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Abstract—The directivity factor (DF) of a beamformer describes
its spatial selectivity and ability to suppress diffuse noise which ar-
rives from all directions. For a given array constellation, it is pos-
sible to select beamforming weights which maximize the DF for
a particular look-direction, while enforcing nulls for a set of un-
desired directions. In general, the resulting DF is dependent upon
the specific look- and null directions. Using the same array, one
may apply a different set of weights designed for any other feasible
set of look- and null directions. In this contribution, we show that
when the optimal DF is averaged over all look directions, the result
equals the number of sensorsminus the number of null constraints.
This result holds regardless of the positions and spatial responses of
the individual sensors and regardless of the null directions. The re-
sult generalizes to more complex wave-propagation domains (e.g.,
reverberation).
Index Terms—Array signal processing, directivity factor, direc-

tivity index.

I. INTRODUCTION

A BEAMFORMER produces a weighted combination of
signals corresponding to different elements. The weights

may be designed to aid the reception (or transmission) of signals
from a certain direction (the look direction), and to block signals
from certain other undesired directions. Applications of beam-
forming are widespread [1] and encompass such areas as radar,
sonar, communications, seismology, astronomy, oceanography,
medical tomography, and acoustic signal processing.
The directivity factor (DF) of a beamformer describes its spa-

tial selectivity and ability to suppress diffuse noise which arrives
from all directions. For a given array constellation, it is possible
to select weights which maximize the DF for a particular look
direction. The criteria for selecting weights may also incorpo-
rate null constraints to block signals from undesired directions.
In general, the addition of constraints will reduce the DF.
Although the array constellation is usually fixed and cannot

be easily changed, the array weights may be readily modified.
Thus, a single array can be used for multiple scenarios with
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different look- and null directions. The DF attained when using
optimal weights is dependent on these directions.
Previous work [2]–[4] has shown that when the optimal DF is

averaged over all look directions, the result equals the number
of array elements. In this contribution, we extend this result
to incorporate null constraints and prove that the ensuing av-
erage equals the number of array elements minus the number
of null constraints. This property holds regardless of the selec-
tion of array constellation and is generalizable to more com-
plex wave propagation domains, e.g. sound propagation in re-
verberant enclosures.

II. BACKGROUND AND NOTATION

The theory of beamforming relates to both receiving and
transmitting arrays. Without loss of generality, we adopt the
vantage point of a receiving array.

A. Steering Vectors and Beamforming
Let us consider an array consisting of sensors receiving a

signal from a source. A steering vector (of dimensions )
describes the relationship between a source signal and the sig-
nals received at the sensors. Different factors affect the ampli-
tude and phase values of the steering vector. For example when
a plane wave impinges on an array, the positions of the sensors,
the direction of arrival (DOA), and the beampatterns of the indi-
vidual sensors all have an impact. The resulting steering vector
is

(1)

where the DOA is denoted by the unit-vector and is the
angular frequency. The beampatterns of the individual sensors
are contained in the vector . is a
matrix denoting the positions of the sensors (in Cartesian
coordinates), and is the velocity of wave propagation; hence,

describes the phase change due to wave
propagation [1]. The operator represents the Hadamard
(element-wise) product. We note that (1) portrays a fairly
straightforward scenario; more complex cases may incorporate
near-field effects and multi-path, e.g. reverberation.
A practical scenario may incorporate multiple sources as

well as noise. Each source has a distinct corresponding steering
vector. From superposition, the received signals are

(2)

where contains the received sig-
nals, is the signal produced by the -th source, is the
corresponding steering vector, and is noise.
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The beamformer produces an output signal by performing a
weighted sum of the input channels

(3)

where contains the weights cor-
responding to each sensor. Substitution of (2) into (3) shows that
the respective signals are scaled by a factor of . The
response of the beamformer to a signal from an arbitrary direc-
tion is described by the beampattern

(4)

Similarly, the beam-power is defined as . The level
of the noise at the output is given by1

(5)

where represents statistical expectation and
is the noise covariance matrix.

B. LCMV Beamforming
It may be desirable to constrain the responses towards the

source signals to certain prespecified values, while minimizing
the noise level. This goal can be attained by the linearly con-
strained minimum variance (LCMV) beamformer which solves

(6)

where is a matrix whose columns consist of the steering
vectors , and is a column vector whose ele-
ments represent the desired responses. It is assumed that is
formulated to contain columns which are linearly inde-
pendent. This precludes overdetermined systems and rules out
conflicting or redundant constraints. The solution to (6) is [5]

(7)

Substituting (7) into (5), the beamformer’s noise level is

(8)

C. The Directivity Factor
The DF of a beamformer describes the ratio of beam-power

in the look direction relative to the average beam-power
over all directions. A high DF corresponds to sharper and more
focused beams. For a beamformer with a set of weights , the
spherical DF is defined [1], [6] as:

(9)

where the DOA, , is
specified by azimuth and inclination parameters. The spherical
DF of (9) is the standard definition. On occasion, only DOAs
within the xy-plane (i.e. ) are of interest. In this case, an
alternative version–cylindrical DF–is defined [6]:

(10)

1In the interest of conciseness, explicit dependence on frequency is dropped
from this point onwards.

