of their depicted counter-
parts in the image representation. Using this mapping and the synchronization
result, a correspondence between spatial regions in the sheet music and temporal
regions in the audio recording can be derived.

The quality of the resulting synchronization depends on several factors. In
particular, differences between the audio and score representation may have a
crucial impact on the final synchronization result. Here, such differences may be
due to extraction errors in the OMR step. Furthermore, the actual interpreta-
tion may deviate from the notated score. In the following, we present of list of
typical classes of differences, each class having a different impact on the final
synchronization result.

– Differences in structure (repeats, jumps): The score and audio repre-
sentations might disagree on the level of their global structure. For example,
the score might contain a section that is not played in the audio recording or
the audio recording might contain an extra repeat that is not present or not
recognized in the score. Differences in structure may violate the boundary
and monotonicity assumptions made in dynamic time warping, see [4]. Such
differences may be handled in a preprocessing step or by partial matching
strategies [12].

– Local dissimilarities: A typical example for local dissimilarities are mu-
sical events in the audio and sheet music representations with deviating
pitch or duration. Problematic are also note ambiguities in the score such
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as arpeggios, trills, grace notes, or other ornaments. Generally, differences of
this class tend to have little impact on the synchronization result as long as
they stay local and are enclosed by sections without mismatches and errors.

– Significant differences in tempo: For computing a mid-level representa-
tion from a symbolic music representation, one needs to decide on the tempo
to use in the tranformation from musical onset times like beats and bars to
physical onset times like seconds and milliseconds. Since tempo directives of
music notation are often not output by OMR systems, the tempo then has to
be guessed or estimated. For classical music, the tempo can vary over a wide
range from about 25 to 200 BPM (beats per minute). Differences between
the estimated tempo and the actual tempo of the audio recording are usu-
ally handled by the DTW-based alignment strategy. However, dynamic time
warping starts to loose flexibility and accuracy when the tempo differences
become too large.

– Differences in loudness and timbre: Such differences usually have little
impact on the synchronization when using normalized chroma features as
mid-level representation. Such features show a high degree of robustness to
variations in timbre and articulation [11, 4]. Furthermore, normalizing the
features makes them invariant to dynamic variations. However, there may
be cases where changes in timbre may cause effects in the frequency spectrum
that can not be handled by chroma features. In particular, in the presence
of percussive elements and in the case of non-tonal elements other feature
types are needed.

Besides the differences between score and audio data as mentioned above, the
accuracy of the synchronization also crucially depends on the properties of the
chosen mid-level feature representations. Here, the feature resolution and, even
more important, the features’ ability for capturing local characteristics of the
underlying music is of foremost importance. For example, chroma features do
well in the case of harmony-based music based on the equal-tempered scale when
the chroma distribution does not stay constant over a long period. However,
in situations where the chroma distribution stays mainly constant, e.g., when
having the same chord been played over and over again, the chroma features
may seriously fail.

4 Optical Music Recognition

As already pointed out in Sect. 2, the term optical music recognition (OMR) is
commonly used to refer to transformations from the sheet music domain to the
symbolic score domain. Actually, there is a wide spectrum of transformations
depending on the kind of input and output data. For example, starting with a
vector graphics image of a score, the task of assigning labels for musical entities
such as note head, stem, treble clef, staff line to each of the shapes could
already be considered as OMR. However, OMR usually covers a lot more than
that. For example, when starting with a bitmap image, one crucial subtask of
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OMR consists in grouping the pixels to musically meaningful shapes and relating
these shapes to musical entities.

Another question is how far the transformation extends into the symbolic
realm: Where does the task of OMR end? Many OMR systems stop after hav-
ing identified most of the symbols and having interpreted their basic meaning
and relations. Symbols that are not recognized are often ignored. Furthermore,
higher level semantics are often neglected. For example, an OMR system might
recognize repeat symbols, but not necessarily does it also interpret their musical
meaning (i.e., the implied jumps and repeats to be considered when playing the
piece). As another example, consider text-based information contained in sheet
music. Most OMR systems are able to recognize text and even to distinguish
between text that is meant to be song lyrics and text that it not meant to be
song lyrics. The systems usually do not reveal the meaning of the text elements,
e.g., specifying them as title heading, section name, tempo directive, jump direc-
tive (dacapo, fine, etc.) or part name. Thus, higher-level semantic information
on tempo, repeats, jumps (dacapo, alternative endings), voicing, or link-ups of
staff systems over several consecutive pages are not output by OMR systems.

The various OMR systems may differ significantly with respect to their out-
put. For example, an OMR system might output a sequence of abstract musical
symbols and relations without giving any information about the positions and
shapes of these symbols in the original image. Due to the loss of such informa-
tion, it is impossible to reverse the transformation. However, recall that a kind
of reversibility is required in the sheet music-audio synchronization scenarios de-
scribed above. Several commercial and non-commercial OMR software systems
exist.1 Three of the more popular commercial systems that operate on com-
mon Western classical music are SharpEye, SmartScore, and PhotoScore. Two
of the more prominent examples of free OMR systems are Gamera and Audi-
veris. However, a drawback of using Gamera for OMR is that it cannot be used
out-of-the-box because it requires training to be performed on the data to be
recognized. Audiveris currently is not competitive in terms of recognition rates
compared to the commercial products. Evaluating and comparing the general
performance of OMR systems is a non-trivial task. Some methods for lower-
level comparison and evaluation have been proposed in the literature [13–16].
In general, the quality of OMR results strongly depends on the quality of the
input image data and the complexity of the underlying scores. More complex
scores tend to result in more OMR extraction errors. Here, typical OMR errors
are non-recognized symbols, missing accidentals (also in key signatures), missing
beams, missing or extra barlines, wrong time signatures, and splitting of grand
staffs.

