
A SYSTEM-IDENTIFICATION-ERROR-ROBUST METHOD FOR EQUALIZATION OF
MULTICHANNEL ACOUSTIC SYSTEMS
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ABSTRACT
In hands-free communications, speech received by a microphone is
distorted by room reverberation that can reduce the intelligibility of
speech. An approach to dereverberation is firstly to estimate the im-
pulse responses of the acoustic channels between the speaker and
the microphones and secondly to design a multichannel equaliza-
tion system based on the estimated impulse responses. Traditional
equalization techniques are designed without the consideration of es-
timation errors that are commonly introduced by the system identi-
fication process. In this work, a System-Identification-Error-Robust
Equalization Method (SIEREM) for the equalization of multichan-
nel room acoustic systems is presented. Experimental results for
dereverberation using SIEREM applied to estimates of single-input
multiple-output acoustic systems with known level of estimation er-
rors show that the proposed equalization design significantly outper-
forms existing methods in the presence of both synthetic and real
system identification errors.

Index Terms— dereverberation, room acoustics, channel esti-
mation error, multichannel equalization, robustness

1. INTRODUCTION

In hands-free communications, in which a speech signal is acquired
by microphones placed at some distance from the speaker in a room,
the observed speech signals are distorted by room reverberation.
Reverberation is the process of multipath propagation of an acous-
tic sound in an enclosed space and can reduce the intelligibility of
speech. The observed reverberant signal generally therefore consists
of a direct sound and reflections. The process of dereverberation is to
recover the original (dry) speech signal from the signal(s) acquired
by a single microphone or multiple microphones. Hereafter, we refer
to the multiple acoustic channels from the source to multiple micro-
phones as a multichannel acoustic system.

Acoustic channels are usually modeled as finite impulse re-
sponse (FIR) filters. An approach to dereverberation is firstly to es-
timate the impulse responses of the acoustic channels and secondly
to design a multichannel equalization system based on the estimated
impulse responses [1]. The estimated impulse responses obtained
through system identification (SI) always include errors that can be
introduced by limitations and inaccuracies of the SI process.

The estimated multichannel acoustic system can be exactly in-
verted by a set of FIR filters using the multiple-input/output inverse
theorem (MINT) [2], subject to specific conditions as explained in
Section 3.1. However, the fact that the designed equalization system
is able to equalize the estimated acoustic system does not mean that
it is able to equalize the true acoustic system. When the designed
equalization system is employed to equalize the true acoustic sys-
tem, the response from the source to the output of the equalization
system will deviate from the desired response due to the aforemen-
tioned estimation errors. In this paper, our objective is to find a ro-

bust equalization system design method that takes into account these
system identification errors (SIEs).

The problem is formulated in Section 2. Section 3 reviews exist-
ing room acoustics equalization methods and evaluates their perfor-
mance when SIEs are present. In Section 4, the proposed System-
Identification-Error-Robust Equalization Method (SIEREM) is pre-
sented. The performance of the proposed method is evaluated in
Section 5.

2. PROBLEM FORMULATION

Consider a speech signal s(n) propagating through an M -channel
acoustic system h = [hT

1 . . . hT
M ]T where n denotes the dis-

crete time index. The acoustic channel between the source and the
mth microphone is characterized by its impulse response hm =
[hm(0) hm(1) · · · hm(L − 1)]T , m = 1, . . . , M , where {·}T

denotes the transpose operation. In this work we assume that the
acoustic channels are time-invariant. Using the reverberant speech
signals

xm(n) = s(n) ∗ hm(n) + vm(n) for m = 1, . . . , M, (1)

estimates of the room impulse responses (RIRs) hm can be obtained
using an SI technique [3], where ∗ denotes linear convolution and
vm(n) denotes additive noise at the mth microphone.

The estimate of an acoustic system always includes some er-
rors due to under-modeling of channel order and/or the existence of
the additive noise. However, as is common practice in the current
literature, we assume the channel orders are known or can be cor-
rectly estimated. We also note that the acoustic system h can only
be estimated up to an unknown scaling factor [3]. Without loss of
generality and to be consistent with earlier work [3], we express the

estimated acoustic system ĥ = [ĥT
1 . . . ĥT

M ]T as

ĥ =
1

γ
(h − e), (2)

where γ is defined as

γ =
ĥT h

ĥT ĥ
, (3)

and e = [eT
1 . . . eT

M ]T with em = [em(0) em(1) . . . em(L−1)]T .
Following the definition of γ in (3), the error vector e in (2) repre-
sents the projection misalignment vector [3] that can be geometri-
cally interpreted as the vector from the projection of h on the linear

manifold of ĥ to h and therefore is independent of the scaling factor
introduced by the SI process. In general, an equalization system g =
[gT