Both (9) and (10) subscribe to the general form (proposed by
the authors in [4]):

(11)

where the steering-vectors are specified by the parameter vector
, integration is performed over some set of interest in the pa-

rameter space, and is a function denoting the weight for
each instance of [such as the Jacobian of (9), or some
measure of likelihood]. The normalizing constant is defined
as . Equation (11) is used in Section V to for-
mulate generalizations of the DF.
The denominator of (11) can be expressed as

(12)

where is defined as

(13)

and is assumed to be nonsingular (since otherwise there is a
redundancy of sensors). Substituting (12) into (11) yields

(14)

The matrix which consists of components corresponding to
all can also be seen as describing an isotropic diffuse
noise field. Specifically, if the noise component is formed by
uncorrelated signals arriving from all directions with identical
power, the noise covariance in (5) has the form
where is proportional to the field’s strength [4, fn. 5].

III. MAXIMIZATION OF THE DF WITH CONSTRAINTS
In this section, we derive the optimal value of DF with null

constraints. This optimization problem is shown to be analogous
to the LCMV beamforming discussed in II-B. We then provide
a geometric interpretation of the result.

A. Optimization
We wish to maximize the DF expressed in (14). It should be

noted that and (for ) have the same DF. Conse-
quently, we may constrain the numerator to have unity value
without affecting the DF. The problem of maximizing (14)
is equivalent to minimizing subject to the constraint

. Additional constraints may also be incorpo-
rated. Specifically, it may be desirable to place nulls in certain
directions corresponding to known interference signals.
The problem of DF maximization may be formulated in the

mold of (6), with the noise matrix replaced by . Addition-
ally, the matrix is set such that the first column vector is the
desired look direction and all subsequent columns
consist of the steering vectors for directions cor-
responding to null constraints. For subsequent derivations, it is
convenient to partition into block form as . The
constraint vector becomes where is a
vector of zeros with the specified dimensions.
For the considered scenario, the optimal DF can be obtained

from (14) using (8) and the fact that :

(15)
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After expanding the terms in parentheses, (15) can be written as

(16)

The net effect of the triple product in the denominator of (16)
is to select the first element of the matrix inverse. The matrix
inversion in (16) can be expressed using the block inversion rule
[7] as

(17)

yielding

(18)

We note that when no null constraints are specified, the final
term is absent and [4]. A result some-
what similar to (18) was presented in [8] for the simpler case
of a single null constraint. The expression for in (18)
proves instrumental for the calculation of the average of
over all look directions in Section IV, and leads to a geometric
interpretation.

B. Interpretation
The terms in (18) lend themselves to an elegant geometric in-

terpretation. Let and (i.e., whitened
versions of and ). The first term of (18) is then
the squared Euclidean norm: . This describes the max-
imum DF attainable without null constraints.
Now let us define ; this is the pro-

jection of onto the column space of . The second term of
(18) corresponds to and describes the reduction of the
DF due to the null constraints. The net result is

(19)

where , i.e. the component of which is orthog-
onal to .
In a more general sense, (19) applies to LCMV beamforming

for suppressing arbitrary noise (with replacing ). The output
signal to noise ratio (SNR) attainable without null constraints is

, with denoting the
signal power. When null constraints are employed, the SNR is
reduced to .

IV. AVERAGE OF OPTIMAL DF OVER ALL DIRECTIONS

The weights which optimize the DF depend on the look direc-
tion and on the null constraint directions. Therefore for a given
array constellation, is subject to change for scenarios
with different specifications. We wish to calculate the value of

averaged over all directions.

2All directions include the null constraint directions, leading to an internal
contradiction in the constraints (unity vs. null) for which the beamformer is not
defined. Formally, (18) yields for these cases. At any rate, the
constraints are presumably consistent (i.e., do not lead to contradictions) almost
everywhere (a.e.).

For the moment, we assume that the null constraints ( ) are
constant. For these constraints, we select the weights which op-
timize the DF for each look direction . This yields a look
direction dependent . The average of over
all look directions is2

(20)

where we have denoted the averaging integral as
in order to streamline the notation.