Assuming some extra constraints on the type of sheet music, one may use spe-
cialized rules to identify and auto-correct some of these errors. For example, in
case of piano music, different key signatures in the left-hand and right-hand staff

1 Online lists can be found at http://www.informatics.indiana.edu/donbyrd/

OMRSystemsTable.html and http://www.music-notation.info/en/compmus/omr.

html
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are typically caused by OMR errors. As it turns out, it is much more likely that
accidentals are missed by OMR rather than that extra accidentals are added.
Therefore, a good strategy to handle different key signatures in the left and right
hand is to choose the one with more accidentals. Another example are key signa-
tures that change with the start of a new system without being announced at the
end of the previous system. Such a situation most likely indicates that either the
recognized key signatures are inconsistent or the announcement has been missed
out. In the second case, some unused space is left at the end of the respective
staff line, which in turn is very unlikely for professionally typeset scores. Using
such heuristics, certain OMR errors may be easily fixed in a postprocessing step.

Even without using very strict constraints on the type of sheet music, the
use of higher-level semantic knowledge can help to identify and correct problems
in the OMR data, especially for scores with more than one staff per system.
For example, mismatching time signatures are most likely caused by recogni-
tion errors. Bars inside which the accumulated duration disagrees with the time
signature, reveal problems in the recognized durations of notes and rest, the
division into voices or the active time signature. As another example, one can
exploit the fact that the horizontal positions of notes and rests are strong in-
dicators for the relative onset times. The horizontal spacing of notes and rests
is strongly correlated with their durations. Furthermore, having several voices,
the accumulated durations within each voice should coincide at every position
where more than one voice has an onset. This information can be used to locate
errors in recognized note durations, and in many situations, the information is
sufficient for inferring corrections of note durations or time signatures.

Most OMR programs seem to make only very little use of the strong inter-
dependencies between the musical entities of sheet music. One reason for that
might be that the interdependencies are very rich and complex spreading over
several semantic levels. For example, the decision if a set of black pixels that lie
on a vertical line on top of a staff represent a barline or a note stem depends
on other decisions such as the existence of a nearby note head. This, in turn,
depends on already having recognized the note head, which again may depend
on several other high-level and low-level decisions. Most of the common OMR
approaches follows a fixed processing pipeline to get from lower level entities
to higher level entities. Therefore, high-level entities do not influence the deci-
sions on the lower levels. To address this shortcoming, first mechanisms were
introduced in [17] that allow higher-level steps to give feedback to lower-level
steps.

In general, to get from a sheet music image to a high-level symbolic score
representation, a lot of decisions have to be made. Some of the decisions involve
the abstraction from sets of pixels to shapes representing musical entities. Others
are about relationships between musical entities, about their functions or about
the formation of even higher-level entities. The following list gives some examples
of decisions that might have been made:

– Pixelset P1 represents a line ℓ1.
– Line ℓ1 represents a staff line.
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– Line ℓ1 represents the top line of a 5-line staff f1.

– Staffs f1 through f3 form a system s1.

– Pixelset P2 represents a treble clef.

– Horizontal region r1 of a system s1 represents a bar b1.

– Bars b1 through b165 form a track t1.

– Track t1 has three parts p1, p2 and p3 (e.g. Violin, Cello and Piano).

– Set of notes and rests N1 in bar b1 make up a voice v1.

– Voice v1 belongs to part p1.

– Pixelset P3 represents a letter x1.

– Set of letters X1 forms a text y1.

– Text y1 represents a title heading h1.

As can be seen from the examples, the decisions about the involved entities
are strongly interdependent. Using these interdependencies, a human reader is
able to quickly infer these decisions with a very high degree of certainty. But
when seen in an isolated fashion, as it is often done in optical music recognition
systems, most of these decisions can only be made with a low degree of certainty.
Therefore, in order to improve optical music recognition, one has to avoid mak-
ing hard decisions before exploiting the interdependencies. Furthermore, music
notation for Western classical music obeys a rich set of high-level rules and prac-
tices that is of key importance for inferring decisions in OMR with a very high
degree of certainty, and therfore should be incorporated into OMR systems.

5 Conclusions and Future Work

In this paper, we have discussed various strategies on how to bridge the gap be-
tween various music representations by automatically finding semantically mean-
ingful correspondences between various instances of the same piece of music. In
particular, when dealing with sheet music, one depends on recognition proce-
dures to extract musical entities from the image data. Besides the accuracy of
the OMR output, the quality of the synchronization results depends on other
factors such as differences in structure, significant differences in tempo, as well
as the choice of suitable mid-level features. Sheet music-audio synchronization as
described in this paper is implemented in the PROBADO project as one aspect
of organizing and presenting music in a digital library [5, 18].

We conclude this paper with a selection of open research questions that
should be pursued in future work. How can structural differences (caused by
repeats, jumps, cuts, etc.) in the various music representations be handled? How
can sheet music books be automatically segmented into meaningful units such
as sonatas and movements? Which temporal accuracy (e.g., page-wise, bar-wise,
note-wise) is needed for practical application? How can interdependencies be-
tween entities of music notation be exploited in the OMR process? How can
visual and auditory modalities be combined in user interfaces? Which kind of
user studies can be conducted for identifying the users needs?
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