1 gT
2 . . . gT

M ]T where gm = [gm(0) gm(1) . . . gm(Li − 1)]T

can be computed that satisfies

M∑
m=1

ĥm(i) ∗ gm(i) = d(i) for i = 0, . . . , L + Li − 2, (4)

where d(i) defines the target impulse response. We now define the
equalized impulse response (EIR):
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Fig. 1. An example of RIR and SIEs; (a) h1; (b) e1, SIEs introduced
to h1; (c) Energy decay curves of h1 and e1.

b(i) =

M∑
m=1

hm(i) ∗ gm(i) (5)

= γd(i) +

M∑
m=1

em(i) ∗ gm(i). (6)

The EIR, b(i), may still distort the speech signal severely due to the
second term in (6). It is this problem that is addressed in this paper.

We now provide an example of the SIEs. A 6-channel acoustic
system, the RIRs of which are generated using the image method [4],
is identified with the well known NMCFLMS algorithm [3]. The
room dimensions are 6.4 m × 5 m × 3.6 m (length × width ×
height), the positions of the speaker and the central microphone are
(3, 1, 1.6) and (3, 2, 1.6) respectively, the intermicrophone distance
is 5 cm, the reverberation time T60 is 0.6 s and the additive noise
is set to signal-to-noise ratio SNR = 30 dB. Without loss of gen-
erality, it is assumed that the direct-path propagation time l1 from
the source to the 1st microphone is the shortest. As in [3], the prop-
agation time l1 was trimmed for all channels in all experiments in
this paper1. Also, the RIRs used for experiments are truncated to
L = 2000 corresponding to 0.25 s with a sampling frequency of
fs = 8 kHz.

As an example, the true impulse response h1 and the resulting
error vector

e1 = h1 − γĥ1, (7)

which is part of e, are shown in Fig. 1(a) and (b) respectively; (c)
shows the energy decay curves (EDCs) [5] of h1 and e1, where the
EDC of an impulse response a = [a(0) a(1) . . . a(La − 1)]T is
defined as

E (i) =
1

‖a‖2
2

La−1∑
j=i

a2(j), (8)

where ‖ · ‖2 denotes �2-norm.
It can be seen in Fig. 1(b) that the overall temporal shape of the

e1 can be modeled by a random sequence with an exponential decay.
It can also be seen that the EDCs of e1 and h1 are similar as shown
in Fig. 1(c). The error vectors em, for m ∈ {2, . . . , M}, share the
above described properties of e1, which will be used to derive the
SIEREM in Section 4.

1The propagation time l1 represents only a bulk propagation delay and is
not significant to either the SI or the equalization system design.

3. REVIEW OF EXISTING METHODS

3.1. LS and MINT
The equalization system g can be obtained by solving the system of
equations (4), where the target impulse response is given by

d(i) =

⎧⎨
⎩

0 if 0 ≤ i < τ ;
1 if i = τ ;
0 otherwise,

(9)

with an integer delay τ . In matrix form, (4) can be written as

Ĥg = d, (10)

where Ĥ = [Ĥ1 · · · ĤM ] and d = [d(0) · · · d(L+Li − 2)]T with

Ĥm an (L + Li − 1) × Li convolution matrix of ĥm.
When two or more channels are employed, exact solution(s) to

(10) exist when the following two conditions are both satisfied [2]:

1. Ĥm(z), the z-transforms of the multichannel RIRs ĥm do not
share any common zeros.

2. Li ≥ Lc = � L−1
M−1

� [6]2, where �κ� denotes the smallest
integer larger than or equal to κ.

If both conditions are satisfied, the solution with minimum �2-norm
can be obtained using

g = Ĥ+d, (11)

where {·}+ denotes Moore-Penrose pseudo-inverse [8]. If any one
or both conditions are violated, (11) gives a multichannel LS solu-
tion.

3.2. Weighted LS
The weighted LS method [9] is used for the over-determined cases
when the condition 2 is violated. The weighted LS solution is ob-
tained by minimizing the following cost function

J = ‖W(Ĥg − d)‖2
2, (12)

where W = diag{w} denotes the diagonal weighting matrix with
w = [w(0) · · · w(L + Li − 2)]T .

The solution is given by

g = (WĤ)+Wd. (13)

When conditions 1 and 2 are both satisfied and w(i) 	= 0, for i =
0, · · · , L + Li − 2, then the solutions given by (13) and (11) are
the same [10].