Since the integrand of (20) is a scalar, it is equal to its own
trace. Hence,

(21)

in which the following stages are applied. First, is ex-
pressed as averaging over the trace of (18). In the second stage,
the linearity of the trace operator is used to reformulate the in-
tegrand as the sum of two traces. In the third stage, we reorder
terms using the property that the trace of a product is invariant to
a cyclic permutation of the order of multiplicands. Finally, the
order of the trace and the integration is reversed and constant
terms are moved outside the integration.
The term which appears twice in the final stage is

by definition [see (13)]. Therefore,
, where is an identity matrix. Substituting back

into (21) and again applying cyclic reordering yields

(22)

Since the trace of an identity matrix equals its rank, it follows
that

(23)

We have thus proved that for an arbitrary choice of null direc-
tions, equals the number of sensors minus the number of
linearly independent null constraints. Since this is true for any
specific choice, it is certainly true when averaging over any pos-
sible set of null directions (i.e., a set of feasible matrices).

V. DISCUSSION

A. Generalized Propagation
Although the classical definition of DF corresponds to plane

waves [as in (9) and (10)], the formulation presented in (11) does
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Fig. 1. Sample mean and sample median of the DF for a uniform linear array
(ULA) with elements and null constraints. (a) interelement spacing:
0.5 wavelengths. (b) interelement spacing: 0.1 wavelengths.

not specify the form of propagation or the parameter space. In-
stead of the plane wave propagation (1), more complex models
may be employed leading to a broader perspective of DF. The
validity of our main result (23) is not limited to a particular prop-
agation model and can hence be applied to generalized versions
of DF.
For example, we may define the DF for a microphone array

operating in an echoic room. In this case, would be the Carte-
sian coordinates , of (11) and (20) would be the re-
gion of interest, and would be an acoustic transfer function
incorporating the direct path and reverberation.When averaging

over the region of interest, (23) dictates that the result is
.

B. Regions of Integration
The derivation in Section IV relies on the fact that
. This results from the integrations in (13) and in (20) both

being over the same region . However, one may be interested
in averaging over a different region. For instance, the
designer may have prior knowledge that the desired source is
present only in a certain region . Replacing of (20) with

will result in3 which is generally different than
. The resulting average,

(24)

does not necessarily equal . In some cases, judicious
design of the array constellation may provide higher DF values.

C. Average DF and Distribution of DFs
Knowledge of the average DF does not guarantee that this

value will be attained for a particular scenario. In fact, when the
look direction is close to a null direction, the ensuing DF will
be close to zero. A more complete portrayal is provided by the
distribution of DFs.

3Similarly, replacing with would have the same effect.

Fig. 2. Sample cumulative distribution function (cdf) of the DF for a uniform
linear array (ULA) with elements and null constraints. Note that
the range of the -axis differs in the two subplots. (a) interelement spacing: 0.5
wavelengths. (b) interelement spacing: 0.1 wavelengths.

To illustrate this point, we now examine the well-known case
of a uniform linear array (ULA). We conducted Monte Carlo
simulations for a ULA of omnidirectional elements. For
each trial, 5 directions were selected at random (from a uniform
distribution on the unit sphere); the fist direction was designated
as the look direction and the other four reserved for potential
null constraints. The optimal DF was calculated using the appli-
cable terms of (18) for a scenario with no null constraints and
for scenarios with 1 to 4 null constraints. This was done for one
million sets of randomly selected directions. The Monte Carlo
procedure was repeated for two different interelement spacings:
(i) 0.5 wavelengths, and (ii) 0.1 wavelengths.
Fig. 1 shows the sample means and sample medians for these

two array configurations. The sample means are in agreement
with (23); the sample medians are not given by (23) and depend
on the array configuration. Fig. 2 shows the sample cumulative
distribution functions (cdfs) for the two configurations. Here
too, the results depend on the configuration. For example, with
half-wavelength spacing the maximal DF a ULA can attain is
. With no null constraints, this is attained in all look directions

[1] [leading to the “brick wall” form of the cdf for
in Fig. 2(a)]. As null constraints are added, the probability of
lower DFs increases. For a 0.1 wavelength spacing, higher DFs
are attainable. Specifically, in the endfire direction the DF of
an array with vanishingly small spacing approaches [6], [9]
(e.g., in Fig. 2(b), the DF approaches 25). For other directions,
the DF can be significantly smaller.

VI. CONCLUSION
In this letter, we proved that when using weights that max-

imize the DF, the average DF of the resulting beamformers
(over all directions) equals the number of array elements minus
the number of null constraints. This result does not depend on
the array constellation, and holds for generalized propagation
regimes. When the DF is averaged over a particular region of
interest, then the resulting average DF is given by (24), which
may depend on the array constellation.
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