3.3. Discussion
The approaches reviewed above are generally designed without the
consideration of SIEs. The performance of these methods when

SIEs are present is now studied for a 2-channel system. The ĥ1

and ĥ2 obtained in Section 2 are used in this study. The normalized

projection misalignment (NPM) of ĥ = [ĥT
1 ĥT

2 ]T with respect to
h = [hT

1 hT
2 ]T is −12 dB, where NPM is defined as [11]

NPM =
‖h − γĥ‖2

2

‖h‖2
2

(14)

with γ defined in (3). Parameters are set to Li = Lc, τ = 0.
Fig. 2 shows the EDCs of the EIRs. It can be seen that when

SIEs are present, MINT completely fails to equalize the acous-
tic system. In fact, the EDC of the EIR obtained using MINT is
worse than the EDC of h1. Weighted LS, with w(i) 	= 0 for
i = 0, · · · , L + Li − 2, gives the same EIR as MINT.

2It should be noted that the exact solution(s) to (10) always exist when
Li ≥ L − 1 [7]. Unfortunately, this cannot be guaranteed when Li ≥ Lc.
However, it has been proved in [6] that exact solution(s) exist for almost all
cases.
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Fig. 2. EDCs of h1 and EIRs obtained with MINT and the proposed
SIEREM.

4. PROPOSED METHOD

In this Section, a System-Identification-Error-Robust Equalization
Method (SIEREM) is proposed that takes the robustness of equal-
ization systems to SIEs into consideration.

Since the SI process introduces an unknown scaling factor γ, our
equalization system g is designed to equalize (1/γ)h, rather than h.
However, assuming that equalizing (1/γ)h gives

b′(i) =

M∑
m=1

1

γ
hm(i) ∗ gm(i), (15)

using (5) we see that the resulting EIR b(i) = γb′(i), i.e., the acous-
tic system is equalized only up to a scaling factor γ. Therefore, we
aim to obtain

go = arg min
g

∥∥∥∥W
[
(Ĥ +

1

γ
E)g − d

]∥∥∥∥
2

2

(16)

where E is formed by e and has the same form as Ĥ. Since e is
unknown, E is also unknown. In order to find g that minimizes (16),
we replace (1/γ)E by an estimate Ê.

As shown in Section 2, the overall temporal shape of em can
be modeled to a first approximation by a random sequence with an
exponential decay rate similar to that of hm. Assuming the power of
SIEs is uniformly distributed along the channels, we can use êm =
[êm(0) . . . êm(L − 1)], where

êm(i) = β · εm(i) · e−αi, (17)

to form Ê, where εm(i) is an uncorrelated Gaussian random se-
quence with zero mean and unit variance, β a multiplicative factor
related to the power of ê = [êT

1 . . . êT
M ]T and the decay rate α is

related to the reverberation time T60 by [5]

α =
3 ln(10)

T60 · fs
. (18)

It should be noted that the decay rate α can be estimated from ĥm.

With different realizations of the sequence εm(i), (17) provides

good and bad estimates of (1/γ)E, and with (1/γ)E = Ê, the per-
formance of g obtained from (16) with different realizations of the
sequence εm(i) vary much. However, we desire a g which performs
well on average. Therefore, the g that minimizes

J = E

{∥∥∥W [
(Ĥ + Ê)g − d

]∥∥∥2

2

}
(19)

is preferred, where E{·} represents expectation operation.
The g that minimizes (19) can be obtained by computing the

derivative of J with respect to g and subsequently solving

∂J

∂g
= 0[MLi×1]. (20)

Using (19) and (20), we can obtain

g = (ĤT WT WĤ + E{ÊT WT WÊ})−1ĤT WT Wd. (21)

The matrix R = E{ÊT WT WÊ} is a diagonal matrix with
r(j), for j = 1, . . . , MLi, on its diagonal, where

r((m − 1) · Li + j) = β2
L−1∑
i=0

w2(i + j − 1)e−2αi
(22)

for m = 1, . . . , M and j = 1, . . . , Li.
Now we derive the relationship between the multiplicative factor

β and the NPM of the estimate ĥ. Since εm(i) is uncorrelated with

ĥm(i), it can be assumed that E{ĥT ê} = 0, i.e., the vector ê is on

average orthogonal to ĥ.
As shown in [12], we can express the NPM as follows,

NPM =
‖e‖2

2

‖h‖2
2

= sin2(θ), (23)

where θ is the angle between the vectors h and ĥ. Alternatively, we
have ‖e‖2

2

‖γĥ‖2
2

= tan2(θ). (24)

In order to make on average the NPM caused by ê equal to the true
NPM, we require that

E{‖ê‖2
2} =

∥∥∥∥ 1

γ
e

∥∥∥∥
2

2

. (25)

Using (17), (23), (24) and (25), we can express β as

β =
tan

[
arcsin(

√
NPM)

]
√

M · e−2αL−1
e−2α−1

· ‖ĥ‖2. (26)

Following the above derivation, we conclude that given the de-
cay rate α and the NPM of the SI process we are able to design an
equalization system that takes into account the SIEs.

5. PERFORMANCE EVALUATION

In this Section, the performance of the proposed SIEREM is com-
pared with existing methods.

For the intelligibility of the equalized speech signal the suppres-
sion of late reflections is more important than the suppression of
early reflections [13]. Therefore, it is natural to use some weighting
function w(i) for which the amplitudes related to the late reflections
are larger than those of the early reflections. We have adopted the
following intuitively conceived weighting function that has been ver-
ified by informal listening tests to provide good perceptual quality in
the equalized speech signal:

w(i) =

{
1 if 0 ≤ i ≤ τ ;

eα(i−τ) − 1 if i > τ.
(27)

In order to evaluate the performance of the equalization system
the following measures are used in this work. The first performance
measure is the EDC as defined in (8). The second performance mea-
sure is the early-to-late reverberation ratio (ELR), also known as the
Clarity Index, which is defined as [5]
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Measures h1 MINT SIRERM

C50 (dB) 4.31 -2.86 10.33

T30 (s) 0.24 0.44 0.19

Table 1. C50 and T30 derived from the EDCs shown in Fig. 2.
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C50 =
E (0) − E (ne)

E (ne)
, (28)

where ne = 50 ms · fs. The third performance measure is T30

which is defined as the time interval it takes for the EDC to drop
by 30 dB. For the RIRs used in this work it is not always possible
to determine properly the time at which the energy decay curve has
decreased 60 dB. Therefore, we study the T30 rather than the more
conventional T60 measure.

The EDC of the EIR obtained using SIEREM for the same
acoustic system used in Section 3.3 with known NPM and T60 is
shown by the dashed line in Fig. 2. The C50 and T30 correspond-
ing to Fig. 2 are given in Table 1. It can be seen that the SIEREM
outperforms the MINT. Informal listening clearly concludes that the
acoustic system is equalized by SIEREM without introducing in any
audible artifacts.

In the second experiment, 2-channel acoustic systems, the RIRs
of which are generated using image method [4] with synthetic SIEs
of NPM = −10 dB, −15 dB and −20 dB, are equalized us-
ing MINT and SIEREM. Synthetic error vectors e are generated
such that the overall temporal shape of em resemble random se-
quences with exponential decay rates corresponding to the T60, and
the NPMs of e meet the desired levels. A systematic way to adjust a
generated error vector to the desired NPM can be found in [12] and is
used in this work. The distance between the speaker and the nearest
microphone is set to 1 m, 2 m and 3 m; the reverberation time T60

is set to 0.4 s and 0.6 s. Other parameters are set to Li = Lc, τ = 0.
In each run of the simulation, the relative geometry of the speaker
and microphones is kept constant, but the speaker is relocated at a
random position in the room. The averaged C50 of the resulting
EIRs which are obtained using 100 randomly chosen speaker posi-
tions and synthetic vectors e, are plotted in Fig. 3. It can be seen
that the SIEREM can always equalize the acoustic systems to good
effect. However, even with NPM = −20 dB SIEs, the resulting C50

obtained with MINT are worse than those of the RIRs.

As stated in Section 4, the design parameters for the SIEREM

are the decay rate (or reverberation time) and the NPM level. These
parameters are not a priori known and therefore need to be esti-
mated. Due to space limitations, elaborate testing results of the ro-
bustness of the SIEREM with respect to these design parameters can-
not be provided here. In our tests, we have found that the SIEREM
is not significantly sensitive to the T60 and NPM; estimation accu-
racy of 20% in T60 and ±10 dB in NPM is sufficient for typical
operation.

6. CONCLUSION

In this paper we discussed the equalization of multichannel room
acoustic systems, when the multichannel room impulse responses in-
clude estimation errors introduced by the system identification pro-
cess. It was shown that existing equalization techniques fail to equal-
ize the acoustic systems in the presence of system identification er-
rors. Therefore, a new method which takes into account system iden-
tification errors was proposed. The evaluation results indicate that
the proposed method is more robust to system identification errors
than MINT.
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